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Objective: To explore the reliability and validity of gait parameters obtained from
gait assessment system software employing a human posture estimation algorithm
based on markerless videos of children walking in clinical practice.
Methods: Eighteen typical developmental (TD) children and ten children with
developmental dysplasia of the hip (DDH) were recruited to walk along a
designated sidewalk at a comfortable walking speed. A 3-dimensional gait
analysis (3D GA) and a 2-dimensional markerless (2D ML) gait evaluation system
were used to extract the gait kinematics parameters twice at an interval of 2 h.
Results: The two measurements of the children’s kinematic gait parameters
revealed no significant differences (P > 0.05). Intra-class correlation coefficients
(ICC) were generally high (ICC >0.7), showing moderate to good relative
reliability. The standard error of measurement (SEM) values of all gait parameters
measured by the two walks were 1.26°–2.91°. The system software had good to
excellent validity compared to the 3D GA, with ICC values between 0.835 and
0.957 and SEM values of 0.87°–1.71° for the gait parameters measured
by both methods. The Bland–Altman plot analysis indicated no significant
systematic errors.
Conclusions: The feasibility of the markerless gait assessment method using
the human posture estimation-based algorithm may provide reliable and valid
gait analysis results for practical clinical applications.
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human posture estimation algorithm, markerless gait analysis, lower limb kinematics,
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1. Introduction

In clinical practice, abnormal gait is one of the most common symptoms in pediatric

orthopedic clinics (1), accounting for approximately 35.5% of pediatric orthopedic

outpatient visits (2, 3). Gait abnormality in children is a non-specific symptom that has

many causes, including trauma, deformity, inflammation and tumors (3). However, most

of these effects are physiological. Therefore, distinguishing between physiological and

pathological gaits is challenging for doctors.

Owing to the particularity of children, outpatient doctors in clinics typically employ the

visual method to make qualitative judgments, which mainly depend on their subjective

experiences (4). This approach often leads to missed diagnosis of the disease, and it is

impossible to give a quantitative basis for diagnosis. In addition, some doctors rely

heavily on imaging tools for evaluation (5), which not only increases outpatient imaging
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TABLE 1 Demographic characteristics of the participants.

Characteristics TD
Mean (SD)

DDH
Mean (SD)

Age, years 6.22 (2.02) 6.08 (2.22)

Body height, cm 118.47 (15.46) 119.88 (15.90)

Body mass, kg 24.23 (8.86) 22.56 (6.51)
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examination rates but also impacts children’s health due to

radiation and other factors. At present, in some developed areas,

doctors can make an accurate 3-dimensional gait analysis (3D

GA) of the human gait using professional equipment (6–8). To

date, this method has been applied to the diagnosis and

treatment of cerebral palsy, flatfoot, and other diseases in

children (9, 10). 3D GA is based on the principles of

biomechanics and applies computer-aided and infrared camera

technology to systematically analyze the kinematics and

dynamics of gait and has good reliability and validity (11, 12).

However, owing to the need for expensive equipment and

professional technicians to operate it, 3D GA is currently only

applied in a few medical centers with gait laboratories (13).

Other shortcomings of this gait assessment technique include the

need to mark subjects’ joints, poor co-operation of children,

difficulty, and long processing time for data collection. Therefore,

there is an urgent need for a better, lower cost, more intelligent,

and more reliable walking posture analysis system for children to

analyze their gait for application in routine clinical practice.

With the development of human posture estimation

algorithms, it is possible to use video captured with handheld

devices and output by motion capture system software to assist

in medical treatment (14–16). By recording a video of a subject

walking, the movements in each frame of the video and the joint

angles can be captured and tracked to obtain relevant gait

parameters, which are then used to assist in the diagnosis and

treatment of diseases. Sabo et al. (17) provided a simple gait

monitoring method based on a human posture estimation

algorithm for elderly people who need to be in a long-term care

environment. Ouyang et al. (18) applied a human pose

estimation algorithm based on the OpenPose framework to

analyze the movements of patients with attention deficits before

and after being treated with medication to assess drug efficacy.

