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Background: The overarching goal of blood glucose forecasting is to assist
individuals with type 1 diabetes (T1D) in avoiding hyper- or hypoglycemic
conditions. While deep learning approaches have shown promising results for
blood glucose forecasting in adults with T1D, it is not known if these results
generalize to children. Possible reasons are physical activity (PA), which is often
unplanned in children, as well as age and development of a child, which both
have an effect on the blood glucose level.
Materials and Methods: In this study, we collected time series measurements of
glucose levels, carbohydrate intake, insulin-dosing and physical activity from children
with T1D for one week in an ethics approved prospective observational study, which
included daily physical activities. We investigate the performance of state-of-the-art
deep learning methods for adult data—(dilated) recurrent neural networks and a
transformer—on our dataset for short-term (30min) and long-term (2 h) prediction.
We propose to integrate static patient characteristics, such as age, gender, BMI, and
percentage of basal insulin, to account for the heterogeneity of our study group.
Results: Integrating static patient characteristics (SPC) proves beneficial, especially for
short-termprediction. LSTMsandGRUswith SPCperformbest forapredictionhorizon
of 30min (RMSEof 1.66mmol/l), a vanilla RNNwith SPCperforms best across different
prediction horizons, while the performance significantly decays for long-term
prediction. For prediction during the night, the best method improves to an RMSE of
1.50mmol/l. Overall, the results for our baselines and RNN models indicate that
blood glucose forecasting for children conducting regular physical activity is more
challenging than for previously studied adult data.
Conclusion: We find that integrating static data improves the performance of deep-
learning architectures for blood glucose forecasting of children with T1D and
achieves promising results for short-term prediction. Despite these improvements,
additional clinical studies are warranted to extend forecasting to longer-term
prediction horizons.
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1. Introduction

Type 1 diabetes (T1D) is an endocrine disorder characterized by absolute insulin

deficiency caused by the destruction of pancreatic b-cells through autoimmune processes,

leading to elevated blood glucose levels (hyperglycemia) if left untreated. Treatment involves

administering exogenous insulin to cover both basal insulin requirements and dietary
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carbohydrates, with individualized adjustments over time. Basal

insulin can be delivered through continuous subcutaneous infusion

or injections with long-acting insulin. Bolus injections of rapid-

acting insulin are used to cover meals and correct high glucose

levels. In insulin-treated persons with T1D, low levels of blood

glucose (hypoglycemia) is a dreaded acute complication, which in

mild forms leads to symptoms such as fatigue, trembling or

hunger, whereas episodes of nocturnal hypoglycemia are mostly

unrecognized and therefore may persist for hours (1). Severe

episodes may manifest as unconsciousness or seizures and may, in

rare cases, lead to sudden cardiac death (2, 3).

To reduce hyper- or hypoglycemic excursions, reliable

prediction of future blood glucose levels from previous

measurements is desirable for children, as well as adults with T1D.

Since the release of the OhioT1DM dataset (4), which consists of

data of 6, and later 12 (5) adults with T1D, the topic of blood

glucose forecasting has been picked up by the machine learning

community (6–10). For example, McShinsky and Marshall (7)

investigated the performance of classical non deep-learning based

methods such as autoregressive moving average (ARIMA), random

forests, and support vector machines (SVM) for forecasting blood

glucose values. More recently, the community focused on deep-

learning architectures such as convolutional neural networks

(CNN) with recurrent units (11–13), generative adversarial

networks (GANs) (14), deep ensemble methods (15, 16), stacked

LSTMs (17, 18), extended GRU networks (19) or methods

employing dilation, e.g. dilated CNNs (20) or dilated recurrent

neural networks (RNNs) (21) show promising results. Most

studies so far focused on adult data (cf. (22–25) for a detailed

overview), and it is therefore unclear if these results generalize to

children. Although some research has been conducted for children

with T1D (26, 27), these works focus on explainable methods for

classification and do not study deep-learning approaches. Further,

the datasets from children with T1D (28, 29) used in these studies

have not been obtained in a controlled/supervised setting with a

focus on physical activity and only used CGM data.

This study used data from children who were exercising in a

supervised sports camp setting and integrated not only glucose

levels but also carbohydrate intake, insulin-dosing and records

of physical activity, as well as various patient characteristics. We

expect that, compared to data from adults, our data poses two

additional challenges: First, the data is more heterogeneous

since insulin requirements vary with age and developmental

stage of a child (30, 31). Second, the children engaged in

different types of physical activity, which has both a direct

effect on the blood glucose level due to the energy requirement

during the activity (32, 33), as well as a long-lasting effect on

the insulin sensitivity (34).

The purpose of our analysis is to investigate whether the

success of deep-learning algorithms on adult data transfers to

children, where we evaluate RNN architectures (vanilla RNN,

GRU, and LSTM), dilated RNNs (which are designed to capture

long-ranging dependencies), and a transformer model. Further,

we investigate if the integration of static participant information

(gender, age, BMI, time since T1D was diagnosed, etc.) can help

to calibrate the forecasting algorithms, e.g., to account for age-
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and weight dependent insulin requirements (31). Lastly, as

nocturnal hypoglycemia is most feared and more challenging to

prevent, we compare the predictive performance of the

considered methods for a complete day to predictions only

during the night.
2. Materials and methods

2.1. Study data

In the following, we describe the study design and population,

experimental protocol, and the preprocessing necessary for the

machine learning analysis.

2.1.1. Subjects
17 children with T1D were recruited for the study. Inclusion

criteria were T1D diagnosed at least 6 months before the study

was conducted, age 7 to 16 years, insulin treatment consisting of

multiple daily injections (MDI) or continuous subcutaneous

insulin infusion (CSII), and written informed consent by the

participants and/or parents. The responsible Ethics Committee

approved the study with ethics number 2020-00543.

