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A broad range of allergic disorders and intolerance are associated with cow’s milk
protein in the infant diet. Allergy and intolerance to cow’s milk proteins are
commonly recognized in the healthy term infant, and the prevalence cow’s milk
protein intolerance (CMPI) varies widely but 5 challenge confirmed studies free
from selection bias ranged from 1.9%-4.9%. These disorders are classified by the
presence of IgE, non-IgE or T-cell-mediated signaling. Additionally, the severity of
these adverse food reactions can range from mild gastrointestinal symptoms to
severe sepsis-like episodes, as in the case of food protein-induced enterocolitis
syndrome (FPIES). Food protein-induced intolerance in the healthy young infant
lies in stark contrast to enterocolitis that typically occurs in the preterm neonate.
Necrotizing enterocolitis (NEC) is a distinct progressive disease process, usually
characterized by a high mortality rate, with a risk of death from 30% to 50%.
While its exact etiology is unclear, its main triggers include formula (cow’s milk
protein), hypoxia, perfusion-related issues, and unregulated inflammation in the
premature intestine. The distinction between NEC and cow’s milk protein
intolerance is difficult to discern in some cases. In the late preterm population,
infants with colitis can have both NEC and cow’s milk intolerance on the
differential. In infants with multiple episodes of mild NEC, cow’s milk protein
intolerance may be the underlying diagnosis. In this review, we compare the
pathophysiological characteristics, diagnosis and treatment of disorders of cow’s
milk protein intolerance with the entity of preterm NEC. This review highlights
similarities in both entities and may inspire future cross-disciplinary research.
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Introduction

Bloody stools in a preterm infant are a common sign of necrotizing enterocolitis (NEC),

which is the most common gastrointestinal emergency in the neonatal intensive care unit

(NICU). It is the most important diagnosis to exclude in a neonate with rectal bleeding

and remains a leading cause of death in the neonatal period (1). NEC has an incidence of
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1–3 per 1,000 live births in the United States and is much higher in

the very low birth weight population, approaching 5%–7% (2, 3). In

contrast, the most common cause of bloody stool in an infant is

cow’s milk protein intolerance (defined in this section). It is the

most common food protein-induced condition among infants

and carries a more favorable prognosis, rarely leading to

mortality in the infant age group (4). The prevalence of CMPI

varies widely but 5 challenge confirmed studies, free from

selection bias, ranged from 1.9%-4.9% (5).

The identification of cow’s milk protein intolerance (CMPI;

also called cow’s milk protein allergy and allergic proctocolitis)

is uniquely difficult in the preterm population because its

presentation can often mimic necrotizing enterocolitis. Both

NEC and CMPI are inflammatory conditions that are

exacerbated by cow’s milk protein, such as in formula, and lead

to bloody diarrhea during the first months of life (6). There is

an accumulation of case reports of CMPI increasing in the

neonatal population including premature infants (7–9).

However, there are no specific diagnostic tests that can

distinguish NEC from CMPI (9). This review will explore

shared developmental, immunological, and clinical factors by

NEC, CMPI and variants of cow’s milk protein (CMP) disease

(IgE and non-IgE subgroups).
Definitions: NEC, CMPI, and IgE-
mediated milk allergy

NEC is a distinct life-threatening disease that commonly affects

neonates prematurely and etiology of NEC is hypothesized to be

multi factorial. Etiologic factors in NEC include genetic

predisposition, intestinal immaturity, microvascular tone changes,

and abnormal microbial colonization (10). Most studies suggest a

major inflammatory cascade triggered by cumulative exposures to

various insults like pathogenic microbes, hypoxia, microbiota

dysbiosis, microvascular blood flow, can contribute to episodes of

NEC (11). NEC commonly presents with abdominal distension,

decreased bowel sounds, vomiting, and bloody stool. This

progressive disease can be mild but may also result in surgery or

death. NEC can present similarly to sepsis, but most of the time

blood, urine and CSF cultures are negative. NEC can also occur

in term infants, especially those with cyanotic heart lesions and

cardiac disease, but for the purposes of this review, we will focus

on classical presentations of NEC in the preterm infant. NEC is

a clinical diagnosis and can be stratified by Bell’s Modified

Staging Criteria, and few laboratory markers aid in NEC diagnosis.

