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Osteopetrosis is a genetic condition of the skeleton characterized by increased
bone density caused by osteoclast formation and function defects.
Osteopetrosis is inherited in the form of autosomal dominant and autosomal
recessive manner. We report autosomal recessive osteopetrosis (ARO; OMIM
611490) in a Chinese case with a history of scarce leukocytosis, vision and
hearing loss, frequent seizures, and severe intellectual and motor disability.
Whole-exome sequencing (WES) followed by Sanger sequencing revealed novel
compound heterozygous mutations in the chloride channel 7 (CLCN7) gene
[c.982-1G >C and c.1208G > A (p. Arg403Gln)] in the affected individual, and
subsequent familial segregation showed that each parent had transmitted a
mutation. Our results confirmed that mutations in the CLCN7 gene caused ARO
in a Chinese family. Additionally, our study expanded the clinical and allelic
spectrum of the CLCN7 gene and enhanced the applications of WES
technology in determining the etiology of prenatal diagnoses in fetuses with
ultrasound anomalies.
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Introduction

Osteopetrosis is a genetically heterogeneous disorder characterized by abnormal bone

metabolism. The pathogenesis of osteopetrosis stems from the dysfunction of

differentiation and/or absorption of osteoclasts, which results in skeletal dysplasia, such as

increased bone density and medullary cavity stenosis (1). Three clinical types can be

identified based on severity, age of onset, and inheritance: a dominant benign type,

autosomal dominant osteopetrosis (ADO, OMIM 166600); intermediate autosomal

osteopetrosis (IAO, OMIM 259710); and a severe recessive type, autosomal recessive

osteopetrosis (ARO, OMIM 611490). ARO, also known as infantile malignant

osteopetrosis, is the most fatal type of osteopetrosis, with an incidence of 1/250,000 live

births. ARO patients usually present by 2 years of age and die before 10 years of age

(1–3). Patients diagnosed with ARO are more susceptible to hematological impairment

with anemia, thrombocytopenia, and secondary neurological deficits. However, leucocyte

counts in ARO patients were not frequently reported (4).
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At least 10 genes have been reported to be associated with

osteopetrosis. Mutations in T-cell immune regulator 1 (TCIRG1)

and chloride channel 7 (CLCN7) are the two most common causes

of ARO. TCIRG1 is located on chromosome 11q13 and spans

∼12.5 kb. The transcript variants of this gene containing 15 exons

represent the a3 subunit of the vacuolar proton pump, which is

preferentially expressed in osteoclasts and plays an important role

in bone resorption. TCIRG1 mutations are reportedly responsible

for over 50% of ARO cases. The CLCN7 gene on human

chromosome 16p13.3 contains 25 exons and encodes the 803

amino acid chloride channel protein 7 (CLC-7). CLCN7 is a

member of the voltage-gated chloride channel protein family that

mediates the exchange of chloride ions against protons,

maintaining the acidic environment for bone resorption (5).

CLCN7 plays a synergistic role when hydrogen ions are transported

outside of the cell by TCIRG1 (6). Mutations in CLCN7 have been

documented in approximately 20% of individuals and are related

to a broad spectrum of osteopetrosis with phenotypes ranging

from mild to life-threatening levels of severity (1, 3, 7).

The initial clinical presentation of this rare genetic syndrome is

heterogeneous. Formal clinical diagnostic criteria for ARO have not

been established. High awareness of initial ARO symptoms is

critical for early diagnosis. Approximately 100 variants in CLCN7

are known (http://www.hgmd.cf.ac.uk/). ARO related to CLCN7

mutation has been identified in approximately two dozen

families (3, 8–19). Affected individuals admitted for visual

impairment, anemia, failure to thrive, or convulsion in the

infantile period are frequently reported (1, 3). These symptoms

and radiological changes involving extensive bone calcification

should raise clinical suspicion of ARO. Genetic testing

approaches promote molecular diagnoses. Data regarding

Chinese patients with CLCN7-related ARO are limited to four

cases from Taiwan (12), Guangzhou (10), and Shanghai (17).

These patients had a relatively stable disease course and were still

alive at the time they were reported.

Here, we report the natural course of a patient with CLCN7-

related ARO involving scarcely leukocytosis at birth, rapidly

progressing to neurological deterioration with a very poor

prognosis. We also review the clinical and genetic findings in

CLCN7-related ARO reported thus far.
Methods

Subjects and ethical approval

A neonate who presented with severe leukocytosis and

thrombocytopenia at 3 days of age was referred to Xinhua

Hospital affiliated with Shanghai Jiao Tong University School of

Medicine. The patient was evaluated with whole-exome

sequencing (WES) for etiological evidence.