2.1.2. Experimental protocol
The recruited children participated in a prospective

observational study in the setting of a one-week day camp (10

a.m., first study day to 10 a.m., seventh study day). In the camp,

the children were supervised during the day by study physicians

(from 9 a.m. to 5 p.m.). In the evenings and during the nights,

the measurements and the logbook were continued at home. The

first study day consisted of a trip to a climbing hall. On study

days two to six, the children participated in various structured

sports activities, divided into morning and afternoon sessions.

The last study day consisted of collecting the devices.

In this camp setting, the activities, insulin treatment, and

nutrition were controlled for all camp participants: Insulin doses

(type, time, units), carbohydrate intake, type and duration of

physical activity, and symptoms of hypoglycemia together with

self-monitoring blood glucose (SMBG) (Section 2.1.3) were

noted in a logbook by the study team.

2.1.3. Hardware equipment and sensor setup
The hardware equipment for the data acquisition consisted of a

glucose sensor (intermittently scanned continuous glucose

monitoring (isCGM), Freestyle libre 2 (Abbott Diabetes Care

Inc., Alameda, US) or a continuous glucose monitoring (CGM)

device, Dexcom (Dexcom, San Diego, US)). The sensor was

inserted into the subcutaneous tissue of the upper arm or on the

abdomen. The glucose data were saved every 5 (CGM) or every

15 min (isCGM). Participants using the isCGM system were

further able to conduct measurements when scanning the glucose

device. The glucose measurements were completed with SMBG

that were manually noted in a logbook. SMBG were conducted:

each time symptoms of hypoglycemia were observed, when

sensor measurements were below 3:9 mmol/l or above 15 mmol/l,
frontiersin.org
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1These numbers count for all participants for which we have data for the full

study period of 6 days, i.e., all but one for which only data for 4 days was

available.
2Figure taken from the original paper (35).
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before and after physical activity, and hourly during physical

activity. Additionally, the logbook contains records about

physical activity, insulin dosing, and meals. The exact features

are described in Section 2.1.4.1. The glucose sensor was worn

day and night.

2.1.4. Preprocessing
Of the recruited children, one child dropped out of the study.

The data of two children were not included in the analysis due to

the usage of a hybrid closed-loop insulin pump, leaving 9 children

with an isCGM device and 5 with a CGM device in the dataset.

To extract a single multivariate time series per child, the

glucose sensor data (CGM or isCGM) needed to be merged with

the SMBG, and the records about injected insulin doses, physical

activity, and meals from the logbook. Short- and long-acting

insulin doses were considered separately. Further, reported

carbohydrates (CHO) were divided into three types: ones with

fast absorption rate (e.g., glucose tablets or orange juice), slow

absorption rate (e.g., whole grain or fatty products), and mixed

absorption rate, i.e., full meals. Last, physical activity was

reported in minutes. We merged both time series and overwrote

CGM or isCGM measurements with SMBG values if they had

identical time stamps. Further, we removed duplicate timestamps

and kept the one with the lower glucose measurement.

After merging the time series data from both files, we curated

all time series such that they have a sampling frequency of 5 min,

where we use time-weighted linear interpolation to assign the

glucose measurements to a time stamp, and summed the

remaining measurements, i.e., if two meals were consumed

during a 5 min period we assigned the sum of carbohydrates to

the next time stamp.

We defined the start of a day as 7 a.m., which we later used to

perform a sensible training/validation/testing split. Since glucose

values were already available from 7 a.m. of the first study day,

we included these values in the analysis and cut the data at 6:55

a.m. on the last study day to get a time series of 6 days. Note

that this applies to all but one participant (13/14), for which the

glucose measurements were only available for the last four days.

2.1.4.1. Feature selection
Each model had access to all time-varying features obtained from

the preprocessing described in Section 2.1.4, i.e., glucose levels

in mmol/l, short-acting insulin, long-acting insulin in IE,

physical activity in minutes, and carbohydrates of types in grams:

with fast, slow and mixed absorption rate. Thus, the time series

consists of 7 features.

Apart from time series records, we also used 11 participant

characteristics: gender, age, weight, height, BMI, as well as

diabetes specific features: time since the T1D diagnosis,

percentage of basal insulin insulin dose, total daily basal,

hemoglobin A1c (HbA1c), total daily dose of insulin (U/kg/d),

and calculated total daily dose (computed as units per kilogram

of weight). From all 11 features, the 6 features, i.e., gender, age,

weight, BMI, the time since the T1D diagnosis, and the

percentage of basal insulin, have been manually selected as a

subgroup of features that we expected to be more relevant. In
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Section 3., we compare the recurrent architectures only using

these 6 features to the ones that have access to the complete set

of static features.
2.1.4.2. Train test and validation split
We split the time series data for each participant individually into a

train, validation and test set, and consider the static information to

be present in each of these sets. We select the last 16:66% of time

series as the test set, corresponding to a full day (288 time points)

for each participant.1 Likewise, we cut off another 16:66% from

the end of the time series for validation and leave the remainder

of the dataset for training. Although this split leaves us with

relatively few training days (4), we decided against using a smaller

test set since otherwise, we cannot evaluate a full test day.

Similarly, if we cut the validation set to a smaller size, it could, for

example, only contain data from during the night, which would

not be representative of the full time series.
2.2. Machine learning

In the following, we briefly describe the machine learning

models that we evaluate on our data set, as well as explain how

we extend them to also consider static data. After that, we

describe the baselines, hyperparameter selection and evaluation

metrics.
2.2.1. Dilated RNN
Since insulin dosing, as well as physical activity can have long

ranging impact on blood glucose, Zhu et al. (21) proposed to use

dilated RNNs (DRNNs) (35) in the context of blood glucose

forecasting to account for such long ranging dependencies.

DRNNs are akin to the dilated convolutions (20) employed in

the field of computer vision, which seek to solve the vanishing

gradient problem. Instead of using a “spatial” dilation as in

dilated convolutions, DRNNs employ a “temporal” dilation (cf.