Similarly, based on the OpenPose system, Viswakumar et al. (19)

tested the influence of different clothing or lighting conditions

on joint angle measurement and found that joint angle is not

easily affected by ambient light and clothing changes and has

good accuracy. However, at present, the markerless gait

evaluation system based on the human posture estimation

algorithm is mainly used on adults (20, 21). As there are certain

differences in gait between children and adults, a system suitable

for adults cannot simply be applied to children. Therefore, a

markerless gait evaluation system for children is needed.

The software is primarily based on existing human posture

detection algorithm, Keypoints And Poses As Objects (KAPAO)

(22). This new single-stage 2D multiplayer keypoint-and-pose

detection method was proposed by researchers at the University

of Waterloo, Canada. Its advantage is that it is not based on

thermal map to estimate key points. Compared with previous

algorithms, the algorithm is stable and fast. When developing

this type of system software, it is important to ascertain its

reliability and validity (11). However, to the best of our

knowledge, current research on the reliability of this markerless

gait assessment method is more applicable to adults (23–25),

whereas there are few studies that explore the reliability and

validity of the markerless gait assessment method for children.
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DDH is one of the common diseases in pediatric orthopedics.

Children often have abnormal gait with limited movement of hip

and knee joints. It has always been the focus of pediatric

orthopaedic surgeons to pay attention to the gait changes of

children with DDH. The markerless gait assessment method is

expected to provide relevant data for pediatric orthopedic

surgeons, but its reliability and accuracy have not been verified.

In summary, this study aimed to develop a practical clinical

markerless gait evaluation software based on a human posture

estimation algorithm and to verify its reliability and validity by

recruiting TD children and DDH children, in order to evaluate

the feasibility of this method for clinical application. The

software is assumed to have good reliability and validity.
2. Methods

2.1. Subjects

The study subjects were healthy volunteers, and the inclusion

criteria were as follows: (1) children aged 3–11 years, (2) can

walk 10 m independently and smoothly. Eighteen TD children

(males: females = 8:10) and ten DDH children (males: females =

4:6) were included in the current study based on the inclusion

criteria. Table 1 shows participants’ characteristics and

demographics. All parents of the children provided informed

consent for the testing, and the study was conducted in

accordance with the Declaration of Helsinki. The protocol was

reviewed and approved by the institutional review board of the

First Affiliated Hospital of the Air Force Medical University.
2.2. Experimental setup

The markerless gait evaluation system consisted mainly of a

smartphone camera (1,920 × 1,080 pixels at 30 frames/s) and

video analysis software at the computer terminal. The software is

primarily based on existing human posture detection algorithm,

Keypoints And Poses As Objects (KAPAO) (22). KAPAO is a

top-down approach for pose estimation that enhances the

YOLOv5 object detection algorithm by adding 17 keypoints

outputs in the detection head. This allows it to simultaneously

detect the human body’s position and the positions of 17

corresponding keypoints. Figure 1 demonstrates an example of

KAPAO predicting human keypoints. To detect human bounding

boxes and keypoints, KAPAO modifies the YOLOv5 output to

adapt it to the task of human pose estimation. Initially, the input

image undergoes feature extraction through a backbone network.
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FIGURE 1

Example output for pose estimation based on KAPAO.
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Subsequently, four feature layers extracted from the backbone

network are passed to Feature Pyramid Network (FPN) and Path

Aggregation Network (PAN) for multi-scale fusion (26). Next,

KAPAO decodes bounding boxes and their keypoints. The

KAPAO model encodes human bounding boxes and keypoints

together. Each output box consists of a bounding box and 17

keypoints, with each keypoint treated as a class of bounding box.

If the class of the bounding box corresponds to a human, the

model decodes the human and its keypoints. However, if the

class corresponds to keypoints, the model decodes the center of

the box as a keypoint. Finally, a matching algorithm is employed

to merge human bounding boxes and keypoints, resulting in the

final output (Figure 2).

In the task of child gait recognition, it is often necessary for

adults to provide guidance to encourage children’s cooperation

during testing. Consequently, other individuals may appear in

the background of the recorded video. Identifying the correct

individuals from the video is an urgent issue to be addressed.

