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Advances in genetic factors of
adolescent idiopathic scoliosis:
a bibliometric analysis
Xiaowei Jiang, Fuyun Liu*, Mingxuan Zhang, Weiming Hu,
Yufeng Zhao, Bing Xia and Ke Xu

Department of Orthopedics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou,
Henan, China
Objective: This studyoffers a bibliometric analysis of the current situation, hotspots,
and cutting-edge domains of genetic factors of adolescent idiopathic scoliosis (AIS).
Methods: All publications related to genetic factors of AIS from January 1, 1992,
to February 28, 2023, were searched from the Web of Science. CiteSpace
software was employed for bibliometric analysis, collecting information about
countries, institutions, authors, journals, and keywords of each article.
Results: A cumulative number of 308 articles have been ascertained. Since 2006,
publications relating to genetic factors of AIS have significantly increased. China
leads in both productivity and influence in this area, with the Chinese Academy
of Medical Sciences being the most productive institution. The most prolific
scholars in this field are Y. Qiu and Z. Z. Zhu. The publications that
contributed the most were from Spine and European Spine Journal. The most
prominent keywords in the genetic factors of AIS were “fibrillin gene”,
“menarche”, “calmodulin”, “estrogen receptor gene”, “linkage analysis”, “disc
degeneration”, “bone mineral density”, “melatonin signaling dysfunction”,
“collagen gene”, “mesenchymal stem cell”, “LBX1”, “promoter polymorphism”,
“Bone formation”, “cerebrospinal fluid flow” and “extracellular matrix”.
Conclusion: This analysis provides the frontiers and trends of genetic factors in
AIS, including relevant research, partners, institutions and countries.
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Introduction

Adolescent idiopathic scoliosis (AIS) is a tridimensional structural abnormality of the

spine; that impacts adolescents from 10 years old to maturity (1, 2). The main diagnosis is

based on the coronal curved Cobb angle, which must be >10° on standard anterior and

posterior radiographs (3). AIS affects 1%–4% of teenagers (2), and is more common in

girls (3). It can lead to high and low shoulders, trunk displacement, and other

appearance deformities (2, 4). The development of AIS involves a variety of factors

such as genetics, tissues, spinal biomechanics, and hormones (5). Of these, genetics is

the major factor. Early identification of relevant genetic variants can help in the

diagnosis and prevention of the disease.

Bibliometrics evaluates published research and predicts research trends (6). It can analyze

scientific movements, including relationships among countries, institutions, authors,

journals, and keywords (7), and has been widely used in various fields. The knowledge

map examines the progress and boundaries of the discipline, facilitating researchers to

understand the research hotspots and guiding them in their research directions.
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Although various studies have focused on the genetic factors of

AIS, bibliometric analysis remains scarce. The purpose of this study

is to organize relevant studies of AIS genetic factors from January

1, 1992, to February 28, 2023. It summarizes genetic factors and

provides researchers with a macro perspective in this area of

research. The study includes analysis of the quantity of published

articles, associations and symbioses between authors or countries,

co-citation of references, and hot areas associated with keywords

in the global research and analysis of genetic factors of AIS.
Method

Data sources

All data are obtained from the core collection of the Internet

database Web of Science (WoS). The literature on genetic factors

of AIS published from January 1, 1992, to February 28, 2023,

was searched on WoS. Retrieval strategy: TS = (“adolescent

idiopathic scoliosis”) and TS = (gene or DNA or “base sequence”

or “nucleic acid” or “copy number variants” or “single nucleotide

polymorphism” or “SNP”). The database is updated daily and

data are collected in a 24-hour period to prevent potential bias.

Primary researches and literature reviews were included. Letters,

corrections, meeting abstracts, editorial materials, proceeding

papers and book chapters were excluded.
Data analysis

Two separate evaluators (X.W.J. and M.X.Z.) conducted a

comprehensive review of the study based on the title and

abstract. The compilation and export of references and citations

were done in a simple text format. Every bibliographic entry

includes a title, author, keywords, abstract and references.