The studies involving human participants were reviewed and

approved by the Institutional Review Board of Xinhua Hospital.

Written informed consent was obtained from the legal guardian

for the publication of any potentially identifiable images or data

included in this article.
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Whole-exome sequencing and Sanger
sequencing

Genomic DNA was extracted from peripheral blood. Library

preparation was performed with an xGen Exome research panel

v1.0 (IDT, United States), and sequencing was conducted on a

HiSeq 4000 (Illumina, United States). Raw reads were aligned to

the reference genome GRCh37/hg19 by BWA-MEM (v0.7.12).

Variant calling was performed following the GATK best practice

workflow (v3.3) (20, 21). Variant annotation and filtration were

performed by SnpEff (v4.2) and SnpSift (v4.2) based on

gnomAD (v2.1), OMIM (https://omim.org/), HGMD (https://

www.hgmd.cf.ac.uk/ac/), ClinVar (https://www.ncbi.nlm.nih.gov/

clinvar), and an in-house database. Interpretation of variants was

conducted in accordance with American College of Medical

Genetics and Genomics (ACMG) guidelines (22).

The variant screening process was based on disease-related

information and variant pathogenicity evaluation (allele frequency

in population, in silico tools, ACMG guidelines) (23, 24). Genetic

disorders that frequently manifest phenotypes similar to our case

include juvenile-myelomonocytic-leukemia (JMML) (5, 17, 25) and

leukocyte adhesion deficiency (LAD) (1, 26, 27). JMML-related

genes include PTPN11, NRAS, KRAS, NF1, and CBL. LAD-related

genes include IKBKG, ITBG, KINDLIN3, and FERMT3. All rare

variants in these genes were extracted and filtered.

Sanger sequencing was performed to validate the heterozygous

variants identified through WES. PCR amplification was carried

out using an ABI 9700 Thermal Cycler and sequenced on an

ABI PRISM 3730 sequencer (Applied Biosystems, United States)

using the primers listed in Supplementary Table S1.
In silico analysis

REVEL is a tool for predicting the effect of reported missense

variants on the function of mutant human proteins (28). The

chromosome localization, protein sequences, and phylogenetic

tree of the missense variant (c.1208 G > A) in the CLCN7 gene

were analyzed by ClustalX_1.81 (http://www.clustal.org/) and

Molecular Evolutionary Genetics Analysis (https://www.

megasoftware.net/). Mutant sequences (c.982-1G > C) and wild-

type sequences were analyzed by in silico tools (29), CADD

(Combined Annotation Dependent Depletion; cadd.gs.washington.

edu) splice, MaxEntScan, Spliceogen (https://github.com/VCCRI/

Spliceogen), NNSPLICE (Splice Site Prediction by Neural

Network), and Splice AI (https://github.com/Illumina/SpliceAI).
Results

Clinical presentation

A 3-day-old female neonate was referred to our hospital with

rare leukocytosis (56.12 × 109/L) and transient thrombocytopenia

(85 × 109/L) on the day she was born. Physical examination
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showed no external birth defects other than mild hypotonia with

slow suckling. Clinical biochemical analysis was also performed.

The patient’s hematological profile was as follows: white blood

cell (WBC) count, 43.71 × 109/L; neutrophil/lymphocyte (N/L)

ratio, 66%/16.9%; monocyte ratio, 14.70%; hemoglobin (Hb),

162 mg/dL; platelets, 98 × 109/L. C-reactive protein and

procalcitonin were in the normal range. No pathogenic

microorganisms were identified by bacterial culture or

metagenomic sequencing. Serology for toxoplasma, rubella,

cytomegalovirus, and herpes was negative. Peripheral blood

smear showed no evidence of immature cells. Bone marrow

puncture was considered but not successfully performed. After

intravenous administration of meropenem and penicillin for

7 days, leukocytosis and thrombocytopenia did not significantly

improve (Figure 1). Brain magnetic resonance imaging (MRI)

showed slight signal alterations in white matter and the corpus

callosum (Figure 2A). Screening tests of hearing and ocular

disease were normal.

