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All national and international pediatric guidelines universally prescribe meticulous
bilirubin screening for neonates as a critical measure to mitigate the incidence of
acute bilirubin encephalopathy (ABE) and Kernicterus. The prevailing gold standard
for jaundice detection in neonates necessitates invasive blood collection, followed
by subsequent biochemical testing. While the invasive procedure provides
dependable bilirubin measurements and continues to be the sole gold standard
diagnostic method for assessing bilirubin concentration. There exists a pressing
need to innovate non-invasive screening tools that alleviate the sampling stress
endured by newborns, mitigate iatrogenic anemia, and expedite the turnaround
time for obtaining results. The exploration of non-invasive modalities for
bilirubin measurements is gaining momentum, driven by the overarching goal of
minimizing the number of pricks inflicted upon neonates, thereby rendering
screening a swift, efficient, comfortable, and dependable process. This
comprehensive review article delves extensively into the array of non-invasive
approaches and digital solutions that have been proposed, implemented, and
utilized for neonatal bilirubin screening, with a particular emphasis on their
application in low-resource settings. Within this context, the review sheds light
on the existing methodologies and their practical applications, with a specific
focus on transcutaneous bilirubin meters. Moreover, it underscores the
prevailing open challenges in this domain and outlines potential directions for
future research endeavors. Notably, the review underscores the imperative need
for robust educational programs targeted at both families and healthcare
personnel to expedite the process of seeking timely care for neonatal jaundice.
Additionally, it underscores the necessity for the development of enhanced
screening and diagnostic tools that can offer greater accuracy in clinical practice.
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1. Introduction

Newborns typically exhibit elevated bilirubin levels during their initial days of life,

a condition known as Physiological Jaundice. However, this physiological jaundice

can be exacerbated or prolonged due to various factors. Unconjugated (indirect)

hyperbilirubinemia represents a prevalent and generally benign condition frequently

observed in neonates. Jaundice (icterus neonatorum), manifests through noticeable effects

on various bodily tissues. One of the prominent indicators is the impact it has on the

skin, sclera (the white part of the eyes), and mucous membranes. This condition results

from a metabolic imbalance where bilirubin synthesis surpasses hepatic-enteric bilirubin
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FIGURE 1

Metabolic imbalance characterized by bilirubin synthesis surpassing hepatic-enteric bilirubin clearance.
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clearance, as illustrated in (Figure 1). The immaturity of the

neonate’s blood-brain barrier renders it permeable to a

substantial bilirubin influx into the brain, thereby posing the

potential risk of inducing a spectrum of irreversible cerebral

injuries. These injuries may progress to acute bilirubin

encephalopathy and culminate in kernicterus, a chronic form of

bilirubin encephalopathy. Neonatal Jaundice impacts a significant

portion of the neonatal cohort, affecting approximately 60% of

full-term infants and 80% of preterm infants (1, 2). This

prevalence translates to a significant number of infants, roughly

140 million born worldwide each year, developing Jaundice

within the first two weeks of life (3). The threshold for clinically

significant Jaundice, as measured by Total Serum Bilirubin (TSB)

levels, varies based on postnatal age, race, comorbidity, and

prematurity (4).

Contrary to common perception, bilirubin possesses valuable

antioxidant properties. In vitro studies have demonstrated its

ability to engage in an oxidation-reduction cycle with biliverdin,

enabling it to remain active even at nanomolar concentrations.

Furthermore, bilirubin exhibits robust superoxide and peroxyl

radical scavenging capabilities. However, uncontrolled or rapid

increases in bilirubin levels can reach neurotoxic levels with

potentially fatal consequences. Hence, maintaining an

equilibrium between the protective aspects of serum bilirubin

and the risk of bilirubin-induced neurotoxicity is paramount for

the well-being of jaundiced neonates. Cholestatic jaundice,

particularly in its conjugated (direct) form, typically signifies
FIGURE 2

Progression from clinically significant jaundice to severe hyperbilirubinemia.
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underlying hepatic or biliary pathology. It is not uncommon for

total serum bilirubin (TSB) to surpass age-specific high-risk

thresholds, necessitating prolonged monitoring, potential

rehospitalization, and a range of preventive measures (2, 3).

Figure 2, elucidates the progression from the initial stages of

clinically significant jaundice to the more advanced state of

severe hyperbilirubinemia.

Mathematical modeling tools offer a means to estimate both

fatal and non-fatal health outcomes associated with neonatal

jaundice, providing valuable insights into its impact on mortality

and morbidity. Bhutani et al. (Figure 3) were the first to assess

the global burden of severe jaundice through this approach.

Their model predicted that approximately 18% (or 24 million) of

the 134 million live births in 2010 experienced clinically

significant jaundice. Moreover, 0.481 million late-preterm and

term neonates developed extreme hyperbilirubinemia (TSB >

25 mg/dl), resulting in 0.114 million deaths and over 0.063

million survivors with moderate to chronic long-term

neurological impairments (2).

It is worth noting that there is a notable absence of global and

national neonatal population data, which are instrumental in

informing policy decisions pertaining to neonatal care.

Regrettably, no other records of global neonatal population

studies have been identified at this time. Numerous non-invasive

interventions have been proposed for bilirubin screening and

diagnosis, particularly in resource-constrained settings. Among

these, Transcutaneous bilirubinometers have garnered significant
frontiersin.org
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FIGURE 3

Global impact of neonatal jaundice [subsets were calculated based on
the percentage data from Bhutani (2010) applied to the global
denominator of 2022 using the mathematical modeling framework
developed by Bhutani to estimate the global burden of severe
jaundice] (2).
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attention over the past three decades. Additionally, other non-

invasive approaches, such as Visual inspection, Icterometry,

Digital imagery, and Mobile phone applications, have been

explored. This paper provides a comprehensive overview of

available non-invasive technologies, with a particular focus on

Transcutaneous bilirubin meters. It also addresses the current

status of neonatal jaundice in LIC’s and LMIC’s, discussing

economic, social, and technological barriers, as well as

highlighting open research challenges in this field.
2. Administrating the status of neonatal
jaundice in economically challenged
low and lower-middle income
countries

Numerous authoritative entities, such as the American

Association of Pediatrics (AAP) and the UK National Institute

for Health and Care Excellence (NICE), have proffered guidelines

pertaining to the management of jaundice (1, 5–15). In high-

income countries (HICs), the incidence of severe

hyperbilirubinemia has markedly declined since the 1990s, owing

to advancements in preventive measures and treatment options

(16, 17). Current epidemiological evidence, derived from

population-based studies and registries, places the estimated

incidence of severe hyperbilirubinemia in HICs at 31.6 per

100,000 live births (95% CI: 11.8–51.3). Concomitantly, the

incidence rates for Acute Bilirubin Encephalopathy (ABE) and

Chronic Bilirubin Encephalopathy (CBE) range from 1.0 to 3.7

and 0.4 to 2.7 per 100,000 live births, respectively (18–22). In

stark contrast, low- and middle-income countries (LMICs)

grapple with distinct challenges, as they often lack uniform

protocols for classifying and managing hyperbilirubinemia. This

results in pronounced disparities in protocols across different

regions, impeding comparative analysis. In LMICs, classification
Frontiers in Pediatrics 03
systems for hyperbilirubinemia are primarily developed, with the

exception of Malaysia, which has adopted the NICE and AAP

guidelines, incorporating international research findings and

locally generated evidence (23, 24). It is unfortunate that

documentation and record-keeping pertaining to Neonatal

Jaundice (NNJ), ABE, and CBE incidence in LMICs are

frequently inadequate and inconsistent (15–22, 25–26).

A recent modeling study conducted by the Child Health

Epidemiology Reference Group (CHERG) undertook the

estimation of neonatal mortality risk, including survival with

kernicterus, on a global and regional scale. This estimation was

predicated on country-specific and regional prevalence rates of

Rh- positive infants born to Rh-negative mothers, G6PD

deficiency, moderate-to-late preterm births, and infants lacking

all three factors. The CHERG study posits that mortality rates

due to Rh disease and/or extreme hyperbilirubinemia (EHB; TSB

> 25 mg/dl) are estimated to be 119 per 100,000 live births in

Eastern Europe/Central Asia, Latin America, sub-Saharan Africa,

and South Asia—figures significantly higher than the 1 per

100,000 live births reported in HICs (2). Likewise, the prevalence

of kernicterus is substantially higher in the same four regions,

with an estimated rate of 73 per 100,000 live births, compared to

the 10 per 100,000 live births reported in HICs.

Diagnosing and managing jaundice in resource-constrained

settings remain formidable due to multiple factors, including

limited resources, dearth of trained personnel, and cultural and

socioeconomic barriers. These circumstances engender suboptimal

screening, misdiagnosis, and inappropriate treatment, thereby

jeopardizing the well-being of neonates. Additionally, in certain

cultural contexts, jaundice is not immediately recognized as a

medical concern, and families may defer seeking medical

attention until the condition deteriorates. Financial constraints

may further impede access to healthcare services, resulting in

delayed treatment. Issues also persist regarding the follow-up and

monitoring of jaundiced neonates, with inadequate surveillance

potentially leading to the oversight of severe jaundice cases

necessitating urgent intervention. To address these challenges in

low-resource settings, various interventions have been instituted,

encompassing community-based screening initiatives, healthcare

professional training and education, and enhanced access to

diagnostic tools and treatment modalities. Long-standing efforts

have been dedicated to heightening awareness and educating

families on the imperative of seeking medical attention for

jaundiced neonates.

The global prevalence of neonatal jaundice has spurred the

development of comprehensive health programs aimed at its

mitigation, both on a global scale and within India. Globally, the

World Health Organization (WHO) has orchestrated several

initiatives to combat neonatal jaundice, advocating for early

detection and treatment via phototherapy and exchange

transfusions. The organization has also devised guidelines to

guide healthcare professionals in resource-limited nations,

endorsing the use of cost-effective phototherapy devices and the

training of personnel in diagnosis and treatment.