Food protein-induced conditions are variable in clinical

presentation based on the immune response that is induced.

CMPI is a non-IgE mediated food protein-induced condition

that causes allergic proctocolitis. While the exact mechanism is

not well understood, food antigen sensitization plays a critical

role in the development of this condition. The majority of

affected infants will have high levels of eosinophilic infiltrates in

the gastrointestinal tissue. CMPI is a clinical diagnosis.

Symptoms will be chronic and include poor feeding, irritability,

bloody or mucousy stools (blood may be microscopic), loose
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stools, abdominal pain, poor growth, and occasionally vomiting

(6, 12–14). Many of these symptoms overlap with NEC.

In contrast to CMPI, IgE-mediated cow’s milk allergy is an

immediate hypersensitivity reaction where symptoms generally

start within minutes to 1–2 h of ingestion. IgE-mediated

reactions occur after the body has been sensitized to an allergen.

During this process, milk-specific IgE antibodies bind to high-

affinity FcϵRI receptors on both tissue mast cells and circulating

basophils. During exposure to the sensitized allergen, IgE cross-

linking triggers the immediate release of several cytokines and

mediators, such as histamine, tryptase, and cysteinyl leukotrienes,

which result in rapid symptom onset. Symptoms include

urticaria, angioedema, wheezing, rhinitis, conjunctivitis, vomiting,

and/or diarrhea (4, 15).

This review will specifically focus on the non-IgE mediated

cow’s milk protein intolerance (CMPI). This condition will be

compared with preterm necrotizing enterocolitis (NEC), and we

will describe the pathophysiological and clinical factors,

diagnostic evaluation and treatment of both conditions, as well as

highlight the challenges these diseases present in the preterm

population.
The developing preterm infant
intestine

Altered epithelium, leaky junctions, and
preterm mucosa

In general, the preterm intestine is more permeable to

macromolecules, has altered mucosal glycosylation, and reduced

production of immunoglobulins, leading to immature innate

immunity (8). Intestinal epithelial tight junction serves as the

barrier to paracellular permeation of contents from the lumen to

systemic circulation (16). Preterm neonates have been

demonstrated to have increased intestinal permeability during the

first several weeks of life (17).

The preterm intestine is characterized by high levels of baseline

inflammation. Toll-like receptors (TLRs) are critical upstream

gatekeepers of inflammatory activation. TLR-4 is a pattern

recognition receptor (PRR), which activates the innate and

adaptive immune cells. PRRs are an important component of the

innate immune system as they act as first line defense of evading

pathogens. Activation of TLR4 by lipopolysaccharides (LPS) from

the cell walls of gram-negative bacteria or host-derived damage-

associated molecular patterns (DAMPs) leads to production of

proinflammatory cytokines. Several maternal conditions may

affect infant TLR4 expression. In preterm labor, preeclampsia,

and placental malaria, TLR4 expression is upregulated in

immune cells or maternal-derived cells, which leads to aberrant

production of proinflammatory cytokines at the maternal-fetal

interface. High TLR-4 activity in epithelial cells results in an

uncontrolled immune response and destruction of mucosal

barrier by causing epithelial cell apoptosis leading to break down

of the epithelial barrier integrity and translocation of the luminal

organisms (18, 19). TLR4 response is important in not only
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circulating immune cells in the maternal systemic circulation, but

also in the developing preterm intestine (18).

Alterations in the intestinal tight junction barrier is a

component of the pathological cascade in the development of

NEC. IL-1β and tumor necrosis α (TNF-α) are inflammatory

cytokines elevated in many inflammatory diseases including NEC

and can increase the permeability in the tight junction

membrane (16, 20–25). Increased permeability in the tight

junctions and the epithelial membrane heightens susceptibility

for further inflammation, infection, and may promote antigen

crossing at the intestinal membrane. Preterm infants with

increased mucosal permeability could be at risk to the negative

effects of excess antigen uptake across the mucosal barrier (26–28).
Microbial dysbiosis in allergy and NEC