CiteSpace (a Java-based software) was used to perform a

bibliometric analysis of the WoS Core Collection. It visualizes

information and is frequently employed for evaluating patterns in

research (7). It is capable of recognizing leading authors,

institutions, and nations, and forming collaborative research

connections among these entities. To examine research

collaborative connections, a network analysis of references,

scholars, and articles using co-citation was proceeded. Extend the

co-word network analysis of keywords to provide up-to-the-

minute viewpoints and research trends. Co-citation relationships

show the recurrence with which a terminology or citation is

mentioned over a given period. Co-occurrence surges manifest

the recurrence with which a keyword or citation appears over a

period of time.

The dimensions of the nodes in the visual network graph

represent the extent of co-occurrence or recurrence. The line

between nodes is the relationship of cooperation, co-occurrence

and co-citation. The width and the extent of the lines indicate

the proximity of cooperation between nations, organizations, and

scholars. The lines depict the relationship among the nodes.

Their color shows the publication year.
Frontiers in Pediatrics 02
This study is primarily descriptive. Absence of statistics

analysis, the quantity and proportion (%) of every index

demonstrates the dispersion and change trends of different years,

countries, organizations, publications, and scholars.
Results

Publication outputs

Between January 1, 1992, and February 28, 2023, we retrieved a

total of 330 records, of which 308 articles were eligible based on

inclusion and exclusion criteria. With this group, there were 270

articles classified as original research and 38 articles categorized

as reviews. English publications overwhelmingly dominated,

accounting for more than 99% (306), while French and German

publications were represented by only 1 paper each. From 1992

to 2022, research on AIS genetic factors exhibited a consistent

upward trend, with an annual growth rate of 5.93%. The year

2019 stood out as the peak, with the highest number of papers at

40 (Figure 1). Initially, a limited number of publications were

observed from 1992 to 2005, but since 2006, there has been a

rapid increase. In total, 308 publications garnered 5,771 citations.
Country/region distribution

40 countries have published articles onAIS genetic factors. China

was involved in the publication of most articles (50.3%), followed by

theUnited States (25%), Canada (9.4%), Japan (8.8%) and theUnited

Kingdom (4.2%). Figure 2 shows the geographic distribution of

publications. Figure 3 shows the cooperation between different

regions. Table 1 shows that the H-index (a common indicator of

academic influence) (8) of China, the United States, Canada, Japan

and the United Kingdom is 28, 27, 14, 18 and 7 respectively.
Institution analysis

Table 2 shows the ranking of institutions involved in

publishing articles on genetic factors in AIS. Chinese Academy of

Medical Sciences was involved in the largest number of

published papers (69; 22.4%), followed by Nanjing University

(61; 19.8%), University of Hong Kong (30; 9.7%), RIKEN (21;

6.8%), University of Texas System (21; 6.8%). Figure 4 presents

the cooperation among institutions in this field.
Journal analysis

Table 3 shows the ranking of journals that published articles on

AIS genetic factors. Most papers were published in Spine (62;

20.1%), followed by European Spine Journal (17; 5.5%) and BMC

Musculoskeletal Disorders (11; 3.6%), Scientific Reports (11; 3.6%)

and Human Molecular Genetics (8; 2.6%). They accounted for

35.4% of all publications. Figure 5 shows the cooperation among

these journals.
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FIGURE 1

The annual patterns of publications.
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Author analysis

One thousand five hundred five scholars participated in the

publication of 308 articles. Table 4 shows the 10 most prolific

scholars. Figure 6 presents the collaboration network of the

scholars. Y. Qiu and Z. Z. Zhu contributed to the publication of
FIGURE 2

The geographic distribution of publications. Darker colors indicate greater n
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59 and 36 papers respectively. The top 3 most cited scholars are

Y. Takahashi (113), S. L. Weinstein (111) and N. H. Miller (105).

When 2 articles refer to the same article, a common reference

link is created. Figure 7 shows the influential authors associated

with the genetic factors of AIS. Authors or co-authors of papers

working in identical nations appear in the bibliographic link.
umber of publications.
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FIGURE 3