In India, neonatal jaundice presents a significant public health

concern due to the country’s high birthrate and underdeveloped
frontiersin.org
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healthcare infrastructure. The Indian government has implemented

various programs to address this issue, including the National

Rural Health Mission (NRHM), which strives to train healthcare

providers and equip primary health centers with phototherapy

devices. The Janani Shishu Suraksha Karyakram (JSSK) further

extends care and treatment for jaundiced newborns free of cost.

While these initiatives have measurably reduced the prevalence of

neonatal jaundice, there persists a need for continued research

and development, with an emphasis on devising more precise

and cost-effective diagnostic tools for early detection and

intervention. In summation, the collective efforts of global and

Indian programs have yielded marked improvements in the

health outcomes of neonates, yet ongoing endeavors are

indispensable to alleviate the burden of this condition on

newborns and their families. This assumes greater relevance in

light of the United Nations’ Sustainable Development Goals

(SDGs), which encompass a comprehensive agenda for the

survival, well-being, and enduring health of all neonates (27).

The prompt identification of clinically significant

hyperbilirubinemia is of paramount importance in averting

kernicterus (28). Phototherapy remains the conventional

approach to hyperbilirubinemia treatment, although exchange

transfusions may be requisite in severe cases (29). While

exchange transfusions are infrequent in high-income nations, it’s

risk persists in low-income and lower-middle-income countries

(26). However, the early recognition of hyperbilirubinemia

encounters hurdles in resource-scarce settings, characterized by

prevalent home births and challenges associated with post-

discharge follow-up (30). Poor healthcare-seeking behavior,

parental unawareness, and logistical complexities can contribute

to treatment delays, culminating in neonates presenting with

extreme hyperbilirubinemia and moderate to severe stages of

acute bilirubin encephalopathy, entailing elevated mortality and

morbidity rates (31). In recent advancements, low-cost,

minimally invasive instruments have surfaced for the detection of

hyperbilirubinemia in regions with limited resources. Such

instruments, encompassing smartphone-based technology and

point-of-care methods for quantifying total serum bilirubin, show

potential in the early identification of hyperbilirubinemia.

Nevertheless, it is essential to emphasize the significance of

educating healthcare practitioners and communities

comprehensively to enhance their awareness of the principal risk

factors associated with severe hyperbilirubinemia (32).
3. Morbidity and mortality factors

The elevated prevalence of neonatal hyperbilirubinemia in

Low- and Middle-Income Countries (LMICs) can be primarily

attributed to the relatively low rate of hospital-based childbirths

within these regions. A significant portion of deliveries takes

place beyond healthcare facilities, leading to the imperative for

mothers and families to assume the role of recognizing jaundice

in neonates (33). However, it is important to acknowledge that

visual assessment alone proves inadequate for the accurate

diagnosis of hyperbilirubinemia, particularly in terms of assessing
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its severity (34, 35). This challenge is further exacerbated in

infants with pigmented skin, rendering the visual detection of

jaundice even more intricate (36). Consequently, severe cases of

neonatal jaundice predominantly manifest outside hospital

settings due to the inherent difficulties associated with identifying

jaundice at home (37). The delays in the commencement of

treatment substantially contribute to heightened morbidity rates

in LMICs (25), which is evidenced by the amplified occurrence

of adverse clinical outcomes in infants residing in these areas.

Although adopting a proactive approach, such as the prompt

administration of phototherapy, has proven effective in

mitigating the severity of neonatal hyperbilirubinemia and ABE

(38), it is important to recognize the existence of a threshold at

which neonates progress to an irreversible condition known as

the Kernicterus Spectrum Disorder (KSD). Neonates exhibiting a

Bilirubin-Induced Neurologic Dysfunction (BIND) score below 4

are considered to have a reversible condition, and some infants

with a BIND score ranging from 4 to 6 may still exhibit potential

reversibility with appropriate treatment (39). As underscored by

Olusanya et al. (25), various factors contribute to delays in

seeking care, including a lack of recognition, knowledge, and

access to suitable treatment among both caregivers and

healthcare providers, financial constraints, and geographical

distance. Regrettably, in many instances, care is only sought

when the child begins to display signs of ABE (25).

Healthcare providers sometimes recommend suboptimal or

ineffective treatments, such as exposure to unfiltered sunlight,

herbal remedies, glucose, and antibiotics (25, 39). Prenatal

screenings may not consistently identify potential blood group

incompatibilities or establish a plan to address Rhesus

isoimmunization, and even when such screenings do occur,

effective prophylaxis may not be readily accessible or affordable

(40). Another form of delay elucidated by Olusanya et al.

pertains to the absence of comprehensive, jaundice-specific care

at healthcare facilities, which stems from the lack of essential

guidelines, diagnostic tests, screening protocols for conditions

like G6PD deficiency, and the capacity to monitor bilirubin levels

effectively (25). As previously mentioned, all these factors are

frequently associated with ineffective phototherapy (25, 41–45).

Furthermore, infections, particularly umbilical sepsis arising from

improper cord severing, inappropriate handling of neonates with

non-sterile materials, and delivery in unhygienic environments,

are commonplace in non-hospital settings (15). These factors

heighten the risk of severe hyperbilirubinemia. Suboptimal

treatment regimens result in wasted time and resources and an

increased rate of exchange transfusions, along with the associated

risks, in LMICs. The improper installation and maintenance of

phototherapy devices further contribute to the subpar quality of

treatment (43). A study conducted in Nigeria demonstrated that

simple adjustments in the distance between the light source and

the infant’s skin, coupled with regular maintenance of

phototherapy devices, could markedly elevate average irradiance

levels from below the minimum requirement for conventional

phototherapy (<10 µW/cm2/nm) to levels approaching those of

intensive phototherapy (27.3 µW/cm2/nm) (43). Refer to

Figure 4 for Severe NNJ in LMICs.
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FIGURE 4

Incidence of severe neonatal jaundice (NNJ) in LMICs. The data is based on hospital statistics, as no national records were identified in the literature (24).
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Research concerning the long-term follow-up of children

affected by KSD in LMICs has revealed that surviving children

contend with various challenges, including choreo-athetoid

cerebral palsy, deafness, and auditory processing disorders

(46–49). Nevertheless, conducting sustained follow-up

assessments presents significant logistical challenges, and the

available resources to address their ongoing needs remain limited

(50, 51). For recent studies elucidating the serious outcomes

associated with severe hyperbilirubinemia in selected African and

Asian countries, please refer to Table 1.
4. Non-invasive approaches for
jaundice screening and their
limitations

This section presents a review on the existing non-invasive

modalities and methodologies employed in the screening of

neonatal jaundice, as well as the estimation of bilirubin levels in

neonates along with the its limitations. The primary themes of

interest within this section are outlined in Figure 5.
4.1. Visual inspection

In neonatology, the visual inspection serves as a preliminary

screening tool for the assessment of jaundice in newborns.
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Neonatal jaundice is characterized by the accumulation of

bilirubin, that manifests as a yellowish discoloration of the skin

and the sclera of the eyes. The initial step in diagnosing jaundice

involves a comprehensive physical examination of the neonate.

Visual inspection constitutes a facet of this evaluation, wherein

healthcare practitioners gauge the severity of jaundice by

discerning the extent of yellowish pigmentation in the neonate’s

skin and ocular tissues, thereby facilitating the determination of

the jaundice’s severity (63).

This assessment methodology, known as the Kramer scale,

encompasses the comparison of jaundice intensity on the

neonate’s skin, guided by Kramer’s principle of cephalocaudal

progression. The Kramer hierarchy postulates that the

progression of yellow discoloration transpires in a cephalocaudal

fashion, encompassing five dermal zones: Head and neck, upper

trunk, lower trunk and thighs, arms, and lower legs, and palms

and soles, as illustrated in Figure 6.

Clinical observations have indicated that jaundice in neonates

initially manifests on the facial region. As the total serum

bilirubin (TSB) level escalates, this manifestation extends to

encompass the chest, abdomen, and extremities. Empirical

validation of this observation has been achieved through

transcutaneous bilirubin measurements. Knudsen postulated that

the cephalocaudal progression of jaundice arises from

conformational alterations within bilirubin-albumin complexes.

Although the initial binding of bilirubin to albumin occurs

rapidly, the ultimate conformational changes may require up to
frontiersin.org
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TABLE 1 Neonatal jaundice in African and Asian countries.

Country Severe NNJ
incidence, %

ABE
incidence, %

CBE and
Kernicterus

incidence, % of
NNJ

NNJ deaths of
newborns
admitted, %

NNJ deaths
with respect

to all
deaths, %

CFR
due to
NNJ, %

CFR
due to
ABE, %

Mortality
rate

References

Egypt NA 18% of NNJ
30% of NNJ

NA
18.1

NA NA 10.5
6.5

59.1
22.4

NA (52, 53)

Kenya 34.4
9.2

NA NA 7.8
1.3

NA
5.7

22.7
14.3

NA NA (54, 55)

Nigeria 26.9 14.9 NA 3.5 NA 13.0 23.5 NA

China 49.1 NA 0.9 NA NA NA NA NA (56)

Bangladesh 15.7
5.9

NA 0/5
NA

0.6
0.2

NA
1.1

3.8
3.9

55.6 (of
CBE)
NA

NA (57, 58)

India 15.3
NA

NA NA 1.0
NA

4.4%
NA

6.7
NA

NA NA
730/100,000
Live births

(59, 60)

Myanmar 46.0
NA

NA
12.7% NNJ in A
21.2% NNJ in B

NA
2.0% NNJ in A
1.5% NNJ in B

NA NA NA
7.2 (A)
11.2 (B)

NA
46.9 (A)
25.0 (B)

NA (61, 62)*

Malaysia 25–30
3.8

NA NA NA NA NA NA NA (24)

Indonesia 6.8 2.2 NA 1.6 NA 24.2 74.9 NA

NA, Not available.