At 2 months of age, the patient had vision and hearing

impairment, with little response to colors, voices, or moving

objects. From the age of 4 months, her neurological defects

gradually worsened. The patient began to have seizures that

manifested as spasticity, sometimes as often as dozens of times

per day, and a diagnosis of West syndrome was made. She was

treated with various antiepileptic medicines, such as vigabatrin,

topiramate, and levetiracetam, but none successfully controlled

the seizures. The patient’s biochemical indexes were normal,

including calcium–phosphorus metabolism biomarkers,

immunoglobulin levels, and lymphocyte classification counts

(Supplementary Table S2). Brain MRI showed hydrocephalus

and cerebral atrophy (Figures 2B,C). The electroencephalogram
FIGURE 1

The longitude data of white blood cells and monocyte percent of the patient
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showed multifocal slow spike-wave and slow-wave patterns

(Figure 2E). At 9 months of age, her head circumference was

38.0 cm (<−3 SD), height was 65 cm (<−2 SD), and weight was

7.0 kg (−1 SD to −2 SD). Her vision was completely lost. She

could not raise her head, sit, or laugh. Neuropsychological testing

showed a development delay using the Bayley III scale.

Through telephone follow-up, we learned that her leucocytes

remained at a high level (not lower than 15 × 109/L). When the

patient experienced diarrhea or acute upper respiratory

infections, her leucocytes were high, up to 20–40 × 109/L

(Figure 1). Because of the progressive neurologic impairment,

her family was compelled to provide symptomatic treatment

without resorting to bone marrow transplantation or

hematopoietic stem cell transplantation. The patient died from

respiratory arrest at the age of 22 months.
Molecular analysis

Compound heterozygous variants were identified in the

CLCN7 gene. According to ACMG guidelines, the variant

c.1208G > A (p. Arg403Gln) is rated “likely pathogenic” (PM1 +

PM2 + PM3 + PP3 + PP4). The variant c.982-1G > C, located at a

splice donor site, is also rated “likely pathogenic” by ACMG

standards (PVS1_S + PM2 + PM3 + PP4).

We also reviewed the patient’s bone imaging, which showed

increased bone density on radiography and “sandwich” vertebrae

(Figure 2D); this evidence, together with the early onset of

patient clinical manifestations and the mode of inheritance

(Figure 2F), was highly compatible with ARO. The variant

c.1208G > A was paternally inherited (Figure 2G). This missense
.
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FIGURE 2

Clinical and molecular findings of the patient. (A) T1-weighted (T1W) brain MRI indicated a high signal in the white matter (arrowheads) and corpus
callosum (arrowheads) during the neonatal period. (B,C) T1W brain MRI indicated hydrocephaly (arrowheads) and brain atrophy (arrowheads) at 4
months of age. (D) Proband showed increased bone density on radiography and “sandwich” vertebrae. (E) Multifocal slow spike-wave and slow-wave
patterns in electroencephalogram. (F) The proband’s family tree. (G) The proband was paternally inherited the variant of c.1208G > A in the CLCN7
gene. (H) The proband was maternally inherited the variant of c.982-1G > C in the CLCN7 gene. (I) A cross-species alignment of amino acid
sequences showed that p. Arg403Gln variants were located in a highly conserved region in CLCN7 protein.

TABLE 1 Splicing prediction of the novel variant c.982-1G > C in CLCN7
gene.

In silico tools NM_001287.5:
c.982-1G > C

Splice site altering

Scores Cutoff
CADD splice 32 >14.25 Yes

Wang et al. 10.3389/fped.2023.978879
mutation is a previously reported osteopetrosis-causing variant

located in the transmembrane domain of the protein. The

c.1208G > A mutation is located in a highly conserved region

among vertebrates, as confirmed by an online sequence database

(Figure 2I). The other variant, c.982-1G > C, located in intron

11, was maternally inherited; this variant is novel (Figure 2H).

MaxEntScan 8.27 >2.35 Yes

Spliceogen 1.0 0.78 Yes

NNSPLICE 0.75 >0.4 Yes

SpliceAI 0.79 >0.1 Yes

CADD splice, combined annotation-dependent depletion splice; NNSPLICE, splice

site prediction by neural network.
Splice-altering prediction

As a variant at the canonical splice site, the interpretation of

the c.982-1G > C variant following ACMG guideline was “likely

pathogenic” (PVS1_S + PM2 + PM3 + PP4). In order to predict

the possible splice-altering effect, multiple splice-altering

prediction algorithms were used including CADD, MaxEntScan,

Spliceogen, NNSPLICE, and SpliceAI.

The guanine is replaced by thymine (c.982-1G > C) at

nucleotide number 1 in intron 11 located at the exon–intron

boundaries. In silico prediction analysis is shown in Table 1. The
Frontiers in Pediatrics 04
CADD index is 32 (CADD index of process normal order is

14.25). MaxENT value is 8.27 (MaxENT index of the normal

sequence is 2.35). Spliceogen index was 1.0 (normal sequence

index is 0.78). NNSPLICE showed an original acceptor site with

a score of 0.79 (cutoff 0.40); no splice site was predicted after the

c.982-1G > C alteration. Similarly, SpliceAI suggested splice
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TABLE 3 The molecular variants in CLCN7 in our patient and others in the literature.