Collaboration network of productive countries/regions. Nodes represent countries/regions, and lines indicate co-citation relationships. Node colors
correspond to different years. Larger nodes indicate higher publication numbers.
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Reference analysis

The spacing of references in co-citation analysis reveals the co-

citation relationship. Table 5 enumerates the top 10 cited articles

regarding genetic factors in AIS. Among the 10 articles, 4 originate

from China, 3 from Japan, 2 from the United States, and 1 from

the United Kingdom. Figure 8 displays the network of cited

references, depicting the co-citation relationships among them.
TABLE 2 Top 10 productive institutions in the genetic factors of AIS.

Rank Institution Number Percentage
Keyword analysis and research hotspots

Keywords serve as indicators of the study’s subject matter.

Summarizing frequently occurring and highly prominent

keywords proves useful for describing research focal points and

trends. The larger the nodes within the keyword co-occurrence

map, the more substantial the keyword weight. Enhanced

connections are portrayed by reduced distances between nodes.

Bolder lines signify an amplified frequency of 2 phrases being
TABLE 1 Top 5 countries contributed to research publications on the
genetic factors of AIS.

Rank Country Number Percentage H-index
1 China 155 50.3 28

2 United States 78 25.0 27

3 Canada 29 9.4 14

4 Japan 27 8.8 18

5 England 13 4.2 7

Frontiers in Pediatrics 04
referenced simultaneously. Figure 9 presents the network of

keywords. Keyword clustering involves grouping words and

phrases that exhibit clear domain characteristics. It utilizes

feature extraction algorithms to classify text and perform

domain-based clustering of words. By managing word frequency,

it identifies both general and specific domain-related terms.

Figure 10 shows the 12 clusters in this study: “rare variant” #0,

“novel locus” #1, “developmental theory” #2, “estrogen receptor

gene polymorphism” #3, “GWAS-associated loci” #4, “BMP4 IL6

leptin MMP3” #5, “culture system” #6, “human melatonin” #7,

“physiological aging” #8, “potential role” #9, “genetic

susceptibility” #10 and “diagnostic biomarker” #11.

Figure 11 presents the top 71 cited keywords. The red and blue

bars indicate common and uncommon keywords correspondingly.

The most popular keywords in AIS genetic factors were “fibrillin
1 Chinese Academy of Medical Sciences 69 22.4

2 Nanjing University 61 19.8

3 University of Hong Kong 30 9.7

4 RIKEN 21 6.8

5 University of Texas System 21 6.8

6 Keio University 20 6.5

7 Washington University 20 6.5

8 University of Montreal 19 6.2

9 Central South University 17 5.5

10 Naval Medical University 15 4.9
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FIGURE 4

Collaboration network of productive institutions. Nodes represent institutions, lines represent co-citation relationships. Node colors indicate different
years. Node size reflects publication numbers.
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gene”, “menarche”, “calmodulin”, “estrogen receptor gene”,

“linkage analysis”, “disc degeneration”, “bone mineral density”,

“melatonin signaling dysfunction”, “collagen gene”, “mesenchymal

stem cell”, “LBX1”, “promoter polymorphism”, “Bone formation”,

“cerebrospinal fluid flow” and “extracellular matrix”.
Discussion

The research showcases the results of a bibliometric analysis of

308 articles on AIS genetic factors published from January, 1, 1992,

to February, 28, 2023 utilizing the WoS database and CiteSpace

software. The evolution from 1992 to 2023 is described by 2

phases: 1992–2005, a period of slow growth, and 2006–2023, a
TABLE 3 Top 10 productive journals in the genetic factors of AIS.