ABE is a clinical syndrome characterized by symptoms such as lethargy, hypotonia, and poor sucking, which may progress to hypertonia with opisthotonos and retrocollis,

accompanied by a high-pitched cry and fever, and potentially leading to seizures and coma. CBE and kernicterus represent the clinical consequences of ABE,

encompassing irreversible brain damage manifested as athetoid cerebral palsy, sometimes accompanied by seizures, developmental delay, hearing impairment,

oculomotor disturbances, dental dysplasia, and intellectual disability. Histologically, CBE is distinguished by the deep-yellow staining of neurons and neuronal necrosis

within the basal ganglia and brainstem nuclei. The investigation conducted by Arnolda et al. (62) * was carried out in two distinct hospitals, identified as Hospital A and

Hospital B.

FIGURE 5

Non-invasive approaches for screening and diagnosing neonatal jaundice.
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eight minutes (64). Consequently, bilirubin with a weaker affinity

to albumin may circulate in the bloodstream, preferentially

relocating to proximal body parts compared to the subsequent

involvement of distal regions. Bilirubin with weaker albumin

binding has a higher likelihood of precipitating as bilirubin acid
Frontiers in Pediatrics 06
within phospholipid membranes present in the skin and

subcutaneous tissues, elucidating the early appearance of jaundice

on the face as opposed to the abdomen or lower extremities (64).

This conceptual framework has been employed in clinical

practice to assess the severity of jaundice. Purcell and Beeby
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FIGURE 6

Kramer’s rule of cephalocaudal progression.
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conducted an investigation to examine, if the cephalocaudal

progression of jaundice in neonates was associated with

variations in skin temperature and skin perfusion across five

anatomical sites: the forehead, sternum, lower abdomen, mid

thigh, and sole. It was observed that newborn infants exhibit a

preference for increased blood flow to their head and the

proximal regions of their body during the initial days of life.

This phenomenon results in elevated temperatures and an

enhanced deposition of bilirubin at these specific sites (65).

However, it is essential to acknowledge the limitations of

Kramer’s rule and Visual Inspection in order to better

understand its applicability and potential shortcomings in clinical

practice.

Limitations:

1. Inter-individual Variation: One of the primary limitations of

Kramers rule of cephalocaudal progression is the significant

inter-individual variation seen in neonates. While the

guideline suggests that jaundice typically appears first in the

face and then progresses downwards, this progression is not

consistent in all newborns. Some infants may exhibit jaundice

in areas other than the face initially or may follow a different

pattern of progression. This variability can lead to diagnostic

confusion and potentially delayed intervention in some

cases (66).

2. Ethnic and Racial Differences: Kramers rule of cephalocaudal

progression is primarily based on observations in populations

of European descent. It may not be equally applicable to

neonates of different ethnic or racial backgrounds who may

exhibit variations in the timing and pattern of jaundice

presentation. Failure to account for these differences can

result in misinterpretation of clinical signs and suboptimal
Frontiers in Pediatrics 07
management strategies (9). In a cross-sectional study of 315

neonates under 28 days of age of Black descent, conducted by

Dionis et al., it was found that Kramer’s method

demonstrates a noteworthy positive predictive value.

Nevertheless, its overall predictive capability cannot be

considered substantial due to its low sensitivity and negative

predictive value. Consequently, the clinical assessment based

on Kramer’s method should not be recommended for

neonatal jaundice screening in this population. Further

investigations are warranted to explore the efficacy of

alternative non-invasive techniques in the detection of

neonatal jaundice among this population (67).

3. Limited Sensitivity: The rule’s reliance on visual assessment alone

to determine the cephalocaudal progression of jaundice may lack

the sensitivity required to identify subtle or early signs of

hyperbilirubinemia. In some cases, laboratory tests such as

serum bilirubin levels or transcutaneous bilirubinometry may

be necessary to accurately assess the severity of jaundice,

especially in infants with darker skin pigmentation where

clinical examination may be less reliable (68).

4. Complex Etiology, Age and Developmental factors: Neonatal

jaundice can have various underlying causes, including

physiological, pathological, and genetic factors. Kramers rule

does not account for the etiological diversity of neonatal

jaundice, which can have implications for treatment

decisions. Relying solely on cephalocaudal progression

assessment may overlook underlying pathological conditions

that require specific interventions (69). Moreover, the

progression of jaundice can also be influenced by factors such

as the age and developmental stage of the neonate. Premature

infants, for example, may exhibit different patterns of

jaundice compared to full-term infants (70).
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5. Risk of Overlooking Severe Jaundice: In some instances,

neonates may develop severe hyperbilirubinemia without

obvious clinical signs of jaundice in the face. Focusing solely

on the cephalocaudal progression may lead to delayed

diagnosis and treatment of severe jaundice, which can have

serious neurological consequences, such as kernicterus.

Sampurna et al., conducted an investigation aimed at

assessing the potential utility of Kramer’s score in the

identification of infants requiring phototherapy. Their

findings led to the conclusion that the Kramer score may not

serve as a valid method for distinguishing between infants

necessitating phototherapy and those for whom this

treatment may not be warranted (71).

As a preliminary screening tool, it necessitates the consideration of

several inherent limitations when interpreting its outcomes. Heavy

reliance on the subjective judgment of healthcare providers

introduces variability in individual perceptions, thereby giving

rise to inconsistent diagnoses (72). Although methodologies such

as the Kramer scale may serve as initial screening aids, blood

tests constitute the confirmatory step for diagnosis and treatment

planning. Moreover, the diagnosis of jaundice through visual

inspection necessitates a TSB concentration surpassing 5–6 mg/dl

(85–100 µmol/L) (73). However, it is worth highlighting that

even seasoned neonatologists may occasionally misidentify

infants with elevated TSB concentrations. According to the

current multidisciplinary Dutch national guideline for neonatal

jaundice identification and treatment, visual inspection serves as

the primary screening tool for neonates receiving home-based

care (74). In cases where the suspicion of severe

hyperbilirubinemia arises from visual inspection, community

midwives may opt to assess bilirubin levels in the neonate’s

blood, either collected by the midwife or through a specialized

laboratory home service. Subsequently, treatment decisions for

hyperbilirubinemia are determined based on the laboratory-based

bilirubin (LBB) level, utilizing the nomogram outlined in the

Dutch national guideline, which is adapted from the 2004

guideline of the American Academy of Pediatrics. Numerous

studies have underscored the unreliability of visual inspection as

a screening tool for neonatal hyperbilirubinemia (73–76).

A substantial proportion of neonates, admitted from home with
TABLE 2 Comprehensive studies on various Non-invasive approaches for est

Non-invasive
approaches

Number of
studies

Sample
size

Visual Inspection 12 3,077 Interobserver agre
physicians, nurses

Ingram Icterometer (including
Biliruler and Bilistrip)

5 3,656 In the past, icterom
not have been sta
and have the pote

Transcutaneous
Bilirubinometers

42 12,006 A reasonable corr
when using differe
various color batc

Digital imaging or mobile
applications

5 1,020 Correlation coeffic
and TcB. The digi
available.
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severe hyperbilirubinemia or acute bilirubin encephalopathy,

experienced instances where neonatal jaundice either remained

unnoticed or was misclassified by maternity care assistants,

midwives, and/or parents (73, 75, 76). Hence, it exhibits reduced

sensitivity, particularly in the detection of mild jaundice

rendering it less sensitive in comparison to laboratory-based

techniques.

Additionally, the method’s accuracy diminishes notably when

applied to individuals with dark skin, owing to the inherent

challenge of discerning skin yellowing (9, 67). Consequently, this

limitation may result in an underestimation of jaundice severity.

It is noteworthy that ambient lighting conditions can exert an

influence on the accuracy of visual inspection, potentially causing

fluctuations in the perceived severity of jaundice (77).

Furthermore, the method’s inability to provide quantitative data

on bilirubin levels precludes its utility in trend monitoring and

the evaluation of treatment effectiveness. It is imperative to note

that visual inspection alone lacks precision, which necessitates

the integration of complementary diagnostic methodologies, such

as laboratory-based assays which quantify the concentration of

bilirubin, enabling healthcare practitioners to ascertain the

severity of jaundice and determine the most suitable course of

action. Table 2 (Studies on Non-Invasive Approaches for

Neonatal Jaundice Estimation) provides a compilation of pivotal

comprehensive investigations on various non-invasive approaches

employed in the estimation of jaundice severity in neonates.
4.2. Icterometry

Icterometry represents a non-invasive technique employed to

indirectly evaluate the degree of jaundice by visually assessing

transcutaneous bilirubin concentrations within subcutaneous

tissue and adipose layers.

4.2.1. Ingram icterometer or gosset icterometer
The Ingram Icterometer, also known as the Gosset Icterometer,

serves as a non-intrusive instrument for quantifying bilirubin

levels. It consists of transparent plastic divided into five

horizontal strips, each adorned with graded yellow lines (140).

Employed since 1925 to gauge the severity of jaundice, this tool
imating jaundice in neonates.

Observation References

ement among different levels of healthcare professionals, namely
, and parents, is notably low.

(34, 75, 78–87)

eters were manufactured using different color batches, which might
ndardized. More recent devices utilize color processing technology
ntial to be valuable in clinical settings.

(88–92)

elation was observed between total bilirubin (TB) and TcB values
nt devices. However, older icterometers were manufactured from
hes, potentially lacking standardization.

(88, 93–134)

ients varied widely between mobile phone devices measurements
tal technology is still in its development phase and not commercially

(135–139)
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involves placing it against the patient’s nose, wherein the blanched

skin’s color is juxtaposed with the graded yellow lines to ascertain

the bilirubin concentration (141).
4.2.2. Bili-ruler
The Bili-ruler represents an economical and reusable non-

invasive apparatus, which can be sanitized between successive

patient usages. It effectively enhances referrals from peripheral

healthcare facilities to more advanced centers equipped with

bilirubin testing and/or phototherapy capabilities. The Bili-ruler

rectifies the limitations inherent in the original Gosset

icterometer through the application of advanced digital color

processing techniques and a human-centered design approach.