Figure 12). In particular, the previous state in a layer of a dilated

RNN is not fetched from the previous time step but rather by

skipping a predetermined number of time steps, or dilation rate.

The dilation rate is set to 1 in the first layer and increases

exponentially in subsequent layers, reaching 2 in the second

layer, 4 in the third layer, and so on. Consequently, we can have

different temporal resolutions in each layer and thus shorten the

average recurrence path length between two samples due to the

exponentially increasing dilation. In addition, DRNNs are fast to

train (compared to dilated convolutions) since the sub-sequences

generated by the dilation rate allow for parallelization.
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https://doi.org/10.3389/fped.2023.1296904
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


FIGURE 1

Three-layer dilated RNN with dilation 1, 2, and 4, and recurrent skip
connections.
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We implemented dilation with RNN units, GRU (36) and

LSTM units (37). We refer to the dilated versions as DRNN,

DGRU, and DLSTM.
FIGURE 2

Illustration for static feature integration for RNN units using the
combination of the initialization and output concatenation.
2.2.2. (D)RNN with static features
As described in Section 2.1.4.1, we have access to a set of 11

static features characterizing each child in the cohort. Since it is

known that, for example, insulin demands, as well as exercise

and eating habits, depend on age and developmental stage (31),

we expect that integrating these features is beneficial for

forecasting. Building upon Miebs et al. (38), which investigated

the integration of static features in RNNs, we investigate three

distinct strategies for incorporating static characteristics into (D)

RNNs: initialization of the hidden state, concatenation with the

output, and the combination of both.

The first method utilizes the static features to initialize the

hidden state of the DRNN. That is, let h�1 denote the hidden

state of the network at initialization, i.e., at time step t ¼ 0. We

set h�1 as

h�1 ¼ MLPinit(s), (1)

where s is our static feature vector associated with the current time

series (e.g., the training time series of a certain child) and MLPinit is

a simple feed-forward neural network consisting of a single hidden

layer with a ReLU activation function. We set the size of the hidden

and the output layer equal to the size of the hidden state of the

corresponding (D)RNN. Note that for all architectures involving

LSTMs, we need to update both the hidden state h�1 as well as

the cell state c�1 (39), which we do by using distinct MLPs of

equivalent size.

As an alternative, we first transform the static features with a

feed-forward network (MLPcat), then concatenate its output with

the output ot of the RNN at time t and apply MLPhead to the

concatenated vector, i.e.,

ŷt ¼ MLPhead(ot , MLPcat(s)), (2)

where MLPcat consists of a single hidden state of size 2 �#s, with
#s denoting the number of static features, and output dimension

two. MLPhead consists of two hidden layers of size 2 �#ht and

#ht . Both MLPs use ReLU activation functions.
Frontiers in Pediatrics 04
Finally, we simply combine both strategies as illustrated in

Figure 2. We implemented all three strategies for dilated and

non-dilated recurrent architectures.

2.2.3. Temporal fusion transformer
Due to its strong empirical performance on several benchmark

tasks, we additionally investigated the temporal fusion transformer

(TFT) (40). Similar to our approach above, it can consider both

temporal, as well as static features. Below, we provide a brief

summary of the architecture and its training.

We show the visualization of the architecture from the original

paper (40) in Figure 3. In summary, the TFT is an encoder-

decoder architecture that can consider three types of input: static

inputs, past time-dependent inputs, and known future time-

dependent inputs. In our case, the latter only consists of the time

points that we want to predict.

To process the different types of input, the architecture uses a

variable selection network (VSN) for each input type. The VSN is

a neural network that selectively picks out the most important

features for each time step, depending on the type of input. After

the VSN processes the inputs, the past and future time-dependent

inputs are fed into an LSTM encoder-decoder network. Finally,

the processed inputs are sent through a multi-head attention

network, which helps the model to attend to the most relevant

information in the inputs. This allows the model to make

predictions based on the most important information from the

inputs. The static features processed by the affiliated VSN, are

incorporated in the architecture at three distinct places: as

supplementary input of the VSNs of the past inputs and the

future known inputs, as initialization of the LSTM encoder-

decoder structure, and as static enrichment for each timestamp

inputted to the multi-head attention. Lastly, a gating mechanism is

applied to skip over unused components of the architecture.

2.2.3.1. TFT configuration
Besides providing a point prediction, TFT also generates

prediction intervals (a set of quantiles) ŷq with

q [ Q ¼ {0:02, 0:1, 0:25, 0:5, 0:75, 0:9, 0:98}. To train the
frontiersin.org
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architecture we minimize the quantile loss, i.e.

L(V, W) ¼
X
yt[V

X
q[Q

QL(yt , ŷq, q)

N
(3)

QL(y, ŷ, q) ¼ q(y � ŷ)þ þ (1� q)(ŷ � y)þ (4)

where (�)þ refers to max (0, � ), y is the ground truth value (e.g.,

the glucose value in 30 min), V is the domain of training data

containing N samples, and W represents the weights of TFT.

To configure the architecture for our setting, we

experiment with two different sizes of the look-back window

(number of considered past inputs k in Figure 3), i.e. 2

and 12 h corresponding to 24 and 144 time steps, respectively.

We set the decoder length to one, to only predict a single

future value.
2.2.4. Baselines
In the following paragraphs, we introduce the baselines and the

range of hyperparameters that were used for the evaluation.
2.2.4.1. Reference models
We consider two simple baselines that are common in the

literature: Identity is implemented as the identity function, i.e., it

predicts ŷtþ1 as yt . Additionally, we consider a linear model,

which we implemented as a one-layer MLP without activation

functions, where the input consists of all time-varying features.
FIGURE 3

Illustration of the architecture of the Temporal Fusion Transformer.
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2.2.4.2. Recurrent neural networks
As the simplest deep learning architecture, we consider three

types of recurrent neural networks (RNNs): vanilla RNN, gated

recurrent units (GRUs) (36) and long short-term memory

networks (LSTMs) (37).