Rank Journal Number Percentage
1 Spine 62 20.1

2 European Spine Journal 17 5.5

3 BMC Musculoskeletal Disorders 11 3.6

4 Scientific Reports 11 3.6

5 Human Molecular Genetics 8 2.6

6 Journal of Orthopaedic Research 8 2.6

7 PLOS ONE 7 2.3

8 Spine Journal 7 2.3

9 American Journal of Medical Genetics Part
A

5 1.6

10 Biomed Research International 5 1.6
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phase of swift progress. The number of papers published in 2019

is the largest, but this does not mean that the field has reached

its peak. Scholars persist in their field with ongoing research,

promising more influential publications ahead.

Analysis of the distribution of countries, institutions and

scholars shows international collaboration in this field. According

to the article count and the H-index, China stood out as the

foremost nation in terms of productivity and impact in AIS

genetic factor research. Leveraging its sizable population and

proficiency in sample collection from AIS patients, China has

witnessed accelerated development in studying AIS genetic

factors, propelled by economic, technological, and intellectual

advancements. The advancement of the economy has stimulated

investment in the healthcare sector, leading to a surge in

research productivity (6, 9). In addition, young Chinese spine

surgeons excel in basic research and article publication. The

USA, a powerhouse of economy, science, and technology,

assumes a vital role in studying the AIS genetic factors. When

analyzing the dispersion of academic papers by nation,

organization, and author, Japan was also a noteworthy

participant in research efforts.

Qiu Yong and Zhu Zezhang, affiliated with Drum Tower

Hospital, Nanjing University, China, have published extensively

on this topic. They have maintained a close collaboration. The

quantity of co-authors serves as a significant metric for the status

of the research. The visual map of this study indicates inadequate

connections among countries, institutions, and authors.

Enhancing academic collaboration is imperative.
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FIGURE 5

Collaboration network of cited journals. Nodes represent journals, lines represent co-citation relationships. Node colors indicate different years. Node
size reflects the number of co-citations.
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Journal analysis assists researchers in selecting appropriate

publications. Spine and European Spine Journal are the

mainstream journals on the topic. These journals might exhibit

greater openness to researching genetic factors in AIS, and

manuscripts featured in these journals have higher chances of

gaining attention and citations.

Keywords reflect the focus and trajectory of the research.

Keyword evolution analysis provides a crucial basis for exploring

the research of AIS genetic factors. After removing keywords

related to the topic, the most prominent burst keywords of AIS

genetic factors are “fibrillin gene”, “menarche”, “calmodulin”,

“estrogen receptor gene”, “linkage analysis”, “disc degeneration”,

“bone mineral density”, “melatonin signaling dysfunction”,

“collagen gene”, “mesenchymal stem cell”, “LBX1”, “promoter

polymorphism”, “Bone formation”, “cerebrospinal fluid flow” and

“extracellular matrix”. The results of the burst keywords and

clustering revealed that the prominent theme in this field over

the last 30 years has been the expression and verification of

genes related to the spine and its accessory structures.

Most of the 10 most cited papers investigated the genetic

factors of AIS through genome-wide association studies. In 2007,

Xu et al. found that the MTNR1B gene is lowly expressed in

osteoblasts from AIS patients but is not involved in disease

progression (10). Subsequently, AIS-related susceptibility genes

continue to emerge, including MATN1 (11), LBX1 (12), PAX1

(13), BNC2 (14) and GPR126 (15, 16). Except for the BNC2

gene, all genes were lowly expressed in the tissue cells of AIS

patients. AIS-related signaling pathways have also shown

remarkable results. Sharma et al. found a possible association
Frontiers in Pediatrics 06
between the clinical phenotype of horizontal gaze palsy with

progressive scoliosis in patients with compound heterozygous

mutations in ROBO3 and the involvement of the ROBO3 gene in

the regulation of the axon guidance pathway (17). Zhu et al.

found that the proportion of type I fibers was higher on the

convex side than on the concave side in patients with AIS, which

may be related to the asymmetric expression of the Wnt/β-

catenin pathway in the paraspinal muscles on both sides of the

spine (18). These studies suggest that AIS may be the result of

the combined effects of multiple gene expression and different

signaling pathways.