DeepSORT (27) is a tracking algorithm evolved from SORT (28),

which assigns a unique label to each person appearing in the

video and tracks their trajectories. For tracking individuals, the

DeepSORT algorithm employs a Convolutional Neural Network

(CNN) to extract features from the human bodies and uses a

Kalman filter to predict their trajectories. Figure 3 displays the

structure of the DeepSORT algorithm. Firstly, the DeepSORT

algorithm collects all the detection boxes from the current

frame’s object detection output and matches them with the

predicted boxes from the Kalman filter output using a cascading

matching algorithm. Successfully matched detection boxes are
FIGURE 2

Image of the output of the markerless gait evaluation system.
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forwarded to the next Kalman filter cycle. Detection boxes that

could not be matched in the cascading matching are further

matched based on Intersection over Union (IoU). This process

results in three scenarios: (1) If a detection box successfully

matches a predicted box, the detection box is updated and sent

to the Kalman filter for predicting the next round of predicted

boxes. (2) If a detection box does not match any predicted box,

and if an appropriate predicted box is not found, it signifies the

appearance of a new trajectory in the image. A new trajectory is

then created and sent to the Kalman filter for prediction. (3) If a

predicted box does not match any detection box, two possibilities

exist. If the predicted box is in a non-deterministic state, it is

considered a false positive due to detection algorithm errors, and

the trajectory is discarded. However, if the predicted box is in a

deterministic state, it is possible that the trajectory is obscured by

objects or has exited the camera’s view. Therefore, a threshold is

set, and if a re-match occurs within the threshold, it implies the

trajectory was obscured. If no re-match occurs beyond the

threshold, it suggests the trajectory has exited the camera’s view,

and the trajectory is directly discarded. Note: Non-deterministic

states transition to deterministic states after successful matching

in multiple rounds.

The software mainly consists of three modules: (1) a video

acquisition module: obtains the vide (the video contains gait

images of children or adults walking, and the video does not

restrict shooting scenes and shooting equipment); (2) a human

posture detection module: detects the human body detection

frame of each human body object in the video and the human

body keypoints in the frame using the preset human body

posture detection algorithm; and (3) a human body tracking

module: matches the human body detection frame of each

human body object in the video frame by frame and generates

the continuous gait feature of the human body object according

to the human body key points in the matched human body

detection frame (Supplementary Video S1). The two-

dimensional coordinates of the hip, knee, and ankle joints of

the human object in the video are extracted, and the required

kinematic angle is calculated according to these coordinates.

The flexion and extension angles of the hip joint in the sagittal

plane are calculated by the angle between the long axis of the

thigh and the reference line perpendicular to the ground: the

flexion and straightening angles are positive and negative,

respectively. To calculate the flexion and extension angles of the

knee joint in the sagittal plane, the extension line of the long

axis of the thigh is used as the reference line. The angle is the
frontiersin.org
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FIGURE 3

Deep sort pipeline.
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angle between the reference line and the long tibial axis. Once

again, the flexion and straightening angles are positive, and

negative, respectively.

A smartphone with an instrumented 3D GA with plug-in-gait

model was used to record each child’s gait. Measurements were

conducted using an eight-camera motion analysis system at a

sampling frequency of 100 Hz. (MX-T 20S; Vicon; Oxford, UK).

A total of 38 reflective spherical markers were affixed to the

body surface anatomy of the participants. For example: lateral

condyle of femur, medial condyle of femur, anterior superior

iliac spine, anterior inferior iliac spine and the head of the

fifth metatarsal, etc. The joint angle was calculated using visual

3D software.
2.3. Data collection

First, we set up a video capture device [mainly composed of

smartphones installed on tripods at a height of 75 cm (19) in a

3D GA room to record the subject’s sagittal plane. Specifically,

the smartphone recording in the sagittal plane was parallel to

the subject’s sidewalk, and the distance from the sidewalk was

250 cm to capture the 8-meter-long sidewalk in the field of view

of the camera. The camera parameters were set to 1,920 ×

1,080 pixel images at 30 frames/s, and each subject wore shorts

and a t-shirt and walked barefoot on the sidewalk at their usual

speed (Supplementary Video S2). Two complete walking tests

were then performed. The interval between the two walking

tests was approximately 2 h. The subjects could walk on the
Frontiers in Pediatrics 04
sidewalk before the test to familiarize themselves with the