2.2.5. Hyperparameter selection
For all recurrent architectures, including the baselines, the

dilated architectures, and recurrent architectures that incorporate

static information, we set the learning rate to 10�3 and use a

weight decay of 10�3. Due to preliminary testing, we observed that

deeper RNN architectures did not improve the performances,

which matches previous observations (21), hence, we restrict the

hyperparameter search to hidden layers of size {3, 5}, with each

hidden layer consisting of {16, 32} neurons. We use a batch size of

256 akin to previous work (21) since it enables us to utilize better

the memory provided by the internal cell state of RNN

architectures. All models are trained for 200 epochs, minimizing

the mean squared error (MSE) for the training and validation set.

To evaluate the performance of the temporal fusion transformer,

we set the learning rate to 10�3, use gradient clipping with a cutoff of

0:1, and select the number of hidden layers from {64, 128}, the

number of attention heads from {2, 4}, the dropout from {0:2, 0:4},

and the batch size from {32, 256}. We train the transformer for at

most 50 epochs, minimizing the recommended quantile loss with

seven quantiles (40), and use early stopping with a cutoff of 10�4.

An overview of the hyperparameter grids and the size of the

corresponding networks is provided in Table 1. Considering the

recurrent architectures, the vanilla RNN has the fewest
frontiersin.org
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parameters, while the LSTM with static feature extension

corresponds to the largest network of that type.
2.2.6. Model training
To train each model, we perform a grid search for which we

specify the hyperparameter grid in Section 2.2.5. As standard,

we use the training split to update the parameters of the model

and the validation split to select the best hyperparameters. Since

we have access to at most four days of records per participant,

we decided to train a population model.

The training is composed of two nested loops: the first of which

iterates over the epochs while the second iterates through all

participants, where we shuffle the participant order at the start of

each epoch. For any RNN architecture, we reset the hidden state

before iterating through the training data of a new participant.

The validation loss is aggregated over all participants. When

training the transformer, we instantiate the corresponding training

scheme via the “PyTorch Forecasting” library (41). Further, we

employ early stopping for TFT with patients of 5 epochs and a

minimum delta of 10�4 based on the validation performance.

All models are implemented in PyTorch and trained with the

Adam optimizer (42). For the deep-learning architectures, all features

are standardized based on the training set, and we select the best

hyperparameters based on the validation loss. The training was

conducted on GPU (NVIDIA GeForce RTX 2080 Ti). We report

training and inference times for the main results with a prediction

horizon of 30min in Table 1. The reported times correspond to an

average model within the grid. Training times for the transformer

have a large variance due to the early stopping. The longest training

time for a single parameter configuration of a transformer model

was approximately 21min.
TABLE 1 Details with regard to model architecture, hyperparameter grid and

Model Hyperparameter grid #Paramete
RNN/GRU/LSTM #Layers [ {3, 5} [1:5k, 39k]

#Neurons [ {16, 32}

Batch size: 256

RNN+/GRU+/LSTM+ Epochs: 200 [1:9k, 47k]

Weight decay: 10�3

Learning rate: 10�3

DRNN/DGRU/DLSTM #Layers [ {3, 5} [1:5k, 39k]

#Neurons [ {16, 32}

Batch size: 256

DRNN+/DGRU+/DLSTM+ Epochs: 200 [1:9k, 47k]

Weight decay: 10�3

Learning rate: 10�3

TFT #Neurons [ {64, 128} [453k, 1775

#Attention heads [ {2, 4}

Dropout (%) [ {20, 40}

Batch size [ {32, 256}

TFT+ Gradient Clipping: 0:1 [635k, 2465

Epochs: 50

Learning rate: 10�3

The number of parameters is reported as [min , max ] with respect to the hyperparame

over all models contained in the grid, where we considered the full day prediction task w

extended models with static feature integration.

Frontiers in Pediatrics 06
2.2.7. Evaluation metrics
To evaluate the performance of the considered models, we use

three common metrics: the root mean squared error (RMSE), the

mean absolute prediction error (MAPE), and the R2 metric,

defined as

RMSE(ŷ, y) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
t¼1

(yt � ŷt)
2

vuut (5)

MAPE(ŷ, y) ¼ 1
T

XT
t¼1

jyt � ŷt j
yt

� �
(6)

R2(ŷ, y) ¼ 1�
PT

t¼1 (yt � ŷt)
2

PT
t¼1 (yt � �y)2

: (7)

with �y being the mean value of y. Further, we consider Parkes

error grids (43), which is a standard in Glucose forecasting, to

visualize the results of the best performing methods. We

provide further details for the interpretation of Parkes error

grids in the corresponding section.
3. Results

Next, we present the results on our dataset. First, we show the

patient characteristics of the cohort included after preprocessing.

Then we analyze the effect of the static feature integration in

Section 3.2, and show a comparison of the best RNN, dilated

RNN architectures, as well as for TFT for different forecasting

horizons in Section 3.3. We further visualize the effect of the

static data integration for the RNN architecture via the common

Parkes error grids in Section 3.5.
train and inference time.

rs Training time (s) Inference time (s)
89:10+ 8:35 2:30+ 0:06

107:75+ 11:78 3:01+ 0:44

148:26+ 36:77 6:67+ 1:62

170:66+ 38:75 7:48+ 1:73

k] 653:10+ 146:92 29:86+ 3:02

k] 741:11+ 153:61 35:11+ 3:07

ter grid. Training and inference time are reported as mean and standard deviation

ith a prediction horizon of 30min (cf. Section 3.3). Models with a “+” correspond to

frontiersin.org

https://doi.org/10.3389/fped.2023.1296904
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Marx et al. 10.3389/fped.2023.1296904
3.1. Participant characteristics