Combining keyword burst analysis and keyword clustering

analysis, we summarized the new perspectives of AIS genetic

factors research papers published in the last 5 years as: urotensin

and its related receptors, cilia, chondrocytes and osteogenesis,

muscle tissue, neural crest cells, and connective tissue.
Urotensin and its related receptors

Zebrafish, genetically similar to humans, are ideal subjects for

studying scoliosis due to their inherent susceptibility to the

condition (19, 20). The circulation of cerebrospinal fluid (CSF) is

associated with spinal development and can result in zebrafish

developing spinal deformities (21–23). When CSF flows through

neurons in contact with CSF(CSF-cNs) in the central canal, these

neurons produce the urotensin-related peptides Urp1 and Urp2

(24–26). These peptides can bind to Uts2r receptors on the

membrane of dorsal slow-twitch myocytes in zebrafish embryos,
frontiersin.org
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TABLE 4 The most productive authors in the genetic factors of AIS.

Rank Author Number Percentage Affiliation
1 Y. Qiu 59 19.2 The Affiliated Drum Tower

Hospital of Nanjing
University Medical School,
Nanjing, China.

2 Z. Z. Zhu 36 11.7 The Affiliated Drum Tower
Hospital of Nanjing
University Medical School,
Nanjing, China.

3 L. L. Xu 32 10.4 The Affiliated Drum Tower
Hospital of Nanjing
University Medical School,
Nanjing, China.

4 J. Cheng 27 8.8 Joint Scoliosis Research
Center of The University of
Hong Kong, China.

5 S. Ikegawa 21 6.8 Laboratory of Bone and Joint
Diseases, Center for
Genomic Medicine, RIKEN,
Tokyo, Japan.

6 Z. Liu 20 6.5 The Affiliated Drum Tower
Hospital of Nanjing
University Medical School,
Nanjing, China.

7 K. Ikuyo 17 5.5 Laboratory of Bone and Joint
Diseases, Center for
Integrative Medical Sciences,
RIKEN, Tokyo, Japan.

8 G. Christina 15 4.9 Department of Orthopaedic
Surgery, Washington
University School of
Medicine, St. Louis, MO,
USA

9 N. L. Tang 14 4.5 Departments of Chemical
Pathology, University of
Hong Kong, China.

10 Y. Ogura 14 4.5 Department of Orthopaedic
Surgery, Keio University
School of Medicine, Tokyo,
Japan.
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causing the myocytes to contract dorsally and straighten the body

axis. Reducing these peptides during zebrafish growth causes spinal

deformities similar to human spinal dysplasia (27, 28). Bearce et al.

found that zebrafish lacking Uts2r3 have scoliosis in adulthood; and

that Uts2r3, as a receptor of the urotensin family, may regulate spinal

morphology (21). Research on Chinese Han patients with AIS has

additionally verified a substantial correlation between UTS2R gene

mutation and AIS (29). It can be concluded that mutations in the

genes that control the production of urotensin and its receptor

may lead to the development of AIS.
Cilia

Cilia are hairy organelles positioned outside the cell membrane

(30). Active cilia produce cellular motility, drive fluid flow or

generate signal gradients (22, 31). Cilia assembly and CSF flow are

closely associated with AIS (22). Elizabeth et al. suggest that motile

cilia in the zebrafish vertebral canal promote the synthesis of

Reissner’s fibers, which transport epinephrine to the central canal.
Frontiers in Pediatrics 07
Epinephrine acts on CSF-cNs to induce Urp peptides secretion.

These urotensins signal the zebrafish dorsal slow-twitch muscles to

elicit contractions that resolve the ventral curve and promote spinal

straightening (28). The mutation rate of the POC5 gene in French-

Canadian and British AIS patients was significantly higher than in

normal controls (32). Its aberrant expression affects Urp peptides

secretion, which limits the contraction of slow-twitch muscles and

imbalances muscle strength on both sides of the spine, causing

scoliosis (33). Similarly, variants in the TTLL11 gene were present in

the majority of UK families with concomitant scoliosis; a zebrafish

model with the gene knocked out replicated this condition (34).