This tool comprises digitally standardized and calibrated

archival-quality paper strips, sequentially numbered from 1 to 6,

progressively transitioning in hue towards yellow (refer to

Figure 7). Notably, research has documented the development of

an innovative Bili-ruler prototype, which was in-house

engineered utilizing a semiflexible acrylic base and adherent

acrylic film for affixing the color strips (142).

The color strips were generated through the acquisition of

images depicting blanched skin from infants possessing known

serum bilirubin levels, employing an X-rite ColorChecker

Passport (142). This methodology facilitated the development of

a digital camera calibration profile and standardized color

output for subsequent processing. Subsequently, a comprehensive

digital photograph repository was compiled, featuring infants

exhibiting a spectrum of hyperbilirubinemia levels, spanning

from none to severe. The highest score obtained from the Gosset

icterometer was selected, employing a stepwise gradient to

construct the color scale. The digital workflow and image

processing operations were conducted using Adobe Photoshop

and Lightroom applications, executed within the sRGB 16-bit

color space. It is noteworthy that one of the prominent

challenges associated with the original icterometer was the

complexity of making decisions pertaining to color matching

(143). To address this issue, the group devised a novel approach

that replaced the linear color strips with a transparent circular
FIGURE 7

Utilization of bili-ruler to check neonatal jaundice (142).
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window enveloped by a uniform color swatch. This redesigned

configuration necessitated users to make simplified binary

determinations (i.e., yes or no) concerning color matching. A

similar design principle has previously been applied in

Hemochek, an apparatus utilized for screening anemia based on

the World Health Organization’s Hemoglobin Color Scale, aimed

at facilitating color matching (142). To employ the Bili-ruler,

users are required to apply firm pressure to induce blanching of

the infant’s skin, subsequently assessing the hue of the

underlying subcutaneous tissue. This process is iterated for each

color segment on the ruler, ranging from 1 to 6, with users

selecting the Bili-ruler score that most closely corresponds to the

underlying skin color. Importantly, these measurements should

be taken in natural light, preferably near a window, and devoid

of fluorescent lighting.

4.2.3. Bilistrip
The Bilistrip device emerges as an innovative two-color

icterometer, presenting a promising instrument designed to

enable mothers to discern neonates exhibiting clinically significant

jaundice, thereby indicating the need for vigilant monitoring or

treatment, as well as neonates who do not require immediate

intervention for jaundice during their first week of life

(see Figure 8). Neonates selected as color B by their mothers are

deemed to be at heightened risk of hyperbilirubinemia,

warranting priority for subsequent bilirubin assessment and

potential treatment. Conversely, neonates designated as color A

by their mothers are less likely to manifest clinically significant

jaundice, barring instances where hemolysis is suspected.

Numerous studies have explored maternal capacity to detect

jaundice in their infants, primarily by observing yellowish skin

and scleral discoloration (144–148). Significantly, maternal

concern, often voiced by individuals lacking expertise in jaundice

assessment, can be prompted by early indications of Acute

Bilirubin Encephalopathy (ABE), such as feeding difficulties,

infant irritability, and restlessness (25). It is crucial to

acknowledge that, even in high-income countries, electronic TcB

(Transcutaneous Bilirubin) devices intended for domestic

utilization, though potentially more reliable, are unlikely to be

offered to mothers due to their considerably higher cost, with a
FIGURE 8

Utilizing bilistripTM to screen jaundice (90).
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typical TcB device costing around $3,000 per unit, excluding

operational expenses, compared to $17 for the Ingram icterometer

(80, 134) or approximately $0.10 for a BilistripTM unit.

In a particular investigation concentrating on primarily

Caucasian neonates after their discharge, an icterometer

threshold of 2.5 demonstrated a sensitivity of 73%, specificity of

65%, a Positive Predictive Value (PPV) of 44%, and a Negative

Predictive Value (NPV) of 87% in the identification of neonates

with Total Serum Bilirubin (TSB) levels surpassing 12 mg/dl. In

the context of TSB levels surpassing 17 mg/dl, the

aforementioned study documented a sensitivity of 100%,

specificity of 58%, a PPV of 12%, and a NPV of 100% (134).

Conversely, a population-based investigation revealed that

BilistripTM displayed a sensitivity of 91%, specificity of 24%, a

PPV of 32%, and a NPV of 88% in the prediction of TSB levels

surpassing 12 mg/dl. When TSB levels exceeded 17 mg/dl,

BilistripTM exhibited a sensitivity of 100%, specificity of 21%, a

PPV of 7%, and a NPV of 100%. This suggests that race does

not significantly confound the utilization of icterometers in

neonates during the first week of life, consistent with findings

from other investigations (89, 134, 149–151).

Furthermore, a number of research studies have employed a

3-cut-off methodology with Ingram icterometers for the

identification of neonates displaying significant jaundice (89, 134,

151, 152). In the majority of cases, the mean TSB corresponding

to this threshold value approximated 10 mg/dl, which is

consistent with the mean TcB of 10 mg/dl and the mean TSB of

11 mg/dl for color B. This concurs with the proposition that

existing multi-shade icterometers can be effectively replaced by a

simpler two-color icterometer like the Bilistrip. Some studies

have assigned specific bilirubin levels to distinct shades of yellow

on the icterometer (153). Nonetheless, it is important to

emphasize that this practice is not indicative of a diagnostic

approach at large.

Limitations:

Dr. Gosset openly acknowledged the limitations of the

icterometer concerning its accuracy and its inability to

distinguish between different types of jaundice. He emphasized

the necessity of conducting blood sampling in cases of neonatal

jaundice with a rapid onset, specifically within thirty-six hours of

birth. The icterometer could not be employed for infants with

nasal bruising, where the use of the gums was recommended

instead. For children of non-Caucasian ethnicity, the icterometer

could only indicate whether the jaundice was progressively

worsening or not on a day-to-day basis, without providing

precise measurements, and uncalibrated readings necessitated the

use of blood samples (151, 154). (It is noteworthy that

subsequent research published in India in 1991 contradicted this

assertion.) A study involving 1,161 newborns with a gestational

age of 35 weeks or more was conducted, and TSB levels were

measured based on clinical indications. A novel JCard was used

to take measurements made by both parents and pediatricians

and finally compared with the TSB measurements. It

demonstrated the ability to classify various bilirubin levels, but

its accuracy was observed to decrease when dealing with high

bilirubin levels. Notably, the diagnostic performance of parents
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using the JCard was found to be slightly less precise compared to

that of pediatricians (155).
4.3. Transcutaneous bilirubinometers

Traditional visual inspection for neonatal jaundice is known to

exhibit poor correlation with Total Serum Bilirubin (TSB) levels,

particularly among non-Caucasian infants. Laboratory-based TSB

testing, while considered the gold standard, presents challenges

in resource-limited settings due to cost and a dearth of trained

personnel. In response to these challenges, non-invasive

transcutaneous bilirubin (TcB) devices have emerged as

promising screening alternatives to visual inspection. TcB devices

are validated, non- invasive screening tools designed to estimate

serum bilirubin concentrations in neonates (156, 157). These

devices employ visible light technology to assess bilirubin levels

in the skin, providing a near estimate of the bilirubin

concentration in the blood. Typically positioned on the infant’s

skin, most commonly on the forehead or sternum, TcB devices

yield rapid readings in seconds. Their reliability and accuracy in

predicting elevated bilirubin levels in neonates are well-

established, and they offer advantages over traditional screening

methods, such as visual inspection and icterometers. Moreover,

they also obviate the need for subsequent blood draws solely

required for screening and facilitating bedside use, thus

enhancing convenience and reducing infant discomfort (158).

The process of obtaining a measurement of TcB is relatively

straightforward, although the underlying physics and biology are

intricate. TcB devices exhibit significant variations in design, but

they all rely on the analysis of skin remittance, specifically diffuse

reflectance spectra. When exposed to light of varying

wavelengths emitted by the device, the skin interacts with this

light, and the device possesses the capability to analyze the light

that returns after it has undergone “processing” within the skin

and subcutaneous tissue (159). The spectra of the reflected light

depend on the concentration of various cutaneous

chromophores, including melanin, collagen, oxygenated and

reduced hemoglobin, and, notably, bilirubin (160). Technically, a

“chromophore” refers to the part of a molecule responsible for

its color due to its absorption and reflection of specific

wavelengths, and the term is often used to refer to the entire

molecule. The distinct absorption spectra resulting from various

chromophores enable the calculation of their concentration

through the analysis of reflected light, using a device-specific

algorithm.

For the purpose of optical measurements, human skin can be

conceptually treated as a layered structure comprising the

epidermis (with a thickness of approximately 0.1 mm), dermis

(around 0.5 mm thick), and subcutaneous tissue. Short

wavelengths in the optical spectrum, typically falling within the

400–600 nm range, are primarily absorbed by specific

chromophores, such as hemoglobin, melanin, bilirubin, and other

pigments (161). The measurement device’s ability to reflect and

collect these wavelengths is crucial for accurately determining the

baseline absorption of various pigments, facilitating the isolation
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of the specific chromophore of interest—namely, bilirubin.

Bilirubin exhibits an absorption peak in the range of 450–

500 nm, while melanin’s absorption gradually diminishes as

wavelengths increase from 400 nm to 840 nm (160, 162–166).

Because epidermal melanin is a thin surface layer on the tissue, it

acts as a light attenuation filter for both incoming and outgoing

light, a factor that can be accounted for in the internal

algorithm. Early research on the connection between serum

bilirubin and cutaneous bilirubin, assessed through spectral

analysis, was conducted by Ballowitz and Avery (167).

Subsequently, Hanneman et al. at the Mechanical Engineering

Department of Purdue University advanced the instrumentation

for acquiring spectral reflectance data from the skin of human

newborns (168, 169). Their approach involved the analysis of five

distinct wavelengths, resulting in a noteworthy correlation

coefficient of 0.93 between their method and total serum

bilirubin (TSB) levels. Yamanouchi et al., in collaboration with

Minolta Camera Company Ltd, introduced a prototype device

featuring a digital processor that illuminated the skin and gauged

color intensity (170). This device generated a numerical index,

which exhibited a correlation with TSB. However, healthcare

providers were required to translate this numerical index into a

serum bilirubin equivalent through the utilization of a graphical

chart or a conversion equation (171). Subsequent adaptations of

this technology were introduced and commercialized under the

names JM-101TM and JM-102TM. Analogous to the prototype,

these devices generated an index value necessitating conversion

into an estimate of TSB levels.