A summary of the participant characteristics (after

preprocessing) is provided in Table 2. The data included 14

children with T1D aged 7–13 years old, from which 5 (�36%)

were female. All features show a relatively high variance,

motivating the use of static features for a population model or in

cases where more data is available, a personalized approach. The

BMI, which is related to height and weight, ranges from 13:2 to

27:7 kg/m2. The average time since T1D diagnosis was 3:8 years,

ranging from half a year to nine 9 and a half years. Glycated

hemoglobin (HbA1c) was measured in the range of 79 days

before the first study day and 74 days after the first study day,

and ranges from 5:1 to 8:5. Further, the basal insulin percentage

lies between 26:2 and 69:4% and the total daily calculated insulin

between 0:31 and 1:65 (U/kg/d).
3.2. Effect of static feature integration

Next, we investigate the effectiveness of integrating static

information into the recurrent architectures. We conduct the

experiment on the dataset described in Section 2.1, for a

prediction horizon of 30min and allow for a lookup window of

two hours (24 time points), i.e., the first 24 test points for each

participant are not considered for computing the loss but only to

update the hidden state of the models. For each combination of

network architecture and type of static data integration, we show

the test RMSE in mmol/l (mean over 3 seeds) and the

corresponding standard error of the best performing model, which

was selected based on the validation performance, in Figure 4. All

results are shown for models with access to all static features, and

when they only have access to the six hand-selected features.

We see that static feature integration clearly helps improve most

models with DRNN and vanilla GRU being the exceptions. From the

different variants of feature integration, Cat (concatenation strategy)

and Both (initialization and concatenation) outperform the Init

(initialization strategy) strategy. Since all methods perform almost

identically for Cat and Both, as well as for Init and no static

feature integration, we conclude that concatenation of static

features is responsible for the majority of the performance

improvement. The overall best performing methods are the LSTM

and GRU with concatenation, both reaching an RMSE of 1:66

mmol/l. The vanilla RNN, as well as the dilated GRU with
TABLE 2 Participant characteristics for all N ¼ 14 participants (5/14
female).

Mean + Std Range
Age (years) 11:2+ 2:1 [7:5, 13:9]

BMI (kg/m2) 19:5+ 4:2 [13:2, 27:7]

Weight (kg) 45:1+ 16:5 [21:0, 77:8]

Height (cm) 149:4+ 14:1 125:3, 171:0

Duration of diabetes (years) 3:8+ 2:8 [0:5, 9:5]

HbA1c (%) 7:2+ 0:8 [5:1, 8:5]

Basal insulin (%) 46:1+ 12:5 [26:2, 69:4]

Total daily calculated insulin (U/kg/d) 0:90+ 0:39 [0:31, 1:65]
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concatenation reach an RMSE of 1:71 and 1:68mmol/l,

respectively. Especially the RNN seems to benefit from the

static feature integration, improving the RMSE by 0:09mmol/l,

while the improvements for the LSTM and GRU are 0:08 and

0:03 mmol/l, respectively. Although all dilated architectures

seem to significantly improve with static feature integration, they

do not outperform the vanilla architectures. We suspect that this

is due to the limited length of the time series that are available

during training, which may lead to an underfitting of these

architectures.
3.3. Evaluation for increasing prediction
horizon

Next, we evaluate the performance of the best-performing RNN

architectures from the evaluation in Section 3.2, i.e., RNN, LSTM,

GRU and DGRU, against the baselines and the temporal fusion

transformer (TFT). Further, we consider the corresponding

extended networks that use the combined strategy (Both) for static

feature integration, denoted as RNN+, LSTM+, GRU+, and

DGRU+. Similarly, we add a version of TFT, TFT+, which has

access to all static features. We consider two different settings: one

which considers the full test day, for which we allow a lookup

window of 2 h (the first 24 data points do not affect the test

performance), and a second one in which we set the lookup

window to 12 h (144 data points). The latter corresponds to a

window in the evening and night (7 p.m. to 6:55 a.m. at the next

day), which is of high interest as participants are not actively

monitoring their glucose levels during the night.

We show mean and standard deviation over 3 seeds in Table 3.

As before, hyperparameter selection was done based on the

validation performance. Although LSTM+ and GRU+ have the

best performance for a forecasting window of 30 min in both

tasks, RNN+ has the best overall performance, i.e. performing

best for a forecasting window of 60 and 120 min. Further, RNN+

clearly outperforms the RNN version without static feature

integration for every setting. In general, all methods with static

feature integration match or outperform their counterparts for a

forecasting window of 30 min, while this is not always the case

for the LSTM, GRU and TFT for PH 60 and 120. Despite not

having the best RMSE in any setting, TFT and TFT+ perform

well in terms of MAPE, where TFT+ performs best for PH 60

and is within two standard errors of the best method for PH 30

for a lookup window of two hours. The performance for a

prediction horizon of 120 min is poor for all methods, whereas

RNN+ is the only method that consistently outperforms the

linear baseline in this setting.

When we compare the results on our dataset to the literature,

we note that we do not reach the performance of comparable

models on the OhioT1DM dataset (4) consisting of much longer

time series per participant (8 weeks) and comprising only adults.