Abnormal ciliary movement may also lead to scoliosis. Zebrafish

cilia contribute to Reissner fiber aggregation and straightening of the

body axis; and knockout of the ciliary polarity and movement-

related gene cfap298 (35) and ciliary dynamic protein axonal heavy

chain 10 genes may affect Reissner fiber aggregation and lead to

zebrafish spinal deformity (21, 36). Variants in genes dnaaf1 and

zmynd10 related to cilia structure and function were also found in

AIS patients in southern China by whole exome sequencing (37).

Knockout of these genes in viable adult zebrafish recapitulated

scoliosis (37). It can be concluded that mutations in cilia-related

genes cause AIS by impeding CSF flow, Reissner fiber synthesis, and

urotensin release allowing an imbalance of paraspinal musculature.
Chondrocytes and osteogenic process

Meta-analyses have summarized and confirmed that AIS-

related gene mutations affect chondrocyte development and

osteogenesis (such as CDH13, ABO and COMP) (38, 39). Among

them, COMP gene expression is down-regulated in osteoblasts of

AIS patients, which synthesize abnormal proteins with

cytotoxicity, triggering chondrocyte underdevelopment or even

death, resulting in impaired bone growth (39). A number of

studies on signaling pathways involved in the process. The ERK1/

2 signaling pathway activates the AKAP2 gene, promoting the

proliferation and specialization of chondrocytes in the human

growth plate, while AKAP2 gene expression was reduced in AIS

patients (40). Upregulation of the RHOA gene in AIS patients

inhibits the differentiation of MSCs to cartilage through the

RHOA/ROCK signaling pathway and hinders bone growth (41).

SPRY4 gene is the key to promoting osteogenic differentiation

and melatonin response in mesenchymal stem cells. Its

overexpression, along with melatonin, enhances osteogenesis,

whereas knockout of SPRY4 hampers osteogenesis in AIS

patients (42, 43). Low expression of ADGRG7, GREM1 and

GPR126 genes affects osteogenesis in AIS patients (44–47). CHD7

and BOC gene expression even positively correlated with bone

mineral content in AIS patients (48, 49).
Muscle tissue

AIS is often accompanied by differential expression of genes in

paraspinal muscle cells. The abnormal expression of the LBX1 gene

has been replicated in a large sample of multi-ethnic AIS patients
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FIGURE 6

Collaboration network of productive authors. Nodes represent authors, lines represent collaborations. Node colors indicate different years. Node size
reflects publication count.

FIGURE 7

Collaboration network of cited authors. Nodes represent co-cited authors. Lines represent co-citation relationships. Node colors indicate different
years. Node size reflects the number of co-citations.
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TABLE 5 Top 10 cited articles in the genetic factors of AIS.

Rank Title Authors Corresponding
author’s country

Journal Year Citation

1 A PAX1 enhancer locus is associated with susceptibility to
idiopathic scoliosis in females

S. Sharma et al United States Nature Communication 2015 36

2 Genetic variants in GPR126 are associated with adolescent
idiopathic scoliosis

K. Ikuyo et al Japan Nature Genetics 2013 34

3 Genome-wide association study identifies new susceptibility loci for
adolescent idiopathic scoliosis in Chinese girls

Z. Z. Zhu et al China Nature Communication 2015 33

4 A genome-wide association study identifies common variants near
LBX1 associated with adolescent idiopathic scoliosis

Y. Takahashi
et al

Japan Nature Genetics 2011 30

5 Genome-wide association studies of adolescent idiopathic scoliosis
suggest candidate susceptibility gene

S. Sharma et al United States Human Molecular
Genetics

2011 30

6 Melatonin Receptor 1B (MTNR1B) Gene Polymorphism Is
Associated With the Occurrence of Adolescent Idiopathic Scoliosis

X. S. Qiu et al China Spine 2007 29

7 A Functional SNP in BNC2 Is Associated with Adolescent
Idiopathic Scoliosis

Y. Ogura et al Japan The American Journal of
Human Genetics

2015 28

8 Promoter polymorphism of matrilin-1 gene predisposes to
adolescent idiopathic scoliosis in a Chinese population

Z. J. Chen et al China European Journal of
Human Genetics

2009 24

9 Genome-wide association study identifies novel susceptible loci and
highlights Wnt/β-catenin pathway in the development of
adolescent idiopathic scoliosis