Several factors can influence the accuracy of TcB measurements,

including skin color, gestational age, and the timing of assessment.

Darker skin pigmentation can result in lower TcB readings, while

premature infants may exhibit higher TcB values due to their

thinner skin density. Additionally, the precision of TcB

measurements may diminish after the initial 24 h of life,

underscoring the importance of close bilirubin level monitoring

during the early postnatal period (172). It is essential to

emphasize that TcB measurements do not serve as a substitute

for laboratory-based serum bilirubin level assessment, which

remains the gold standard for diagnosing and monitoring

neonatal jaundice (173). In situations where TcB measurements

yield elevated results or clinical symptoms suggest significant

jaundice, it is imperative to confirm the diagnosis and guide

management through laboratory serum bilirubin level

measurements. Several studies have explored the comparability of

TcB measurements obtained from the forehead and sternum

(110, 174–176). However, the Guideline Development Group

(GDG) convened by the National Collaborating Centre for

Women’s and Children’s Health (NCC-WCH) has recommended

that measurements taken over the sternum are preferable for both

parents and infants. This choice is motivated by the avoidance of

potential challenges in obtaining readings from the forehead, such

as wrinkling due to infant crying and the risk of ocular injury if

the infant resists measurement on the forehead. Furthermore, it

should be noted that discrepancies between TcB and TSB

measurements become more pronounced when bilirubin levels

exceed 250 µmol/L. Consequently, it is advised not to rely on TcB
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measurements for bilirubin levels exceeding 250 µmol/L; instead,

serum bilirubin level measurements should be conducted to

ensure accuracy (98).

The GDG has recommended against the use of transcutaneous

bilirubinometers in preterm neonates (gestational age < 35 weeks)

due to their heightened vulnerability to kernicterus at relatively

low bilirubin levels, coupled with the suboptimal performance of

transcutaneous bilirubinometers in this population (177).

Moreover, the accuracy of transcutaneous bilirubinometers in

this subgroup remains unclear. To address this, the GDG

advocates for the exploration of the BiliCheck and JM-103

devices specifically in jaundiced preterm neonates. While visual

skin inspection by parents or clinical staff effectively rules out

jaundice, it remains unreliable for assessing the depth of

jaundice. However, the GDG acknowledges that transcutaneous

bilirubinometers offer a non-invasive and more acceptable

alternative to blood sampling for parents. Consequently, the

GDG recommends the use of transcutaneous bilirubinometers

after 24 h of age to mitigate issues associated with blood sample

collection in community settings. In cases where transcutaneous

bilirubinometers are unavailable, serum bilirubin levels should be

monitored and documented. Furthermore, the NICE guideline on

“Postnatal care” suggests monitoring and recording the intensity

of jaundice in infants aged 24 h and older, alongside assessing

the overall well- being of the infant concerning hydration and

alertness (177). The GDG contends that any healthcare

professional can assume the responsibility for monitoring and

recording the infant’s bilirubin levels. It should be noted that

TcB measurements may not be reliable in infants undergoing

phototherapy due to its skin-bleaching effect. Therefore, further

investigations are warranted to evaluate the effectiveness of

transcutaneous bilirubinometry in this specific population.

Additionally, limited data exists regarding the use of

transcutaneous bilirubinometers in newborns who have received

phototherapy. While some studies have reported improved

correlation between TSB and TcB values when measurements are

taken from shaded body sites, further research is needed to

assess the accuracy of this approach in infants undergoing

phototherapy. Notably, Tan and Dong conducted a study

exclusively on Asian infants who had undergone phototherapy,

yielding inconsistent findings. Some authors have recommended

conducting transcutaneous measurements on body areas

protected from light exposure during phototherapy to ensure

accuracy (178). Yoruk and colleagues explored the reliability of

Bilicare measurements by covering a portion of the skin to

prevent exposure to phototherapy. Their study encompassed 171

late preterm and term newborns with a gestational age of≥ 35

weeks. Their findings indicated that TcB measurements obtained

from unexposed skin areas can be safely utilized in patients

undergoing phototherapy (179).

Despite studies assessing the accuracy of transcutaneous bilirubin

(TcB) measurements in neonates undergoing phototherapy (PT),

certain aspects require further investigation. For instance, a recent

study by Yoruk et al. did not address the reliability of TcB

measurements obtained from exposed skin areas in neonates

undergoing PT (180). Lucanova conducted a prospective study
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involving 150 Caucasian term neonates, during which 255 TSB and

TcB measurements were taken 2 h after PT discontinuation.

Measurements were obtained from the forehead, sternum,

abdomen, and covered lower abdomen. Their findings highlighted

that phototherapy significantly interferes with the accuracy of TcB

measurements, even when conducted on unexposed skin areas. As

such, TSB assessment remains imperative when considering

hyperbilirubinemia treatment in this context (181).

Table 3 documents recent related studies on nine different

types of TcB devices since 2014, along with the paper title,

journal, year of publication, name of the instrument, technique

and site of measurement.

Costa-Posada et al. undertook a study to explore the utility of

TcB in evaluating the effectiveness of PT on patched skin. They

utilized a photo-opaque patch to cover a section of the skin

(sternum) and performed simultaneous TcB and TSB

measurements using the JM-105 bilirubin meter in 217 patients,

nearly half of whom were preterm. Their investigation revealed

that measuring TcB on patched skin facilitated the monitoring of

PT response in both term and preterm infants. The patch,

featuring a removable flap, enabled successive measurements
TABLE 3 Recent related studies on different TcB meters.

S.
no

Title Year Journal Number
of

neonates

Ins

1 Influence of assessment site on
measuring Transcutaneous
Bilirubin (174)

2014 Einstein
(Sao Polo)

58 (Full term) Bili

2 Diagnostic properties of a
portable point-of-care method to
measure Bilirubin and a
transcutaneous Bilirubinometer
(182)

2021 Neonatology 149 Bili
105

3 Evaluation of a new
Transcutaneous bilirubinometers
in newborn infants (183)

2022 Scientific
Reports

141
(Full term)

JAI
105

4 Evaluation of the Kejian KJ-8000
bilirubinometer in an Australian
study (184)

2020 Journal of
Pediatrics and
Child Health

201 Kej

5 Development of a mobile phone
camera based TcB for low
resource settings (185)

2022 Biomedical
Optics express

37 Mo
(Pic

6 Clinical utility of Transcutaneous
Bilirubinometer in very low birth
weight infants (186)

2016 Journal of
Perinatal
medicine

100 N/A

7 Accuracy of the Bilicare
Transcutaneous Bilirubin as
predischarge screening tool in
healthy term and late preterm
neonates (187)

2020 European
Association of
Perinatal
medicine

– Bili

8 Evaluation of a Point-of-care test
for Bilirubin in Malawi (188)

2022 Pediatrics 375 Bili

9 The accuracy of Transcutaneous
Bilirubinometer to identify
hyperbilirubinemia in jaundiced
neonates (189)

2022 European
Association of
Perinatal
medicine

– JM-
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without disturbing the patients (190). Raba et al. conducted a

study to assess TcB measurement accuracy during and after PT

in 196 preterm infants. While they identified strong correlations

between TcB and TSB levels post-PT, during the PT phase, a

considerable and clinically relevant disparity existed between the

two measurement methods. Notably, this disparity improved

significantly after PT cessation (191). Several observational

studies have illustrated a robust correlation between Total Serum

Bilirubin (TSB) and transcutaneous bilirubin (TcB)

measurements. Furthermore, TcB measurements can be

conducted by nurses or trained health workers with limited

educational backgrounds, enhancing their accessibility and utility

in clinical practice. Figure 9 provides an overview of key market

players in the manufacturing of transcutaneous bilirubinometers.

A new invention in the field of TcB meters is that of “AJO-

NEO” device, that collects the measurements from the neonatal

nailbed. A prospective observational study was conducted over a

15-month duration in Kolkata, India, encompassing 2,092

neonates with gestational ages ranging from 28 to 40 weeks. The

effective population size for this study was defined as 1,968

neonates (200). The primary objective of this research was to
trument Technique Site of
measurement

Conclusion

check Transcutaneous Forehead and
Sternum

High accuracy at sternum and
low at forehead.

stick v/s JM Invasive Hell prick Bilistick underestimated TSB
and TcB overestimated TSB

SY v/s JM Transcutaneous Forehead and
Sternum

Accuarte in low to moderate
bilirubin levels

ian KJ-8000 Transcutaneous – Underestimated at high TSB,
infants <32 weeks gestation
had a poor correlation and
Non Caucasian reported
overestimation of TcB.

bile
ture)

Transcutaneous – Holds potential but needs
improvement and future work.

Transcutaneous – Reliable in very low birth
weight newborns in the
absence of phototherapy.

care Transcutaneous – Overestimate TSB values,
12 mg/dl and underestimate at
higher TSB level

Spec Invasive Heel prick Accurate and reproducible but
needs more future work.

103 Transcutaneous Sternum Correlation affected due to
gestational age and post-natal
age of hour
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Prominent Key market players of transcutaneous bilirubinometers (192–199).
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assess the efficacy of a novel non-invasive and non-contact

bilirubin measurement device known as AJO-Neo as an

alternative to the conventional invasive method involving

biochemical estimation of TSB. This assessment was carried out

in preterm and term neonates who exhibited hyperbilirubinemia

due to various risk factors and/or were undergoing phototherapy.

The study outcomes revealed a robust positive linear correlation

between the bilirubin values obtained from AJO-Neo and those

derived from TSB measurements and no statistically significant

differences were observed when comparing measurements taken

on the right and left nail beds (200). It is noteworthy that AJO-

Neo exhibited substantial concordance with conventional TSB

measurements, particularly when assessments were conducted

during phototherapy.