experimental process.
2.4. Data analysis

3D GA and markerless motion capture software were used to

extract the kinematic angle of each frame from the video. Three

complete gait cycles for each participant were used in the

analysis. The gait parameters in the gait cycle were calculated

and analyzed using Excel (: maximum flexion angle of the hip

joint in the sagittal plane, maximum extension angle of the hip

joint, minimum flexion angle of the hip and knee joints,

maximum flexion angle of the knee joint, and range of motion

(ROM) of the joint.

SPSS 26.0 (IBM, Armonk, United States) was used for data

processing and statistical analyses. Validity and reliability

included both relative and absolute values. First, a paired sample

t-test was used to compare the difference between the two

measurements, and the relative reliability was analyzed using the

intra-class correlation coefficient (ICC). An ICC value less than

0.5, between 0.50 and 0.75, between 0.75 and.09, and above 0.9

indicates poor, moderate, good, and excellent reliability,

respectively (29). The absolute reliability was analyzed using the

standard error of measurement (SEM). SEM ¼ SD� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ICC
p

(SD is the standard deviation of the average value of the two

tests) (30). The error provided by SEM was consistent with the

unit of measurement, and an error between 2° and 5° was

considered acceptable (31). To detect whether there was a
frontiersin.org
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systematic error, the difference between the two measurement

results was analyzed using the Origin 2022 Bland–Altman

diagram, and the 95% consistency limit (limit of agreement) was

marked on the Bland–Altman diagram.
3. Results

3.1. Reliability verification

There was no significant differences in the gait parameters

between the two measurements using the markerless gait

evaluation system software (P > 0.05). In terms of relative

reliability, the ICC values of all gait parameters ranged from 0.736

to 0.894. Specifically, the ICC value of the maximum flexion angle

of the hip joint of TD children was 0.736, indicating moderate

reliability, and the ICC values of the other gait parameters were

greater than 0.75, indicating good reliability. In terms of absolute

reliability, the SEM values of all gait parameters were less than 3°,

and the reliability was acceptable (Tables 2, 3).
3.2. Validity verification

There was no significant difference in gait parameters between

the markerless gait evaluation system software and the 3D GA (P >

0.05). In terms of relative reliability, the ICC values of all gait

parameters ranged from 0.835 to 0.957. The validity reliability

was good or excellent. In terms of absolute reliability, the SEM

values of all gait parameters were less than 2°, and the reliability

was good (Tables 4, 5). The Bland-Altman diagram analysis

showed that there was almost no systematic deviation and the

consistency was good (Figures 4, 5).
TABLE 3 Measurement of sagittal mean angle and test-retest reliability in DD

Gait variables (°) First processing
Mean (SD)

Second processing
Mean (SD)

Maximum hip extension −9.04 (1.75) −9.25 (1.17)

Maximum hip flexion 26.97 (2.75) 27.61 (2.28)

Hip ROM 36.01 (3.79) 36.87 (2.69)

Minimum knee flexion 10.56 (2.09) 10.35 (1.65)

Maximum knee flexion 58.20 (2.95) 57.89 (1.60)

Knee ROM 47.64 (2.84) 47.44 (1.82)

TABLE 2 Measurement of sagittal mean angle and test-retest reliability in DD

Gait variables (°) First processing
Mean (SD)

Second processing
Mean (SD)

Maximum hip extension −12.99 (4.18) −13.16 (5.26)

Maximum hip flexion 30.36 (4.51) 30.77 (3.40)

Hip ROM 43.35 (6.21) 43.93 (6.75)

Minimum knee flexion 7.91 (3.81) 8.31 (4.06)

Maximum knee flexion 60.24 (3.36) 60.46 (3.06)

Knee ROM 51.50 (4.94) 52.15 (5.23)

First processing: gait parameters tested by markerless motion capture system softwar

Second processing: gait parameters tested by markerless motion capture system softw
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4. Discussion

This study evaluated the simultaneous validity of a markerless

gait assessment method based on the KAPAO algorithm with 3D

GA and its test-retest reliability in terms of gait in children. To

the best of our knowledge, this is the first quantitative evidence

based on human pose estimation algorithms for children’s gaits.