The intestinal microbiota is formed in the first 1,000 days of life

and is sensitive to many factors such as composition of the

mother’s microbiota (vaginal, skin and milk), antibiotic

exposures, delivery mode, and the infant’s diet (29). The

maternal gastrointestinal microbiota is transferred to a newborn

infant at birth. However, preterm infants have a generally more

dysbiotic microbiome (30). The gut microbiota in preterm

infants is characterized by limited microbial diversity and delayed

colonization (30–32). Preterm infants have increased Enterococci,

Staphylococci, and Enterobacteriaceae (Enterobacter, Escherichia,

and Klebsiella spp) and have less diversity of microbial

constituents when compared to term infants (30, 31, 33–39).

During vaginal delivery, the mother’s microbiota is the main

source of microorganisms colonizing newborns (29). Some

studies have reported alterations in the infant microbiome due to

delivery method (vaginal or c/section), but these differences were

not significantly different after 2–3 months of life in the term

infant (31). Diet appears to play a larger role than delivery

method in the infant gut microbiome. In breastfed

newborns, Bifidobacterium appear as early as day 2 of life and

by the second week is the predominant bacterial genus in the

GI tract. Infants fed formula have increased Escherichia,

Clostridia, Bacteroides, and Enterobacteriaceae (30, 40–47).

These predominate until solid foods are introduced and

infants are weaned from breast milk. By 2–3 years of age, the

infant’s gut microbiota is stabilized and composition resembles

adult microbiota, with predominance of Bacteroidetes. In

summary, the natural development of gut microbiota is

disturbed by many factors: delivery mode, infant formula

feedings, other environmental chemicals and antibiotics which

can promote dysbiosis (48).
Allergy and the microbiome

It is still unknown how allergy is affected by the gut

microbiome. Most theories suggest the gut microbiome acts on

host metabolism and adaptive immunity (49). Studies in human

cohorts support the influence of dysbiosis in promoting food
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allergy, and limited data suggest that dysbiosis occurs early in

life, even preceding the onset of sensitization (50). Allergy

prevalence (e.g., food allergy, atopic dermatitis, asthma) has

increased in recent decades and intestinal dysbiosis is

increasingly recognized as an underlying factor. In contrast to

the hygiene hypothesis which proposes that lack of microbial

exposure in early life drives allergy disease, the microbiota

hypothesis of allergy development suggests that the gut

microbiome and intestinal dysbiosis during the first few months

of life affects the immature immune system, impacting health

from childhood and into adulthood (29, 50). Therefore, the

increase in allergy prevalence may be influenced beyond the

“hygiene hypothesis” by dysregulation of intestinal microbiome

causing a loss of diversity and exposures in the first few months

of life (29).

Both breastfeeding and vaginal modes of delivery are protective

against allergy development by favorably influencing the formation

of the infant’s intestinal microbiota and shield against allergy

development (29). The intestinal microbiota in these infants has

an early predominance of Bifidobacterium, which is a species

isolated from the intestines of healthy breastfed infants and

human milk. It may have substantial influence on the

development of immune tolerance. Interestingly, intestinal

microbiota of children with allergies in comparison to healthy

children shows that children with allergic disease, primarily have

a decreased diversity of their gut microbiota and low amount of

Bifidobacterium, Lactobacillus, and Bacteroides (29). The

relationship between infant gut microbiota and allergy has been

described. These allergic responses are thought to be mediated by

bacterial production of short-chain fatty acids (SCFA), including

butyrate, propionate, and acetate. These intermediate SCFA may

be functioning to induce tolerance by acting on dendritic cells,

increasing T-regulatory cells, and increase IgA production (51).

Butyrate can act directly on various cells through G protein

receptors, increasing tolerance responses and downregulating the

production of a multitude of inflammatory cytokines (IL-1β, IL-

6, IL-17) (52, 53).

Early intestinal dysbiosis may negatively affect the development

of immune tolerance by interrupting the mechanisms regulating

between Th1 and Th2 cells (29). Intestinal dysbiosis may

upregulate pro-allergic process and increased risk of allergy (29).