Limitations:

1. Skin Pigmentation and Race: Numerous studies have

investigated the correlation between TcB and TSB

measurements in diverse populations, employing devices such

as BiliChek and JM-103. However, it is noteworthy that the

JM-103 device tends to overestimate TSB levels in infants

with darker skin pigmentation. While TcB measurements are

commonly used as an initial screening tool, this practice may

result in an increased number of unnecessary TSB

measurements. A study by Wainer et al. (132) explored the

impact of skin tone on JM-103 performance, revealing that

infants with medium skin tones exhibited the highest

precision and least bias. Conversely, the lighter skin tone
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group tended to underestimate TSB levels, while the darker

skin tone group tended to overestimate them.

2. Preterm and Low Birth Weight Infants (Gestational age,

Malnutrition, etc.): The reliability of TcB measurements in

infants with birth weights under 1,000 g or gestational ages of

28 weeks has been a subject of investigation. While some

studies have suggested reduced reliability in these cases,

others have not supported this finding (186, 201). Several

studies have demonstrated the effectiveness of TcB

measurements in both low birth weight (LBW) and extremely

low birth weight (ELBW) infants within neonatal intensive

care units (NICUs) (111, 200). By using appropriate cutoff

values, TcB measurements accurately identified infants

requiring TSB measurements or phototherapy.

3. Ambient Light: Ambient light, especially direct sunlight or

strong artificial light, can affect the accuracy of TcB

measurements, particularly when taken from the forehead.

The presence of bright light can interfere with the

measurements, leading to potential inaccuracies. In a study

that aimed to investigate whether natural daylight exposure

had an impact on the precision and consistency of TcB

measurements taken at both the forehead and sternum

regions. A cohort of 107 full-term newborn infants was

divided into two distinct groups for analysis. Group I

(N = 59) consisted of infants placed near a window,

occasionally exposed to direct daylight, while Group II

(N = 48) included infants positioned on the door side of the

room, devoid of direct daylight exposure, all within the initial
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week of life (202). The findings of this study highlighted the

significance of daylight as a substantial influencing factor on

TcB measurements obtained at the forehead. This factor was

found to contribute to a suboptimal correlation between TcB

readings at the forehead and serum bilirubin concentrations.

Consequently, we advocate for the necessity of acquiring TcB

readings at both the forehead and sternum, at a minimum, as

a means to enhance the precision and dependability of such

measurements in neonates (202). To mitigate the impact of

ambient light on TcB measurements, it is essential to control

the lighting conditions during the measurement process.

Some TcB devices come equipped with shields or covers to

block out ambient light, ensuring more accurate readings.

Additionally, conducting TcB measurements in a dimly lit or

controlled environment can help minimize the influence of

ambient light on the results. Researchers and healthcare

professionals should be aware of the potential impact of

ambient light and take measures to standardize the

measurement conditions to obtain reliable TcB readings.

4. Effect of TSB Level: TcB measurements tend to be less accurate

and may underestimate TSB levels at higher concentrations

(203). Consequently, as TSB levels increase, the rate of false-

negative TcB results may rise. Nevertheless, when employing

suitable cutoff values, TcB measurements remain effective as

a screening tool, even when TSB levels exceed 15 mg/dl.

5. Effect of Phototherapy on TcB Measurements: The use of

phototherapy can lighten an infant’s skin, potentially

compromising the reliability of visual assessments of jaundice

and TcB measurements (181, 203). However, if specific areas

of the skin remain shielded during phototherapy, TcB

measurements from those areas can be employed to monitor

treatment response. In a prospective observational study, the

suitability of TCB measurement was assessed as a tool for

evaluating the effectiveness of phototherapy on a localized

skin patch (198). Specifically, a photo-opaque patch was

applied to a portion of the infant’s skin (sternum), and

multiple simultaneous measurements of TCB and TSB were

conducted using the JM-105 bilirubinometer. This method,

referred to as “patched skin transcutaneous bilirubin” (PTCB)

measurement, proves valuable for monitoring the response to

phototherapy in both term and preterm infants. Importantly,

the use of a patch with a removable flap facilitates successive

measurements without causing discomfort or disturbance to

the patients (198). A systematic review of studies was done in

order to compare the TcB devices with total serum bilirubin

TSB measurements in infants undergoing phototherapy or in

the post-phototherapy phase. The included studies involved

infants with a gestational age of ≥34 weeks. The findings of

which indicate that TcB devices exhibit reduced accuracy in

estimating serum bilirubin levels in infants undergoing

phototherapy compared to their documented accuracy in the

pre-phototherapy period (204).

6. Site of Sampling: Both BiliChek and JM-103 devices

recommend obtaining TcB measurements from either the

forehead or sternum (175). In a study involving 475 infants

comparing JM-103 measurements taken from the forehead
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and sternum with TSB measurements, the Pearson

correlation coefficients were higher for measurements from

the sternum (0.953) than for those from the forehead (0.914)

(123). Given that the forehead is exposed to ambient light

both in the nursery and post- discharge, while the sternum is

typically covered, measurements from the sternum are likely

the preferable choice. Another study involving 31 infants

comparing outpatient BiliChek measurements from the brow

and sternum revealed that brow readings were approximately

20% lower than TSB values, whereas chest readings were only

around 5% lower.

4.4. Digital imaging and mobile applications

Digital imaging represents a non-invasive approach to

hyperbilirubinemia screening (205). It involves capturing images

and analyzing them using specialized applications to assess color

and identify jaundice. One such is the optical imaging of the

conjunctiva for bilirubin analysis that represents an alternative to

the transcutaneous bilirubinometer BiliChek (205). A prospective

cross-sectional study by Aune et al. involved 302 newborns,

including 76 with severe jaundice (206). The researchers

developed a smartphone-based tool named Picterus, which

employed digital images to estimate bilirubin levels and detect

severe jaundice with high sensitivity. This innovative approach

showcased promising results for neonatal jaundice screening in

Caucasian newborns. The bilirubin estimates derived from the

images exhibited a strong correlation with TSB levels. Picterus

demonstrated a remarkable sensitivity of 100% in identifying

participants with severe jaundice (defined as TSB exceeding

250 µmol/L) and a specificity of 69% (206). For a detailed

workflow of this system, refer to Figure 10.

In a collaborative clinical pilot, researchers conducted

comprehensive studies on neonatal jaundice screening utilizing

smartphone technology. The pilot involved 37 newborns at

University College Hospital London, and a year-long study was

carried out on 724 newborns in Ghana (207). To capture precise

eye images, the research team employed a Samsung Galaxy SB

smartphone, capturing two images per infant’s eye—one with the

LED flash activated and one without, effectively mitigating

ambient light influence through ambient subtraction techniques.

The diagnostic accuracy of the Skin Color Bilirubin (SCB) level

measured by the app was validated against a Dräger JM-105

jaundice meter and the gold standard laboratory blood test,

which determines TSB levels (Figure 11). During the study, the

researchers fine-tuned the neoSCB app, optimizing the subtracted

signal-to-noise ratio (SSNR) for real-time quality control.

Additionally, they introduced a feature enabling users to zoom in

on captured images and manually select an area of interest on

the sclera to obtain a real-time calculated SCB value. The

neoSCB app’s diagnostic algorithm underwent validation, and

further enhancements to the user interface are underway to

enhance its usability for healthcare practitioners. The researchers

envision the app’s potential for independent use or integration

into established maternal-child healthcare applications to
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FIGURE 10

Workflow on bilirubin estimation: (A) newborn photography, (B) color calibration, (C) database comparison, and (D) bilirubin estimation for neonatal
jaundice assessment.
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augment their functionality (208). Yan et al. conducted a research

investigation aimed at assessing the impact of a smartphone-based

neonatal jaundice screening program conducted outside of the

hospital environment (209). Their study involved a cohort

comprising 1,424 mother-infant dyads, encompassing 1,424

mothers and 1,424 newborns. The outcomes of the study

revealed that the implementation of the smartphone-based out-

of-hospital screening approach for neonatal hyperbilirubinemia

was associated with a decrease in neonatal readmission rates

within the 30-day period following the initial discharge.

Furthermore, it provided some degree of improvement in

maternal mental health. Notably, this information has been

previously published and cited accordingly (209). In conclusion,

digital imaging techniques offer a promising avenue for non-

invasive, real-time, and accurate neonatal jaundice screening.

These innovations are rapidly becoming indispensable tools for

neonatologists and pediatricians in effectively managing this

condition.
FIGURE 11

Enhancing neonatal jaundice screening while using NeoSCB App to
investigate ambient lighting and color factors.
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One of the studies, aimed to assess the potential utility of a

smartphone’s embedded camera as a screening tool for neonatal

hyperbilirubinemia. A total of 64 randomly selected healthy

Caucasian newborns meeting specific gestational and age criteria,

with parental consent obtained, were included in the research

(210). Images of the glabella were captured using an iPhone 6

under three conditions: direct pressure, dermatoscope, and

dermatoscope with a Wratten No. 11 filter. The color intensities

of the red, green, and blue channels in each image were then

compared to bilirubin levels. The findings revealed that only the

intensities of the green and blue channels acquired with the

dermatoscope showed a significant correlation with bilirubin

measurements (p < 0.001), with respective Pearson’s correlation

coefficients of 0.59 and 0.48. Discrimination limits of 212 and

190 for the green and blue channels, respectively, demonstrated

high sensitivity (100% for green and 90.9% for blue) but

relatively lower specificity (62.5% for green and 60% for blue) for

detecting plasma bilirubin levels above 205 µmol/L (210). In

conclusion, the study suggested that a smartphone equipped with

a dermatoscope, ensuring consistent light conditions, may serve as

a straightforward screening tool for neonatal hyperbilirubinemia.

However, further refinement is necessary before its clinical

application can be considered.