Compared to the 3D GA system, the markerless gait evaluation

system based on the human posture estimation algorithm is easier

to popularize and use, and the characteristic of not marking is

more helpful to encourage children’s co-operation. Compared

with traditional visual qualitative analysis, it has obvious

advantages and can provide accurate quantitative evidence for

disease diagnosis. In recent years, human pose estimation

algorithms have developed rapidly. Osokin et al. (32) proposed a

bottom-up method for multi-person attitude estimation based on

an open pose. This method has better accuracy and faster

operation speed (26 frames/s); Cheng et al. (33) suggested a new

bottom-up human posture estimation method—HigherHRNet—

which solves the problem of time-scale changes in bottom-up

multi-person attitude estimation, locates keypoints more

accurately, deals with scale changes more effectively. At present,

research on human posture estimation algorithms is more

focused on adults, whereas research on children remains limited.

Given that children and adult’s gaits differ, there is an urgent

need to develop a markerless motion capture system that can be

applied to children’s gait. Accordingly, this study used the open-

source KAPAO human posture estimation algorithm (34)—a new

single-stage 2D multi-person keypoint and attitude detection

method proposed by researchers at the University of Waterloo in

Canada that can compensate for some of the defects in the

thermal map. In the algorithm verification, we observed that

KAPAO is faster and more accurate than other methods for
H children by two-dimensional markerless (2DML) method.

t-value p-value ICC 95% ICC SEM

0.652 0.53 0.762 0.296–0.935 0.71

−1.186 0.266 0.768 0.310–0.937 1.19

−1.362 0.206 0.817 0.423–0.951 1.38

0.659 0.526 0.858 0.528–0.963 0.69

0.616 0.553 0.774 0.323–0.939 1.10

0.383 0.711 0.775 0.287–0.934 1.10

H children by two-dimensional markerless (2DML) method.

t-value p-value ICC 95% ICC SEM

1.300 0.647 0.791 0.522–0.917 2.14

−0.282 0.264 0.736 0.423–0.892 2.03

−0.980 0.566 0.793 0.530–0.917 2.91

0.214 0.317 0.894 0.743–0.959 1.26

−1.085 0.692 0.752 0.449–0.900 1.58

−1.242 0.784 0.831 0.609–0.932 2.07

e for the first time.

are for the second time.
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TABLE 4 Sagittal plane mean angles and concurrent validity of TD children for the 2-dimensional markerless (2D ML) method and 3-dimensional gait
analysis (3D GA).

Gait variables (°) 2D ML
Mean (SD)

3D GA
Mean (SD)

t-value p-value ICC 95% ICC SEM 95% LOA

Maximum hip extension −12.99 (4.18) −13.34 (4.32) 1.124 0.277 0.946 0.858–0.980 0.98 −3.27 to 4.29

Maximum hip flexion 30.36 (4.51) 30.63 (4.13) −1.396 0.181 0.957 0.886–0.984 0.87 −3.54 to 2.75

Hip ROM 43.35 (6.21) 43.95 (5.06) −1.587 0.131 0.929 0.810–0.973 1.48 −6.51 to 4.42

Minimum knee flexion 7.91 (3.81) 7.46 (3.77) 0.942 0.359 0.921 0.793–0.970 1.05 −3.57 to 4.48

Maximum knee flexion 60.24 (3.36) 61.21 (4.72) −1.344 0.197 0.835 0.573–0.938 1.65 −6.90 to 4.98

Knee ROM 51.50 (4.94) 53.75 (6.07) −1.945 0.069 0.903 0.731–0.964 1.71 −7.48 to 4.64

Lin et al. 10.3389/fped.2023.1331176
extracting children’s gait data. Therefore, we developed a

markerless gait evaluation system using the KAPAO human

posture estimation algorithm to evaluate children’s gait. To

ensure the accuracy of children’s crowd recognition, we

established corresponding gait datasets. Based on this, the

reliability and validity of the system were analyzed and the

feasibility of its practical clinical application was discussed.