The Th2 division of the adaptive immune response dominates in

allergic disease. The microbiota plays an important role in

generating an immune phenotype that involves the maturation of

Th1 response and development of T regulatory (Treg) cells

which suppress the Th2 phenotype (29, 54).

Ling et al. suggest Clostridia species are protective in the

development of food allergy. While there was no difference in in

the microbial diversity, they discovered increased levels of

Clostridium sensu stricto and Anaerobacter and decreased levels

of Bacteriodes and Clostriudium XVIII in infants with IgE-

mediated food allergy (50, 55, 56). However, Kalliomäki et al.

showed that a decrease in the number of Bifidobacterium species

and increase in Clostridium species observed in 3-week-old

newborns was associated with development of atopy (confirmed

by skin prick tests) in the first year of life. There were also
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distinct patterns of neonatal gut microflora in infants in whom

atopy was not developing. Allergy may be a result of an under-

regulation of CD4+ T regulation, and overregulation of TH2

pathways (29, 57).
Necrotizing enterocolitis and the
microbiome

Multiple cohort studies relying on 16s sequencing, have

reported that there is an abundance of pathobiont species in

preterm stool as compared to term infants. Before the onset of

NEC, the abundances of Clostridium sensu stricto from Clostridia

class were significantly higher in early-onset NEC subjects

compared to controls. In late-onset NEC, Escherichia/Shigella

among Gammaproteobacteria showed an increasing pattern prior

to disease onset and was higher in cases than controls before

NEC onset (58). Additionally, in rodent models of necrotizing

enterocolitis, stool and stool microbes from infants with

necrotizing enterocolitis is an essential component to recapitulate

models for NEC (59). The dysbiosis of microbiome in very low

birth weight infants likely increases the risk of infections and

inflammatory processes in the setting of poor mucosal barrier

function. In a recent study, sepsis causing pathogens were

isolated from stools of 7 of 11 infants, and fecal and blood

samples were monitored. The organisms identified were not

normal members of normal gut microbiota (Group B

streptococcus, Serratia marcescens, and invasive E. coli). Both late-

onset sepsis and NEC were associated with microbiomes

dominated by Proteobacteria and Firmicutes. Developmental

immaturity of innate immune function may occur in VLBW

infants which can result in proinflammatory cascade. Bacterial

translocation across the epithelial barrier is linked with excessive

TL4 signaling that produces inflammation and necrosis

characteristic of the disease (60). NEC is likely a result of

regulated innate immune responses from dysbiosis coupled to

decreased mucosal protection, leading to overactive inflammatory

signaling and bacterial translocation.

Both NEC and CMPI have similar patterns of gut dysbiosis:

increases in gram negative species like Proteobacteria spp. and

overall decreases in microbial diversity. Interestingly, some case

reports show that food allergies occur after the diagnosis NEC.

The impact of prematurity on microbial diversity last years after

NICU exposure (32), which may have implications for

developing allergy in the young child. The establishment of

commensal microbiota influences the infant’s immune system

development. Innate and acquired immune system development

in infants requires interactions and controlled inflammation in

the developing gut. TLR activation results in release of cytokines

and immunoregulator cytokines. The enteric effects of abnormal

colonization can interfere with normal processes in the VLBW

population. There are potential developmental variances in

intestinal epithelial responses resulting in decreased

immunoregulation and increased inflammation, both which can

contribute to NEC. In addition, the microbiota can alter the

systemic immune system. Systemic autoimmune disease or
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allergies are influenced by immune balance orchestrated by the

gut depending on the microbial species. If normal microbiota

development is altered, particularly in VLBW infants, there can

be increased risk of later enteric disease, defects in immune

tolerance, atopy, and asthma. There is high quality evidence

(low-moderate certainty) that supplementation of commensal

microbes (probiotics) in preterm infants reduces the risk of NEC

(61). Another recent study observed that blood CD4+ T-cells

(naïve and active) were reduced in term infants with CMPI after

supplementing with the probiotics Bifidobacteria, suggesting

probiotics could regulate T cell response in this disease (61, 62).

Additionally, a 2021 meta-analysis concluded probiotics may

have moderate quality evidence in accelerating tolerance of CMP.