Case (ref.) cDNA nucleotide change Variant type Heterozygosity Amino acid change
1 (10) c.896C > T

c.285 + 1G > A
Missense
Splice site

Compound heterozygous p.Ala299Val
NA

2 (12) c.857G > A
c.1168del

Missense
Frameshift

Compound heterozygous p.Arg286Gln
p.Ala390Glnfs*6

3 (13) c.875G > A
c.1208G > A

Missense
Missense

Compound heterozygous p.Gly292Glu
p.Arg403Gln

4 (14) c.1577G > A Missense Homozygous p.Arg526Gln

5 (11) c.1792G > A Missense Homozygous p.Arg561Gln

6 (8) c.981 + 5G > A
c.948C > T

Splice site
Missense

Compound heterozygous NA
p.Arg280Cys

7a/7b (15) CLCN7: c.594 + 193oGNPTG: c.178 + 6298 Nonsense Homozygous NA

8a/8b (30) c.784_787del
c.1354-1G > A

Frameshift
Splice site

Compound heterozygous p.Ser262Argfs*7NA

9 (9) c.1504G > T Missense Homozygous p.Arg502Trp

10 (3) c.465_466ins Frameshift Homozygous p.Tyr156Leufs*209

11 (3) c.2338G > A Missense Homozygous p.Arg767Trp

12 (3) c.756G > A
c.1614C > T

Missense
Missense

Compound heterozygous p.Gly240Arg
p.Arg526Trp

13 (3) c.1879T > C
c.1485_1565del

Missense
Frameshift

Compound heterozygous p.Leu614Pro
p.Tyr156Leufs*209

14 (3) c.1158G > T
c.*13621A > T

Nonsense
Splice site

Compound heterozygous p.Glu374*
NA

15 (3) c.1032A > G
c.2337C > T

Missense
Missense

Compound heterozygous p.Met332Val
p.Arg767Trp

16a/16b (3) c.784C > G
c.2269C > T

Missense
Missense

Compound heterozygous p.Pro249Arg
p.Ser744Phe

17 (17) c.1555 C > T
c.2999 C > T

Missense
Missense

Compound heterozygous p.Leu519Phe
p.Arg767Trp

18 (17) c.286-9G > A
c.1025T > C

Frameshift
Missense

Compound heterozygous p.Glu95Valfs*8
p.Leu342Pro

19 (18) c.610A > T
c.612C > G

Missense
Missense

Compound heterozygous p.Ser204Trp
p.Ser204Trp

20 (19) c.2416T > A Nonsense Homozygous p.*806Argext*58

21 (16) c.595-120_595-86dup Splice site Homozygous NA

Presenta c.1208G > A
c.982-1G > C

Missense
Splice site

Compound heterozygous p.Arg403Gln
NA

NA, not applicable.
aCurrent study.
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acceptor loss caused by the variant, with a score of 0.79 (cutoff

0.50). Based on these prediction algorithms, the c.982-1G > C

variant, at the splice acceptor site of intron 11, potentially alters

mRNA transcription.
Discussion

We reported a case of neonatal CLCN7-related ARO detected at

birth, with an onset symptom of severe leukocytosis; later

symptoms included vision and hearing loss as well as

neurological deficits in the form of frequent seizures and

intellectual and motor disability. The diagnosis was confirmed by

genetic testing, which showed compound heterozygous variants

in the CLCN7 gene.

Anemia and thrombocytopenia are prominent symptoms in

ARO patients due to bone marrow failure (Table 2). Recurrent

leukocytosis observed in our patient has been scarcely reported.

Another case of CLCN7-related ARO reported in Guangzhou,

China, showed an increased leukocyte count of 19.2 × 10^9/L at
Frontiers in Pediatrics 06
7 months of age, without longitudinal data, which was similar to

our patient’s condition. However, studies of immunological

deficits in ARO patients have been limited by the availability of

osteoclasts. The defective generation of superoxide by neutrophil

cells, monocytes, and lymphocytes, which results in an inability

to eradicate infection, has been observed in ARO patients (31,

32). Recurrent leukocytosis and osteopetrosis at early age was

highly suspected to be due to KINDLIN3 mutation, an important

intracellular signaling molecule involved in the combination of

osteoclast maturation and leukocyte adhesion deficiency (26, 33).