Previous studies have examined the reliability of

physiotherapists’ analyses of children’s gait. Ross et al. (35) used

GAITRite trails and single cameras to explore the reliability of hip,

knee, and ankle angles in the sagittal plane, including marked and

unmarked. In the case of marked planes, experienced

physiotherapists showed good to excellent reliability (ICC: 0.77–

0.97), and in unmarked case, experienced physiotherapists showed

moderate to good reliability (ICC: 0.51–0.86). Saner et al. (25)

used a two-dimensional real-time motion tracking method to test

whether hip and knee angles in the sagittal plane were consistently

measured, which also showed good to excellent reliability (ICC

>0.75), and the results of the two measurements were in good

agreement. In this study, the markerless motion capture system

based on the KAPAO human posture estimation-based algorithm

showed moderate to good test-retest reliability (ICC: 0.736–0.894),

which is consistent with the results of Ross et al.

Some past reliability studies relied only on the relative coefficient

for the evaluation without considering absolute error (31, 36). In

contrast, we measured the absolute error and found that the SEM

values of all gait parameters were less than 3°, which indicates

good absolute reliability, thus providing more comprehensive and

useful data. The correlation coefficient of the two measurements of

the markerless gait evaluation system software has moderate to

good reliability. One possible factor is that the gait repeatability of

children is lower than that of adults (37). Stolze et al. (38) tested

the spatio-temporal gait parameters of adults and children and

demonstrated that the test-retest reliability of children was worse
TABLE 5 Sagittal plane mean angles and concurrent validity of DDH children
analysis (3D GA).

Gait variables (°) 2D ML 3D GA t-value

Mean (SD) Mean (SD)
Maximum hip extension −9.04 (1.75) −9.15 (1.90) 0.328

Maximum hip flexion 26.97 (2.75) 27.42 (3.34) −0.662
Hip ROM 36.41 (3.85) 36.97 (4.32) −0.61
Minimum knee flexion 10.56 (2.09) 9.95 (2.08) 1.67

Maximum knee flexion 58.20 (2.95) 58.79 (3.20) −0.994
Knee ROM 47.64 (2.84) 48.84 (2.77) −1.97
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than that of adults and the variability between groups was higher.

Sutherland et al. (37) found that children’s gait is more likely to

vary than that of adults, and the variability decreases with age;

therefore, in this study, moderate to good test-retest reliability was

an acceptable result for children’s gait.

According to the present study’s results, the software of the

markerless gait evaluation system has good or even excellent

validity compared to 3D GA software and can accurately

calculate the relevant joint angle gait parameters. Testing

revealed that the correlation coefficient of gait parameters

measured by the two methods was 0.835–0.957, and all SEM

values were less than 3°. At the same time, the Bland–Altman

diagram analysis indicated that the results measured by the two

methods are in good agreement. Together, these data

demonstrate that the markerless gait evaluation system has

good accuracy. This study mainly tested whether the software of

the markerless gait evaluation system could accurately and

reliably measure children’s gait parameters, which are currently

lacking in research on markerless gait evaluation systems. In the

field of markerless gait assessment systems, most studies have

focused on adults and children with cerebral palsy (39, 40).

Sandau et al. (24) applied their 2DML method on ten healthy

adults and found that knee joint kinematics generally

overestimated knee flexion and hip joint kinematics by 2.8 ± 1.9

and 0.4 ± 1.5°, respectively, compared with the 3DGA system.