However, more powerful studies are needed to determine the

effective dose and treatment (63). Immunological effects of the

abnormal microbiota profile that can occur in VLBW infants as

they develop include disruption of TH1/TH2/TH17/Treg

immune balance. This could illuminate the relationship between

inadequate commensal colonization in VLBW infants and NEC

or atopic disease (60).
Milk antigens in allergy and NEC

Cow’s milk is often the first foreign protein exposure in infants,

likely contributing to it being the most common food allergy

affecting term infants (64). Since CMPI is propelled by dietary

antigens resulting in mucosal inflammation damage, this

increases exposure to allergic events or may predispose a patient

to NEC (64). Preterm infants, with generally more intestinal

permeability, may allow for intestinal absorption of toxic luminal

antigens, increasing their risk to an inflammatory disease such as

NEC (65).
Cow’s milk protein exposure and NEC

CMP has been continually implicated in the pathogenesis of

NEC. Currently, formula is avoided in the NICU for these

reasons. Preterm and VLBW infants require more calories,

protein, and minerals beyond human milk, and these nutritional

requirements are met with human milk fortifiers (64).

Historically human milk fortifiers have been formula-based but

now commercial human milk based human milk fortifier is

available. These newer non-bovine fortifiers have been introduced

with high optimism. Sullivan et al. found lower rates of NEC in

extremely preterm infants who were fed exclusive human milk-

based diet (including human milk-based fortifier) compared to

infants fed bovine based milk fortifier or formula (66). However,

these fortifiers have yet to be compared head-to-head within a

high quality, blinded randomized controlled trial adequately

powered for the outcome of necrotizing enterocolitis. Studies

supporting the avoidance of bovine-based fortifiers have linked

cow’s milk protein antigen to death and morbidity in preterm

infants (67). Yet, it is unclear which specific milk protein is

implicated, and if there is a difference in outcomes between
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intact or extensively hydrolyzed bovine proteins that are used in

modern fortification strategies with formula-based extensively

hydrolyzed fortifiers. However, it is well known that mother’s

milk is especially protective against NEC in very preterm infants.

Additionally, there is a greater risk of developing NEC when

given formula compared with donor human milk when mothers

own milk is not available (68).
Allergen sensitization window in CMPI

CMP antigen sensitization likely begins earlier than previously

thought. With the onset of gastrointestinal symptoms appearing

within 24 h for some term infants, intrauterine sensitization is

being increasingly considered (7, 69–71). The discovery of

allergens in the amniotic and fetal blood has provided evidence

of intrauterine allergen exposure through trans amniotic and

transplacental transfer (7, 71–74). Szépfalusi et al. reported

presence of various cow’s milk allergens (α-lactalbumin, β-

lactoglobulin, casein, α-casein, β-casein, k-casein, bovine serum

albumin) in concurrence with cytokine production in umbilical

cord blood of 39 neonates (72). Further, Ward et al. presented a

case of fetal sensitization to CMP and wheat and TNF-α

production by cord blood mononuclear cells. These findings

suggest that there may be an inductive phase of allergy

development taking place during intrauterine life, and an effector

phase that may occurs after post-natal re-encounter with the

allergen, leading to the response. Therefore, the minority of

previously sensitized newborns (from in utero exposure) may

react poorly to subsequent post-natal exposure (75).
Allergen sensitization in dietary exposure in
CMPI

After birth, infants can be exposed to cow’s milk protein

through dietary exposure. Antigen exposure can occur through

the mother’s own milk (MOM) in women who consume dairy

with direct CMP in breast milk or direct CM ingestion through

formula (64). As previously mentioned, cow’s milk protein can

lead to the development of IgE-mediated or non-IgE-mediated

food allergy. Clinical symptoms and time course of reactions are

the distinguishing factors in differentiating between CMPI and

IgE-mediated food allergy.