However, genomic sequencing did not identify pathogenic

variants. Second, the monocyte percentage in this case was

persistently increased (Figure 1). Monocyte macrophages and

osteoclasts are derived from the same hematopoietic lineage. The

dysfunction of osteoclasts may trigger an increase in the

production of monocytes in the feedback cycle, which is

modulated by homologous crosstalk signals (7, 34). Furthermore,

determining whether leukocytosis is a phenotype in CLCN7-

related ARO children and identifying the underlying genotype

may require a more specific cohort.
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FIGURE 3

A sketch-map of the gene and location of reported variants of CLCN7.
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Another important issue is central nervous system (CNS)

impairment. The mechanism of CNS impairments may result from

endosome or lysosome dysfunction in the neuron system mediated

by the inactive CLCN7 channel (35). The interaction pathways of

the peroxisome proliferator-activated receptor and neuroactive

ligand–receptor are reported to be involved (36). We reviewed the

literature and identified a total of 21 patients with CLCN7-related

ARO (8–17, 30, 37) (Table 2). A total of 15/21 patients had CNS

involvement; 6/21 patients died before the age of 5 years. However,

the 10/15 patients without CNS involvement were all alive when

their cases were reported. The oldest surviving patient was 25 years

old (14). Thus, patients with CNS impairments usually had

significantly reduced lifespans, and this effect could not be reversed

by bone marrow transplantation or hematopoietic stem cell

transplantation (1, 3). Thus, CNS involvement in CLCN7-related

ARO should be thoroughly assessed initially and carefully

monitored, as it is an essential prognostic predictor. The typical

clinical neurological presentation of TCIRG1-related ARO patients

was also hydrocephalus, myotonia, neuropsychic and psychomotor

retardation, compromised vision, and heavy nasal breathing.

Overall, the neurological phenotype of TCIRG1-related ARO seems

to be more benign than that of the CLCN7-dependent form.

However, no significant correlation was found between CNS

phenotypic presenting features and specific gene mutations, which

may be related to the clinical phenotype variability and variable

genetic expressivity in the pathogenic genes (4, 38–40).

Previously, the reported ARO-causing variants in CLCN7

(42 alleles, including 22 missenses, 6 splice sites, 3 nonsense, and
Frontiers in Pediatrics 07
5 frameshift) did not include any hotspot mutations (Table 3,

Figure 3). The missense mutation (c.1208G > A) was reported,

which was suggestive of a mild case of ARO (13). However, our

patient’s medical history and short survival time manifested a

malignant phenotype. Thus, the correlation between genotype

and phenotype remains to be resolved. The pathogenetic process

may also involve posttranslational modifications, including

epigenetic modification, phosphorylation, and ubiquitylation,

which might impair the function of the CLCN7 protein.

In a review of 22 patients with CLCN7-related AROs, the

predictive value concerning survival of early central nervous

impairment was investigated (Table 2). Another important

issue was that the onset symptom of exaggerated leukocytosis

was scarcely reported, which would straightforwardly be

misdiagnosed as JMML or LAD. However, the nonspecific

peripheral blood smear test and the failure of bone marrow

aspiration of the neonatal patient required the consideration of

differential diagnoses. ARO is not recognized immediately in our

case and other considerable number of children. Indicative signs,

such as neurologic impairment, vision or hearing lost, and

hematological abnormality, would be suggestive findings for the

early diagnosis. Increased bone density is radiological feature for

clinically early diagnosis. Also, high-throughput sequencing

technology is the most effective and precise method to

distinguish similar phenotypes. Hopefully, our research will be

able to increase adequate knowledge and awareness of ARO

disease for physicians, who might be the initial contact for

patients, such as pediatricians, neurologists, hematologists,
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ophthalmologists, and geneticists. There are some limitations of

our study. The minigene assay was an efficiency method to

elucidate the biological effects of the novel splice site variant

(c.982-1G > C). However, we did not perform studies on the

working mechanism of this variant and more in-depth research

is needed. Additionally, the predictive values of exaggerated

leukocytosis as early signs need more clinical cohorts to illustrate.
Conclusion

This study expands the spectrum of CLCN7 mutations,

reporting that the combination of c.1208G > A and c.982-1G > C

mutant alleles resulted in a very early-onset, life-threatening

phenotype. Furthermore, symptoms of leukocytosis, progressive

neurological impairment, and vision or hearing loss should raise

clinical suspicion of ARO. High-throughput sequencing

technology is expected to be beneficial for precise diagnosis and

improved prognosis.
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