Z. Z. Zhu et al China Human Molecular
Genetics

2017 24

10 Assignment of two loci for autosomal dominant adolescent
idiopathic scoliosis to chromosomes 9q31.2-q34.2 and 17q25.3-qtel

L. Ocaka et al United Kingdom Journal of Medical
Genetics

2008 21

Jiang et al. 10.3389/fped.2023.1301137
(50, 51) and successfully verified in mouse experiments (52). Low

expression of the LBX1 gene may reduce energy supply to

skeletal muscle cells and accelerate disease progression by

affecting galactose metabolism and glycolytic pathways (53).

Genes also regulate the development of paraspinal muscles. High
FIGURE 8

The network of cited references. Nodes represent references, lines represent
reflects the number of co-citations.
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expression of the TENT5A gene facilitates myofiber maturation

by promoting the proliferative migration of myofibroblasts and

maintaining the stability of myogenin; whereas, the TENT5A

gene is lowly expressed in the paraspinal muscles of patients with

AIS (54). In addition to the genes mentioned above, numerous
co-citation relationships. Node colors indicate different years. Node size
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FIGURE 9

The network of keywords. Nodes represent keywords, lines represent co-occurrence relationships. Colors in the nodes indicate different years. Node
size reflects its frequency.

FIGURE 10

The cluster view map. Each grid contains a cluster of locations. The lower the number, the higher the number of keywords included in the clusters.
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FIGURE 11

Top 71 keywords with the strongest citation bursts. The red bar is the burst phase.
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other genes are lowly expressed in the paraspinal muscles of AIS

patients, and their functions have yet to be investigated,

including PIEZO2 (55), CDH13 (56), ABO (57), SLC39A8 (58),

ROBO3 (59), IRX1 (60), H19 (61) and SOCS3 (62).
Neural crest cell

AIS patients displayed chondroblasts in the curved convex

growth plate, while the concave side had neuroblasts and glial

blasts (63). Bilateral growth imbalance results in scoliosis. Neural

crest cells migrate along a specific pathway during embryonic

development to form neuroblasts and glial blasts (63, 64). During

migration, neural crest cells experience epithelial-mesenchymal

transition (65), facilitating their migration into the mesenchymal

extracellular matrix (66). PAX3 gene is linked to the formation of

mesenchymal extracellular matrix, including the expression of

two multifunctional proteoglycan subtypes (V1 and V0) (67).

Multifunctional proteoglycan can guide the migration of neural

crest cells (68, 69). Cartilage differentiation of mesenchymal cells

may influence the migration of neural crest cells (70). Therefore,

the PAX3 gene may cause non-synchronous migration of neural

crest cells and different phenotypes of cells on both sides of the

spine, resulting in idiopathic scoliosis.
Connective tissue

Connective tissue plays a role in maintaining normal spine

morphology, including intervertebral discs, ligaments, and

tendons (71, 72). The ADGRG6 gene regulates the biomechanical

structure of intervertebral discs and dense connective tissues to

maintain normal spinal morphology through the cAMP/CREB

signaling pathway; whereas AIS patients have defective expression

of the ADGRG6 gene (73). The expression of the PAX-1 gene in

the disc is involved in the formation of the spinal structure (74).

In addition, upregulation of ERC2 and MAFB gene expression in

AIS patients may promote hypertrophy of the ligamentum

flavum to adapt to mechanical stresses generated by scoliosis via

the TGF-β pathway (75). The FBN1 gene is crucial for

connective tissue function (76), and its low expression reduces

the synthesis of extracellular matrix proteins, which is

detrimental to maintaining the stability of the biomechanical

structure of connective tissues such as ligaments and

intervertebral discs, leading to the progression of AIS (77).