In another cross-sectional study encompassing 100 neonates,

patient data was collected and where the average gestational age

of the neonates in the cohort was 39 weeks (205). Total bilirubin

levels were assessed utilizing a transcutaneous bilirubinometer,

which entailed measurements on the forehead and optical

imaging scans of the conjunctiva of the eyes, denoted as BiliChek

and BiliCapture, respectively. Subsequently, blood samples were

procured from these neonatal subjects and subjected to laboratory

analysis to ascertain the levels of TSB. The concentration of

bilirubin, as determined from serum samples, BiliChek, and

BiliCapture, were recorded and robust correlations were observed
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between TSB and both BiliChek and BiliCapture. Evaluation

through Bland-Altman plots demonstrated a high level of

concordance when comparing bilirubin values obtained from both

BiliChek and BiliCapture devices. Furthermore, bilirubin

measurement was subjected to sensitivity and specificity analyses,

yielding values of 88% and 76% for BiliChek and 92% and 75.6%

for BiliCapture, respectively. These findings highlight the safety

and viability of optical imaging of the conjunctiva as an

alternative to conventional laboratory- based bilirubin assays and

the transcutaneous bilirubinometer BiliChek (205). Mobile

applications have revolutionized neonatal jaundice diagnosis by

harnessing the capabilities of smartphone and tablet cameras.

These applications empower parents and healthcare professionals

to monitor jaundice conveniently at home or in hospital settings.

Among the notable applications is the Bilicam app, developed by

researchers at the University of Washington. Leveraging the

smartphone’s camera and flash, Bilicam captures skin images and

employs an algorithm to estimate bilirubin levels. Another

noteworthy app, BiliScreen, utilizes a smartphone camera and a

specialized filter to capture eye images for estimating blood

bilirubin levels. Clinical trials have demonstrated promising

results for this innovation, also developed by University of

Washington researchers. While mobile applications offer

numerous advantages over traditional methods—such as blood

tests and visual inspection—such as non-invasiveness, user-

friendliness, and real-time feedback, they are not without

limitations. These apps depend on precise color calibration and

specific lighting conditions, and results may vary based on skin

tone and other factors. Nevertheless, their potential to reduce

hospital readmissions and healthcare costs underscores their

importance in neonatal jaundice management.

Limitations: The principal objective of these device applications

is to facilitate timely and frequent screening. The Mobile App

Predicting Bilirubin (MAPB) measurement, positioned as a

screening tool, possesses characteristics that render it non-

invasive, devoid of physical contact, and amenable to user

interaction. Nevertheless, it is not devoid of constraints. This

approach necessitates the installation of a dedicated application

on a smartphone, thus mandating the prerequisite possession of

a smartphone within the family unit. Furthermore, it demands a

certain degree of technological literacy. On the contrary,

emerging Icterometers, exemplified by the Bili-strip and Bili-

ruler, circumvent the necessity of smartphone reliance, emerging

as cost-effective instruments in LMIC’s (90, 142). However, it is

imperative to subject them to further scrutiny encompassing

diverse ethnicities and variations in skin pigmentation. Advanced

technological modalities, such as wearable devices designed for

continuous monitoring, are under evaluation but are poised to

cater primarily to high-income households (211). Pertinent

variables that may influence MAPB measurements encompass

skin pigmentation, the specific device employed, and the ambient

lighting conditions. Among the studies incorporated in this

review, one study reported the effectiveness of MAPB

measurements in predicting TSB levels in neonates of varying

ethnic backgrounds (212). The study revealed that although

correlations exhibited similarities across distinct ethnic groups, a
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marginal augmentation was observed in white neonates (142). A

separate investigation noted that correlations in the Caucasian

subgroup surpassed those in the non-Caucasian group (206)

However, it is noteworthy that the latter study encompassed a

non-Caucasian infant cohort comprising merely 23% of the total

sample size.

Certain researchers have explored the utilization of scleral imaging,

positing certain advantages over cutaneous assessments due to the

absence of melanin or hemoglobin chromophores. The incorrect

estimation of TSB values, stemming from melanin concentration in

the skin, emerges as a critical concern necessitating future attention.

It is imperative to incorporate melanin levels in the skin as a pivotal

component of mathematical models in all forthcoming iterations of

MAPB devices. The spectrum of included studies manifests a global

footprint, with a majority demonstrating concordant correlation

coefficients. Notably, studies originating from India reported

comparatively lower correlation coefficients (137, 205, 213–218). The

role of ambient lighting assumes significance, as the procedure

entails capturing digital images. A subset of the included studies

reported more favorable correlation coefficients during daylight

hours compared to night (216). The employment of a color

calibration card serves to mitigate variations in ambient lighting

conditions, thereby facilitating consistent image capture. Researchers

have also introduced innovative models aimed at ameliorating the

influence of ambient light (214). Several of the included studies

conducted comparisons between the accuracy of Transcutaneous

Bilirubin (TcB) and MAPB in their respective study cohorts. These

investigations consistently favored TcB over MAPB in the estimation

of TSB values (205–207). The reported correlations between TcB and

TSB exhibited a range from 0.77 to 0.97, with the highest

concordance observed in neonates during their initial hospitalization

and the lowest in outpatient settings, where MAPB measurements

are anticipated for employment (122, 130, 161, 219–220).
5. Open problems for research on
transcutaneous bilirubinometers

In light of the foregoing discussion regarding limited access to

adequate healthcare infrastructure, healthcare professionals, and

various societal and economic barriers, a range of open research

challenges emerges with respect to the broader applicability and

acceptance of transcutaneous bilirubinometers (TcB) in clinical

practice. The following elucidates these open problems:
5.1. Improving the clinical utility of
transcutaneous bilirubinometers

Numerous investigations have delved into the clinical utility of

TcB as a non-invasive alternative to invasive blood sampling for

bilirubin level measurement. Notable studies by Shabuj et al. and

Wong et al. have demonstrated the accuracy of TcB for screening

neonatal hyperbilirubinemia in preterm infants, albeit

acknowledging its limitations in replacing invasive blood

sampling for diagnostic purposes (135, 221). These findings
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underline the need for innovative approaches to augment the

clinical effectiveness of TcB beyond its current role as a

screening tool. Research endeavors should explore avenues for

harnessing this technology to furnish precise and reliable

measurements capable of informing clinical decision-making, and

potentially supplanting invasive blood sampling in select scenarios.
5.2. Addressing limitations in neonatal
screening during and after phototherapy

A conspicuous limitation of TcB technology is its diminished

effectiveness in screening neonates undergoing or post

phototherapy. There exists a pressing need for research aimed at

enhancing the accuracy and reliability of TcB devices in the

presence of phototherapy (222). This necessitates an investigation

into the challenges confronting the accuracy of TcB during

phototherapy and the formulation of strategies to surmount these

constraints. Moreover, the exploration of alternative techniques

or modifications to existing technology capable of furnishing

precise and reliable bilirubin measurements during phototherapy

is imperative (223). A comprehensive understanding of the photo

breakdown of bilirubin concerning TcB measurements and the

development of techniques to account for this phenomenon

would significantly enhance the clinical applicability of TcB

devices.
5.3. Understanding the impact of
phototherapy on the relation between TcB
and TSB

The relationship between TcB and TSB is subject to various

influences, including the degradation of bilirubin during

phototherapy. Extensive research efforts are warranted to

elucidate this relationship and develop methodologies that enable

the accurate correlation of TcB measurements with TSB levels,

particularly in the context of phototherapy (204). Consequently,

it is essential to acquire insights into the factors exerting an

influence on this relationship and devise techniques to precisely

estimate TSB levels based on TcB readings in the presence of

phototherapy.
5.4. Available technology works on selective
neonatal population in terms of gestational
age at birth and ethnicity/race

Current limitations in transcutaneous bilirubinometer

technology pose challenges in its adaptability to diverse

neonatal populations, characterized by variations in gestational

age at birth and ethnicity/race, as indicated by several sources

(224–227). To address this issue, research endeavors should

prioritize the development and validation of transcutaneous

bilirubinometers capable of furnishing accurate measurements

across a broad spectrum of gestational ages and diverse ethnic/
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racial backgrounds (37, 228). Such endeavors aim to ensure

impartial access to dependable bilirubin screening for neonates,

irrespective of their demographic attributes. Although the

influence of gestational age at birth on bilirubin metabolism in

neonates is well-acknowledged, the specific impact of gestational

age on transcutaneous bilirubin measurements remains

incompletely understood (229). Further research is imperative

to explore the intricate relationship between gestational age and

transcutaneous bilirubin measurements, encompassing the

identification of potential confounding variables. Such

investigations pave the way for the formulation of gestational

age-specific calibration algorithms, thereby refining the accuracy

of transcutaneous bilirubinometers across distinct gestational

age cohorts. While ethnicity and race have been implicated in

bilirubin metabolism, potentially affecting the precision of

transcutaneous bilirubin measurements, a more comprehensive

research approach is warranted to scrutinize the ramifications

of ethnicity/race on transcutaneous bilirubin readings.

Additionally, this research should endeavor to identify requisite

adjustments or calibration methods tailored to different ethnic

or racial groups, thereby reinforcing the reliability and precision

of transcutaneous bilirubinometers across diverse population

strata. The establishment of precise reference ranges

assumes pivotal importance in the clinical interpretation of

transcutaneous bilirubin measurements. Presently, reference

ranges may inadequately encapsulate the variabilities observed

in disparate neonatal populations. Research initiatives should

refocus their efforts on the formulation of population-specific

reference ranges, taking into careful consideration factors such

as gestational age at birth, ethnicity/race, and other pertinent

variables. By doing so, clinicians would be empowered to make

more judicious decisions grounded in transcutaneous bilirubin

measurements tailored to specific population subsets. Genetic

factors hold the potential to introduce inter-individual variances

in bilirubin metabolism and skin properties, thereby potentially

influencing the precision of transcutaneous bilirubin

measurements. A meticulous exploration of the genetic

determinants associated with transcutaneous bilirubinometry is

warranted to uncover genetic markers or variants with a

discernible impact on bilirubin measurements. These revelations

can subsequently inform the development of personalized

approaches for calibration or interpretation, thereby advancing

our comprehension of the genetic underpinnings of

transcutaneous bilirubinometry and affording avenues for

individualized neonatal care.
5.5. Development of continuous monitoring
of bilirubin

Presently, a noticeable absence exists in the realm of

continuous monitoring systems designed to assess bilirubin levels

—a deficiency that holds potential for enhancing the

management of neonatal hyperbilirubinemia. In a notable study

by Inamori et al., a wearable transcutaneous bilirubinometer

endowed with the added functionalities of oxygen saturation
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(SpO2) and heart rate (HR) sensing was introduced, demonstrating

its capability to measure bilirubin levels during phototherapy (211).