In a recent benchmark (9), including deep learning and

non-deep learning architectures, an LSTM was among the best-

performing methods, reaching an RMSE of around 1:12 for a

prediction horizon (PH) of 30 min and an RMSE of 2:64 for PH
frontiersin.org
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FIGURE 4

Effectiveness of static data integration: Subfigure (A) shows the test RMSE over 3 seeds for the best performing RNN, DRNN, GRU, DGRU, LSTM, and
DLSTM (selected on validation performance) considering no static feature integration (None), concatenation of outputs (Cat), initialization of the
hidden state (Init) and the combination of both techniques (Both). The left plot uses the hand-selected 6 static features and the right plot all 11 static
features. Subplot (B) shows the corresponding standard error.
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equal to 120 min.3 Further, the reference measure for the

OhioT1DM dataset was reported to be 1:57 and 3:20 for PH

equal to 30 and 120, which is much lower than for our dataset—

indicating that the prediction task is harder for our dataset. In

terms R2, we observe encouraging results for PH 30. As a

reference, a personalized LSTM model trained on in silico

adult patients simulated with the UVA/Padova simulator (44),

achieved an R2 of 0:75 for a prediction horizon of 40 min

(45). In comparison, we achieve an R2 of 0:71 for the vanilla

LSTM and 0:74 for the extended LSTM for PH 30 on our

dataset trained on population data. For a prediction horizon of

120 min, however, can see that most models struggle to obtain

any meaningful information. This negative result has also been

observed for the OhioT1DM dataset (24) where R2 values are
3For the OhioT1DM dataset the participants are evaluated individually and the

RMSE is the average among participants. In our setting, we do not average

per participant, but simply by the number of test points or all participants.
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equal to zero for some models, reaching at most 0:16 for the

best-performing model.

When considering the prediction results during the night

(Table 3 right), we see the same trend for the comparison

between methods. At the same time, the RMSE improves for all

methods, with the best performance for PH 30 improving to an

RMSE of 1:50 mmol/l for LSTM+ and GRU+. For a prediction

horizon of 60 and 120, the best performing method, RNN+,

has an improved RMSE by 0:31 and 0:34 mmol/l, respectively.

In terms of MAPE, the performance of RNN+ for PH 120 is

on par with its performance for the full day with PH 60. To

our surprise, the transformer did not improve as much as

the RNN+ despite having access to a larger lookup window

of 12h—which would allow it to capture longer ranging

dependencies.
3.4. Participant-level results

Besides looking at the aggregated results, we also inspected the

individual results per participant (in terms of test RMSE), which we
frontiersin.org
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TABLE 3 We report the mean and standard error of the test RMSE in
mmol/l, MAPE and R2 over three seeds for increasing prediction
horizons (PH) from 30 to 120min. Table [Full Day] shows the results on
the full test set with a lookup window of 2 h. For table [Night] the
lookup window is equal to 12 h, i.e., predictions start after 7 pm. We
mark the best result in bold and underline statistically indistinguishable
results. If a method does not perform better than the linear baseline, we
highlight it in gray.

Full Day

Model RMSE MAPE R2

PH ¼ 30min
Identity 2:03 20:10 0:60

Linear 1:94+ 0:00 19:95+ 0:04 0:64+ 0:00

TFT 1:75+ 0:01 17:02+ 0:21 0:71+ 0:01

TFT+ 1:74+ 0:01 16:88+ 0:21 0:71+ 0:00

RNN 1:80+ 0:02 18:48+ 0:22 0:69+ 0:01

RNN+ 1:71+ 0:00 17:06+ 0:08 0:72+ 0:00

LSTM 1:74+ 0:01 17:63+ 0:25 0:71+ 0:00

LSTM+ 1:66+ 0:01 16:76+ 0:09 0:74+ 0:00

GRU 1:69+ 0:01 17:11+ 0:11 0:72+ 0:00

GRU+ 1:66+ 0:01 16:94+ 0:12 0:73+ 0:00

DGRU 1:88+ 0:04 19:43+ 0:68 0:66+ 0:01

DGRU+ 1:68+ 0:01 17:12+ 0:19 0:73+ 0:00

PH ¼ 60min
Identity 2:83 27:95 0:19

Linear 2:59+ 0:00 26:76+ 0:07 0:32+ 0:00

TFT 2:49+ 0:01 24:88+ 0:13 0:37+ 0:00

TFT+ 2:45+ 0:01 24:79+ 0:38 0:39+ 0:01

RNN 2:67+ 0:02 28:44+ 0:59 0:27+ 0:01

RNN+ 2:41+ 0:01 25:08+ 0:65 0:41+ 0:00

LSTM 2:46+ 0:01 25:43+ 0:06 0:39+ 0:01

LSTM+ 2:54+ 0:02 25:91+ 0:21 0:34+ 0:01

GRU 2:54+ 0:02 27:78+ 0:40 0:34+ 0:01

GRU+ 2:56+ 0:06 27:29+ 0:99 0:33+ 0:03

DGRU 2:90+ 0:03 30:24+ 0:29 0:14+ 0:02

DGRU+ 2:69+ 0:04 27:01+ 0:78 0:27+ 0:02

PH ¼ 120min
Identity 3:84 39:47 �0:56

Linear 3:31+ 0:01 35:32+ 0:09 �0:16+ 0:01

TFT 3:23+ 0:03 33:62+ 0:35 �0:10+ 0:02

TFT+ 3:28+ 0:03 34:27+ 0:19 �0:14+ 0:02

RNN 3:15+ 0:07 35:66+ 1:45 �0:05+ 0:05

RNN+ 3:04+ 0:03 32:90+ 0:16 0:02+ 0:02

LSTM 3:71+ 0:06 38:33+ 0:97 �0:46+ 0:05

LSTM+ 3:54+ 0:11 37:01+ 0:83 �0:33+ 0:08

GRU 3:66+ 0:20 39:09+ 1:27 �0:43+ 0:16

GRU+ 3:47+ 0:03 36:07+ 0:89 �0:27+ 0:02

DGRU 4:16+ 0:14 43:18+ 1:64 �0:83+ 0:12

DGRU+ 3:74+ 0:17 38:20+ 1:28 �0:49+ 0:13

Night

Model RMSE MAPE R2

PH ¼ 30min
Identity 1:84 16:28 0:64

Linear 1:77+ 0:00 16:09+ 0:04 0:67+ 0:00

TFT 1:56+ 0:01 13:69+ 0:12 0:75+ 0:00

TFT+ 1:57+ 0:01 13:71+ 0:06 0:74+ 0:00

RNN 1:64+ 0:01 14:44+ 0:08 0:72+ 0:00

RNN+ 1:55+ 0:01 13:89+ 0:05 0:75+ 0:00

LSTM 1:59+ 0:02 14:04+ 0:34 0:73+ 0:01

LSTM+ 1:50+ 0:01 13:17+ 0:13 0:77+ 0:00

GRU 1:57+ 0:01 13:77+ 0:17 0:74+ 0:00

(Continued)