Liang et al (41) combined OpenPose and 3DPoseNet markerless

pose estimation algorithms to recognize the gait of the elderly

with moderate to good reliability and validity. Andrea Castelli

et al. (13) proposed a 2D ML technique for sagittal kinematics

analysis of the lower extremities using a single camera that

tested all joints of adults with a high correlation (0.82 < R2 <

0.99). Evelina et al. (39) tested the reliability of gait parameters

in children with cerebral palsy. Compared with the 3DGA, the

2DML method overestimated the knee flexion/extension angle
for the 2-dimensional markerless (2D ML) method and 3-dimensional gait

p-value ICC 95% ICC SEM 95% LOA

0.75 0.905 0.618–0.976 0.55 −1.99 to 2.21

0.525 0.863 0.448–0.966 1.11 −4.61 to 3.72

0.557 0.859 0.431–0.965 1.5 −6.20 to 5.09

0.129 0.917 0.666–0.979 0.59 −1.65 to 2.87

0.346 0.898 0.588–0.975 0.96 −4.26 to 3.08

0.08 0.867 0.463–0.967 1.02 −4.97 to 2.57
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FIGURE 4

Twomethods for parametric measurements of TD children using Bland–Altman plots (2D ML, 2-dimensional markerless; 3D GA, 3-dimensional gait analysis).
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by 3.3–7.0°. The reliabilities of the 2DML and 3DGA were mostly

good to excellent. However, there are few studies on TD children

or DDH children, and significant differences in gait among

different groups. Compared to TD children, children with

cerebral palsy have more variability in some kinematic gait

variables. Therefore, it is of great significance to design a

markerless gait evaluation system for children and to test its

reliability and validity.
Frontiers in Pediatrics 07
In addition, it should be noted that when evaluating children’s gait,

younger children are sometimes more difficult to get to cooperate with

procedures and require reasonable guidance from their parents (42).

While doing so, parents may be photographed in the video;

therefore, accurately extracting the gait parameters of the tested

children under the backgrounds of different personnel is critical

(18). The system software designed in this study captured and

measured the gait parameters of the tested children and was adjusted
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FIGURE 5

Two methods for parametric measurements of DDH children using Bland–Altman plots (2D ML, 2-dimensional markerless; 3D GA, 3-dimensional gait
analysis).
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so as to not be affected by the surrounding environment as much

as possible.

This study not only verified the reliability and effectiveness of the

markerless gait evaluation system software in TD children, but also

verified its reliability and effectiveness in the population of DDH

children. The results show that the system software has good
Frontiers in Pediatrics 08
reliability and effectiveness in these two kinds of population. From

the measurement results, it can be seen that the range of motion

of hip joint and knee joint of children with DDH is smaller than

that of children with typical development. This parameters can

provide quantitative reference data for pediatric orthopaedic

surgeons and provide help for disease diagnosis and follow-up.
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This study has several limitations. Firstly, the sample size of the

test was insufficient, the source was singular, the testers were all TD

children and DDH children, the age span of the children was large

(3–11 years), and children or patients of other age groups were not

tested. In practical applications, we found that the compliance of

young children is poor and it is difficult for most children under

three years of age to co-operate with the examiner’s instructions to

carry out corresponding operations (Supplementary Video S3). In

the future, we will further improve the method and extend it to

more age groups and patients (e.g., those with congenital talipes

equinovarus and hemiplegia). Secondly, considering the limited

outpatient environment and time, the actual interval between the

two tests was too short, which may have led to highly reliable

analytical results. In future research, the test scene should be

expanded and the test time extended to reduce this factor’s impact

on the results. Finally, the extracted gait parameters are limited,

especially the comparison of temporal and spatial parameters and

angle change curves is lacking. In future research, we will explore

how to obtain spatio-temporal parameters and angle change

curves through the developed markerless motion capture system

and test its reliability and validity.
5. Conclusion

In this study, based on a human posture estimation algorithm, a

low-cost markerless gait evaluation system for children was

developed that can quickly and intelligently obtain gait parameters

related to human walking using ordinary mobile phone cameras.

Such an approach overcomes the shortcomings of traditional gait

analysis systems, including high cost, limited site availability, and

dependence on markers. The test results showed that the method

has good reliability and effectiveness, can accurately calculate the

relevant gait evaluation parameters of TD children and DDH

children, provides reliable gait analysis results, and can be widely

used in routine clinical diagnosis and treatment.
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