To address this gap, research endeavors should be channeled

towards the development of innovative technologies or

methodologies that enable non-invasive, continuous monitoring

of bilirubin levels. Moreover, it is imperative to delve into the

feasibility of real-time, non-invasive monitoring systems that can

furnish clinicians with continuous data regarding bilirubin levels,

thereby affording a more accurate and timely basis for

interventions.
5.6. Understanding the spatio-temporal
heterogeneity of TcB results

Transcutaneous bilirubin measurements, governed by a

multitude of factors, engender intricate spatio- temporal

heterogeneity in their outcomes. A comprehensive identification

and characterization of these factors are imperative,

encompassing variables such as gestational age at birth,

ethnicity/race, and other pertinent determinants, with the

overarching goal of enhancing the accuracy and reliability of

TcB measurements. This endeavor necessitates the development

of algorithms or models capable of accommodating these

factors, consequently augmenting the clinical utility of

transcutaneous bilirubinometers.
5.7. Improving access and applicability in
low-resource settings

The present landscape of TcB technology raises concerns

regarding its adaptability for extensive deployment in low-

resource settings. To redress this issue, research should pivot

towards the creation of cost-effective, robust, and user-friendly

devices, finely attuned to the unique requisites of low-resource

settings. This holistic approach includes tackling impediments

like power source accessibility, device maintenance, and

adaptability to diverse healthcare infrastructures. Bridging this

technological divide stands to fortify accessibility to neonatal

bilirubin screening in resource-constrained regions. They have

potential limitations associated with the accuracy and precision

of TcB, implying that it may not be inherently suited for

application in low-resource settings marked by constrained

access to laboratory testing. Consequently, the suitability of TcB

in low-resource settings has been cast into doubt, prompting

contemplation of alternative strategies such as clinical

assessment. Addressing these shortcomings in available

technology tailored to low-resource settings, particularly

primary healthcare centers, remains an incisive research

imperative. Further inquiry is warranted to engineer cost-

effective, portable technologies capable of delivering accurate

bilirubin level measurements within the constraints of resource-

limited settings.
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5.8. Development of at-home-based
screening using transcutaneous
bilirubinometers

Another pivotal avenue of research revolves around the

development of at-home-based methods for transcutaneous

bilirubin screening. Such innovation has the potential to

empower parents and caregivers, enabling them to conveniently

and regularly monitor their infants’ bilirubin levels, potentially

mitigating the need for hospital visits and invasive blood

sampling procedures. A 2020 study expounded on the challenges

associated with implementing home-based neonatal jaundice

screening in resource-scarce settings, underscoring the demand

for cost-effective and user-friendly screening tools deployable by

community health workers (230). In a separate study conducted

in 2022 within rural India, the feasibility and efficacy of a home-

based screening program for neonatal jaundice were validated,

yielding tangible reductions in the incidence of severe jaundice

and associated hospitalizations (231). While a plethora of

research endeavors focuses on the development of at-home

screening tools for neonatal jaundice, the market has yet to yield

a definitive and universally trusted solution for home-based

screening. Consequently, a pressing research mandate revolves

around the exploration of the feasibility, accuracy, and user

acceptance of at-home-based transcutaneous bilirubinometers,

with the ultimate objective of markedly enhancing the

accessibility and convenience of neonatal bilirubin screening.
6. Challenges and future perspectives

6.1. Economic and social barriers

Economic constraints represent a substantial impediment to

the screening and diagnosis of jaundice, particularly in low- and

middle-income countries. The costs associated with screening

and diagnostic tests can prove exorbitant, rendering them

financially inaccessible for many families. In such circumstances,

families are often faced with the agonizing choice of allocating

limited resources to these tests or addressing basic necessities

such as sustenance and shelter. Additionally, healthcare systems

may necessitate increased financial allocation to facilitate

widespread access to these tests, a particularly challenging feat in

remote or rural regions. Treatment costs present another

formidable economic barrier. Severe jaundice cases may mandate

hospitalization and phototherapy, incurring substantial expenses.

In regions where health insurance coverage is either scarce or

non-existent, families may find themselves unable to bear the

treatment expenses, thereby culminating in delayed intervention

and the potential onset of severe complications.

Social barriers, too, exert a notable influence on jaundice

screening and diagnosis. One salient social impediment is the

lack of awareness regarding the significance of screening and

treatment for jaundice. Certain communities harbor

misconceptions concerning the etiology and therapeutic measures
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associated with jaundice. Consequently, families may either eschew

medical attention for their newborns or defer seeking care until the

ailment reaches a critical stage. Language and cultural disparities can

further compound the challenges associated with jaundice screening

and diagnosis, complicating the provision of apt healthcare.

Moreover, cultural beliefs may impede families’ willingness to seek

medical care or adhere to treatment recommendations.

In summation, economic and social barriers cast a shadow over

the screening and diagnosis of jaundice, particularly in low- and

middle-income nations. Overcoming these barriers mandates a

concerted healthcare system commitment to rendering affordable

and accessible screening, diagnostic tests, and treatment for

jaundice. Concurrently, education and awareness campaigns

assume pivotal roles in surmounting social and cultural

impediments, engendering an understanding of the imperative of

early jaundice screening and treatment.
6.2. Technological barriers

Several technological hurdles encumber the precise screening

and diagnosis of jaundice. An inherent impediment lies in the

absence of standardized screening protocols. While jaundice

screening is universally recommended for all neonates, the

absence of uniform screening methodologies presents a challenge.

Variability prevails, with some hospitals relying on visual

inspection of the skin, while others employ TcB devices. This

dearth of standardization complicates result comparisons across

different healthcare facilities and regions, potentially fostering

screening, diagnostic and treatment inconsistencies. A further

technological obstacle manifests in the limited accessibility of

screening devices, particularly in resource- scarce settings.

Although TCB and TSB are efficacious in jaundice diagnosis,

their cost, requirement for specialized equipment, and

dependence on trained personnel render them inaccessible in

low-resource settings. Consequently, healthcare providers in such

settings may have to solely rely on visual inspection, which may

yield less accurate results. Phototherapy, a standard jaundice

treatment involving the use of specialized equipment and light

exposure to break down bilirubin, presents its own set of

challenges. One of the prominent challenges encountered

pertains to the limited accessibility of phototherapy apparatus

and adequately trained personnel within LMIC’s. This situation

underscores the inherent predicament that, even in cases where

screening procedures prove effective, the absence of essential

therapeutic equipment impedes the ability to carry out the

complete treatment process. The screening of patients, however,

remains only a partial facet of patient management when the

capacity for effective treatment is lacking. It necessitates vigilant

monitoring to ensure precise light dosages. Furthermore, some

infants may exhibit inadequate responses to phototherapy,

necessitating more invasive and perilous treatments such as

exchange transfusion.

In conclusion, technological impediments loom large in the

accurate screening and diagnosis of neonatal jaundice. Redressing

these impediments necessitates a comprehensive effort towards
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standardizing screening protocols, enhancing the widespread

availability of screening devices, and innovating novel treatments

for severe jaundice cases. By undertaking these measures, we can

ensure that every neonate receives the highest caliber of care and

treatment.
7. Summary

Non-invasive bilirubin screening has been a subject of

exploration for the past three decades, primarily deployed within

well-endowed tertiary care centers. However, it remains limited,

both on a national and international scale, largely constrained by

technical deficiencies and financial constraints. Consequently,

their presence in primary and secondary healthcare sectors

remains sporadic. The technical limitations encompass the

challenge of providing reliable measurements in premature

infants and individuals of non-Caucasian descent, primarily

stemming from variations in skin color, density, and thickness.

Further complexities arise due to the inherent variability

associated with modalities and specific treatments, resulting in

intricate spatial and temporal fluctuations in bilirubin

measurements, particularly evident before, during, and after

therapeutic interventions. The calibration, interpretation, and

harmonization of these devices pose additional challenges. The

overarching factors of cost, ease of use, and the ability to

replicate results further contribute to their constrained adoption.

Furthermore, the scarcity of phototherapy equipment and

qualified healthcare personnels for treatment underscores the

inherent limitations of screening, as screening alone holds

limited clinical value in the absence of adequate resources for

intervention. Research endeavors in bilirubin determination

methods continue to evolve, with a surge in publications over

recent years, all aimed at devising novel and enhanced strategies.

From a commercial perspective, the recommendation surfaces for

multiplex bilirubin determination devices capable of

encompassing other clinically significant analytes. While research

in the realm of non-invasive technologies continues to advance,

it is essential to acknowledge that this approach primarily serves

as a screening method, while TSB maintains its position as the

gold standard for diagnostic purposes. Non-invasive methods can

contribute to the screening process; however, they should not be

exclusively depended upon. TSB remains indispensable as a

confirmatory test, underscoring its role in clinical diagnosis.

Therefore, non-invasive techniques should be considered as

auxiliary clinical tools to facilitate assessment rather than

standalone methods for treatment. Looking ahead, future

directions in TcB research necessitate a focus on refining device

accuracy by accounting for variables such as skin pigmentation,

gestational age, and postnatal age. Exploratory avenues also

extend to the development of innovative technologies, including

but not limited to multispectral imaging and fluorescence

spectroscopy, as potential means for bilirubin estimation in

neonatal populations. Additionally, there is an evident and

urgent requirement for the execution of a more extensive range

of studies to evaluate the clinical efficacy of transcutaneous
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bilirubinometers within various contexts, populations, assessment

site methodologies, and device designs.
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