TABLE 3 Continued

Night

Model RMSE MAPE R2

GRU+ 1:50+ 0:02 13:34+ 0:18 0:76+ 0:01

DGRU 1:76+ 0:03 15:86+ 0:48 0:67+ 0:01

DGRU+ 1:51+ 0:01 13:46+ 0:11 0:76+ 0:00

PH ¼ 60min
Identity 2:48 21:53 0:33

Linear 2:30+ 0:00 20:58+ 0:07 0:43+ 0:00

TFT 2:22+ 0:04 19:59+ 0:31 0:46+ 0:02

TFT+ 2:28+ 0:06 19:64+ 0:40 0:43+ 0:03

RNN 2:34+ 0:07 21:64+ 0:87 0:41+ 0:04

RNN+ 2:10+ 0:05 18:93+ 0:34 0:52+ 0:02

LSTM 2:15+ 0:01 18:86+ 0:17 0:50+ 0:01

LSTM+ 2:18+ 0:03 19:22+ 0:34 0:48+ 0:01

GRU 2:23+ 0:01 21:03+ 0:20 0:46+ 0:01

GRU+ 2:32+ 0:08 21:11+ 1:17 0:41+ 0:04

DGRU 2:61+ 0:11 23:82+ 0:75 0:26+ 0:06

DGRU+ 2:28+ 0:02 20:21+ 0:70 0:44+ 0:01

PH ¼ 120min
Identity 3:36 30:11 �0:41

Linear 2:89+ 0:01 26:57+ 0:07 �0:04+ 0:01

TFT 3:13+ 0:02 28:94+ 0:20 �0:22+ 0:01

TFT+ 3:02+ 0:10 27:14+ 0:92 �0:15+ 0:07

RNN 2:79+ 0:09 26:61+ 1:39 0:02+ 0:06

RNN+ 2:70+ 0:09 24:89+ 0:87 0:08+ 0:06

LSTM 3:07+ 0:05 28:92+ 0:60 �0:18+ 0:04

LSTM+ 3:01+ 0:08 27:76+ 1:01 �0:14+ 0:06

GRU 3:25+ 0:04 30:79+ 0:08 �0:33+ 0:03

GRU+ 2:95+ 0:20 27:31+ 2:09 �0:11+ 0:15

DGRU 3:58+ 0:19 34:59+ 2:20 �0:61+ 0:18

DGRU+ 3:25+ 0:14 29:92+ 0:60 �0:33+ 0:12

Marx et al. 10.3389/fped.2023.1296904
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show in Table 4. In particular, we show the results for PH 30 on

the full day prediction task for all methods considered in Section

3.3. In contrast to the previous section, we first compute the

mean and standard error over three seeds per participant and

then compute an aggregated score shown in column Average,

which is computed as the mean and standard deviation of the

mean results among all participants.

We see that the average performance among participants is

slightly better compared to the results shown in Table 3, with

the best performing method LSTM+ achieving an average RMSE

of 1:58 mmol/l compared to 1:66 mmol/l shown in Table 3.

Encouraging to see is that by using static feature extension, not

only the average performance is improved (for the RNN, LSTM,

GRU, and DGRU), but also the standard deviation is lower,

which is exactly what we aimed to achieve. For example, for the

LSTM, the standard deviation reduces from 0:52 to 0:45, with

the mean performance improving from 1:64 to 1:58 mmol/l. On

the other hand, we see that two participants (ID-008 and ID-

013) have a particularly high error for the baseline measures

Identity and Linear. A possible explanation for these results is

that for participant ID-008, the study physicians needed to

intervene more frequently to correct hypoglycemia than for other

study participants, and participant ID-013 had particularly high

blood sugar values that partially exceeded the limits of the
frontiersin.org
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measurement device (>33.3 mmol/l). Lastly, we can see a different

trend between the transformer and the RNN architectures. That is,

TFT and TFT+ perform slightly better on participants ID-008 and

ID-013 while trading off this performance gain for other

participants. This observation is in line with the lower MAPE

values of TFT and TFT+ compared to the achieved RMSE that

we saw in Table 3. We conjecture that this observation is due to

the different loss, i.e., the quantile loss, that is used during the

training of TFT.
3.5. Parkes error grids

To complement the analysis from the previous sections, we also

show the Parkes error grids (43), which are a standard evaluation

measure for methods focusing on glucose forecasting. It consists

of a scatter plot of ground truth and predicted values overlaid

with a grid of five zones with medical interpretation: Zone A

represents no effect on clinical action; zone B represents altered

clinical action—little or no effect on clinical outcome; zone C

represents altered clinical action—likely to affect clinical

outcome; zone D represents altered clinical action—could have

significant medical risk; and zone E represents altered clinical

action—could have dangerous consequences. We show the Parkes

error grids4 for RNN and RNN+ for a prediction horizon of 30

and 60 min in Figure 5, and additionally show the plots for TFT

and TFT+ in Figure 6.

First, we consider the results for RNN and RNN+. Overall, it is

encouraging that the largest part of the predictions are in zones A

and B. For PH 30, 77:72% of all predictions are within zone A,

while no predictions are in zone E, and only 2:58% and 0:36%

are in zones C and D. In contrast, a higher fraction (5:38%) of

predictions for the vanilla RNN are in zone C, and 0:83% and

0:11% are in zones D and E, respectively. Also, the amount of

predictions in zone A reduces significantly to only 55:86%. If we

consider the forecasting window of 60 min, we observe a similar

behavior. Naturally, both models have a lower fraction of

predictions in zone A: 62:04% for RNN+ and 56:19% for the

RNN. Further, 5:18% and 6:35% of predictions are outside of

zones A and B with 4:63% and 5:82% percent in zone C.