ADAMTSL2 and LTBPs can bind to FBN1 in vitro and

upregulate the TGF-β signaling pathway in fibroblasts (78–81).

Ryzhkov et al. found that the TGF-β signaling pathway, which is

involved in the formation and degradation of extracellular matrix

proteins, is more highly expressed on the concave side of the

curve than on the convex side in patients with AIS, and may be

involved in the process of disc tissue degeneration (82).

Therefore, The interaction between ADAMTSL2 and LTBP4 is

involved in the development of AIS through the TGF-β pathway

(83). The above results show that connective tissue-related genes

are involved in the onset and development of AIS.
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Although research on genetic factors associated with AIS is

recent and extensive, most studies are not in-depth and have

some limitations.

1. Most studies have small sample sizes and selection bias, and the

samples can not represent the patient group (33, 84).

2. Many studies only examine whether there is a correlation, but

do not explain the causality and mechanism of action (14, 16).

3. Some studies are unable to obtain muscle, bone, and other

tissues that may be directly related to AIS (85, 86).

4. Integrating the existing research results and establishing the

mathematical model of AIS is beneficial for the diagnosis and

prevention of the disease (87).

In the process of studying the etiology of AIS, researchers have

gradually recognized that AIS is a disease caused by the

combined effects of multiple factors. Over the past few

decades, the study of AIS etiology has shifted from a

macroscopic to a microscopic level, particularly with the rise

of GWAS, which allows for comprehensive screening of genes

associated with the occurrence and development of AIS. As a

result, various tissues related to AIS have been included in

the research. While these studies have provided abundant

results, they have been scattered, making it difficult to

identify the primary effect genes. Additionally, there is a lack

of AIS samples from diverse ethnic backgrounds, preventing

integration into a unified system.

Artificial intelligence (AI) is well known for its ability to

analyze and process large amounts of data, and discover hidden

relationships between variables. By consolidating clinical and

GWAS data from previous AIS patients and constructing a

database that is continuously updated, we can combine the vast

clinical information and GWAS data of AIS patients with AI.

This integration allows for the training of a dynamic AIS

simulation system, which can uncover associations between

potential genetic variations and specific clinical phenotypes,

predict AIS risk and progression, simulate gene-targeted

therapies for AIS, and even customize personalized disease risk

assessment models based on individual AIS patients’ genomic

information and relevant clinical parameters. This approach

provides targeted medical advice and treatment plans,

contributing to the development of precision medicine and

improving treatment outcomes and health management for

each patient.
Advantages and constraints of this research

This is an inaugural bibliometric analysis of the genetic factors

of AIS. This study discusses the current situation, progress and

trend of the role of genetic factors in AIS, so that scholars can

focus on the latest and most important hotspots. This study has

several limitations. First, there is a temporal delay as this study

did not incorporate recent publications. Second, it is not

comprehensive. We only looked at articles from the WoS core

collection. Finally, subjective bias exists in the interpretation of

the results.
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Conclusion

Research into the genetic factors of AIS indicates a worldwide

pattern over time. Beginning in 2006, there has been a significant

surge in the quantity of published research. China and the Chinese

Academy of Medical Sciences emerge as the most productive

countries and institutions in this regard. A large number of articles

have been published in Spine and European Spine Journal. Y. Qiu

and Z. Z. Zhu are both prolific authors. The strongest burst

keywords among the genetic factors of AIS were “fibrillin gene”,

“menarche”, “calmodulin”, “estrogen receptor gene”, “linkage

analysis”, “disc degeneration”, “bone mineral density”, “melatonin

signaling dysfunction”, “collagen gene”, “mesenchymal stem cell”,

“LBX1”, “promoter polymorphism”, “Bone formation”,

“cerebrospinal fluid flow” and “extracellular matrix”. In addition,

scholars would find valuable insights from the prominent clusters,

highly cited publications and references.
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