For TFT and TFT+, we observe a similar trend between the two

prediction horizons, but a smaller difference between the variants.

When predicting 30 min ahead, both variants perform nearly

identically assigning 77:41% and 77:25% to zone A, 19:92% and

20:06% to zone B and almost no predictions to zone D (0:08%

and 0:33%, respectively). A slight advantage to the RNN

architectures is that for PH 60, TFT+ has all predictions in zones

A, B and C (approx. 60:97%, 33:71%, and 5:31%)—which is also

the setting for which TFT+ has the best MAPE. TFT, however,

assigns 0:28% to zone D, 5:45% to zone C, and 35:61% to zone B.
4The plots were created with the Python library methcomp version 1.0.1.
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FIGURE 5

Parkes error grids for RNN with a prediction horizon of 30min (A) resp. 60min (C), and for RNN+ for PH 30 (B) and PH 60 (D). The a lookup window is 2 h.

Marx et al. 10.3389/fped.2023.1296904
4. Discussion and conclusion

This study describes the approach to forecasting blood

glucose levels in children with T1D using a dataset collected in

a controlled day camp setting, where children participated in

various physical activities. We investigated a) whether deep-

learning models can achieve comparable results as reported on

adult data, b) if integrating static patient information is

beneficial for forecasting algorithms, and c) if the performance

for full day prediction differs to the one obtained when only

predicting during the night.

In a small dataset of children of various ages engaging in

multiple types of physical activity, we were able to make a short

term glucose prediction with acceptable accuracy—even during the

night. This is of special relevance, as the risk for nocturnal

hypoglycemia increases with time spent in physical activity, and

the fear of hypoglycemia could be a barrier and prevent patients

from exercising. Despite the improvements due to static feature

integration, we could, however, not reach the performance of the

LSTM and DRNN on the OhioT1DM dataset (5, 9, 21), where the

discrepancies are most evident for a prediction horizon of 30min.

We find that especially the DRNN architecture does not perfrom
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well on our dataset. While an RMSE of 1:05 mmol/l was reported

on the OhioT1DM dataset (35), the dilated approaches cannot

outperform their non-dilated counterparts in our evaluation.

When comparing our dataset to the OhioT1DM dataset, we

identified several aspects that can contribute to this discrepancy.

First, the time series in our dataset are significantly smaller (i.e., 6

days compared to 8 weeks), which mostly affects the deep learning

architectures, whereas the effect on the baselines is minor. Second,

the children in our study conducted several hours of exercise per

day, which is known to have both short and long-lasting effects

on the blood glucose levels (32, 34), thus inducing a higher

complexity in the dynamics influencing the blood glucose level.

An additional factor could be the heterogeneity of the study group

(cf. Section 3.1), as age and developmental stage of a child

influence insulin sensitivity and insulin requirements (31). In line

with these characteristics of our dataset, we also report larger

values for RMSE and MAPE for the reference measure compared

to values reported for the OhioT1DM dataset. For example, for a

prediction horizon of 30min, we report an RMSE of 2:03mmol/l,

whereas an RMSE of 1:57 mmol/l has been reported for the

OhioT1DM dataset. Similarly, the corresponding values for MAPE

are 20:10% and 13:51%, respectively.
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FIGURE 6

Parkes error grids for TFT with a prediction horizon of 30min (A) resp. 60min (C), and for TFT+ for PH 30 (B) and PH 60 (D). The a lookup window is 2 h.
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Regarding the integration of static features, our results clearly

show that this adjustment leads to an improved test

performance, especially for the vanilla RNN. Among the three

strategies of static feature integration that we implemented, a

simple output concatenation proved to be the most effective

strategy. The overall best performing method was the RNN+,

which integrated the static features via concatenation. For short

term forecasting (30min) the LSTM and GRU networks with

static feature integration had a slight advantage. For the

transformer architecture, the static feature integration did not lead

to substantial improvements, however, it stabilized the approach in

terms of MAPE with PH equal to 30. If we consider the dilated

approaches, we see that static data integration leads to strong

improvements in some cases. Since these methods generally had a

compromised performance on our dataset, however, one needs to

be careful with drawing conclusions from those results. We think

that both the transformer, as well as the DRNN would benefit

from larger time series in the training set, as was demonstrated for

DRNNs on the OhioT1DM dataset (21). In addition, the signal

about physical activity might be too sparse for the models to pick

it up for estimating long ranging dependencies. An interesting

avenue for future work would be to investigate if pre-training

those approaches on larger datasets improves their performance.
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A major hurdle for this experiment is, however, that there exists

no larger dataset which matches our feature set.

Lastly, if we compare the performances for the full day to the

night, one would expect the results during the night to be better

since it is well known that closed loop insulin pumps work best

during the night. Moreover, there are fewer factors influencing

blood glucose during this period, i.e. no meals are consumed and

no physical activity is conducted. Our results confirm this

expectation for prediction horizons of 30 and 60min. For

predicting two hours ahead, however, none of the method delivers

convincing results. While the results for short-term prediction are

encouraging, the long term prediction shows that we are far from

being able to make a reliable prediction in the evening for whether

blood glucose levels will reach a critical level during the night.

We aim for our study to inspire further research dedicated

to enhancing diabetes care for children with T1D in the

future. From our study, we see that blood glucose forecasting

in children conducting regular physical activity is challenging,

especially if one aims to predict multiple hours ahead. Besides

collecting larger datasets with potentially longer time series,

we think that an interesting aspect for future work lies in a

more fine grained modelling of physical activity. For instance,

one could integrate information from a wearable, such as heart
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rate (cf. (46, 47)), to estimate the intensity of physical activity to

provide the models with more information about the status of a

participant.
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