In a randomized controlled trial, newborns at risk for atopy

were randomized either to breastfeed and avoid supplementation

with CM formula for 3 days after birth (with or without amino

acid-based hypoallergenic elemental formula) or to breastfeed

and receive CM-based supplemental formula. At 24 months of

age, fewer infants in the breastfed/amino acid-based elemental

formula group had sensitization to CM (measured by IgE

>0.35 U/ml) compared to the breastfed/CM formula group

[16.8% and 32.2%, risk ratio (RR) 0.52; CI 0.34–0.81]. A

secondary outcome of this study was clinical food allergy to CM

determined by oral challenges or strongly suggestive history of

reaction in combination with evidence of IgE-mediated
Frontiers in Pediatrics 05
sensitization. CM allergy was present in 0.7% of infants in the

breastfed/amino acid-based elemental formula group, while 6.6%

of infants in the breastfed/CM group (RR 0.10, 95% CI 0.01–

0.77) (76).

Overall, dietary milk antigens make up a majority of neonatal

antigens encountered in the newborn period. Most preterm infants

tolerate MOM and fortification well and do not have any negative

gastrointestinal effects. It is generally unknown if and how a

preterm infant may be reacting to allergens. Unfortunately, we

are unable to predict those who will have a poor response to

dairy allergens.
Clinical symptoms of CMPI and NEC

Clinical presentations

Both CMPI and NEC most commonly present with rectal

bleeding (71). CMPI is generally thought of as a benign

condition with low morbidity. In comparison, NEC is

associated with 30%–50% mortality. NEC is a gastrointestinal

emergency and often the first concern when neonates present

with hematochezia or feeding intolerance. NEC has similar

changes in disease such as elevated CRP and low platelets,

which have been shown to be associated with the severity of

NEC disease. Much like in NEC, the age of diagnosis in CMPI

is inversely correlated with postnatal age in preterm infants as

shown in Table 1. The delay of onset in CMPI in preterm

infants may be due to the time required for infants to reach a

postmenstrual age of 23 weeks when the immune mechanisms

have matured enough to produce an adverse immune response

(87). Symptoms of CMPI can be quite variable with some

infants presenting with just one symptom (most commonly

bloody stools, which can be microscopic or macroscopic) while

others may have multiple symptoms. Symptoms can include

poor growth, poor feeding, irritability, bloody or mucousy

stools, loose stools, eczema-like rash, abdominal pain, and

occasionally vomiting. CMPI has been reported in both term

and preterm infants and generally presents within a week of

CMP exposure in the diet. Symptoms can be mild, moderate, or

severe (6, 12–14, 88). Differentiation of NEC vs. CMPI is

difficult as the clinical presentation is largely variable and with

various local and systemic findings (8).
Diagnosis of NEC

NEC is usually a clinical diagnosis that relies on key

radiographical findings from plain abdominal radiography and

more recently, abdominal sonography (89). Concerning findings

for NEC include pneumatosis, pneumoperitoneum, and/or

portal venous gas (90). To date, no biomarkers have proven to

be integrated into the routine surveillance of NEC (67). Since

1997, Bell’s clinical staging of NEC and now, the modified Bell

criteria have been the mainstay in diagnosing and staging NEC

(91, 92).
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TABLE 1 Case reports of preterm infant with a diagnosis of cow’s milk allergy in the literature.

Case GA BW
(g)

Feeds Day of
presentation

Symptom Abd x-ray Laboratory Diagnosesa Outcome Diet

1 (77) 25 710 HMF
DOL 20

20 AD b PE CMA Fortification changed to
Nutramigen without
modification of maternal
diet.

EHF

2 (78) 26 965 PTF,
MOM +
HMF

17, 28, 61 AD, E, sluggish BS,
lethargic, pale,
bradycardia,
desaturations, H

Nonspecific
diffusely
dilated; PI

PE; stool Leu NEC 2A,
CMA

Three episodes of
enterocolitis with PI that
improved with NPO and
ABX. Transitioned to AAF
after the third episode.

AAF

3 (79) 27 1,150 HM, CMF
DOL 42

48 H, mucinous stools Non-specific
changes

PE, Colonic biopsy
with EI

CMPI Improved after NPO and
casein hydrolysate-based
formula.

HF

4 (77) 27 910 HMF
DOL 32

41 H Nml PE NEC 1, CMA Improved after NPO and
ABX. Feeds restarted with
MOM fortified with AAF
without change in
maternal diet

MOM,
AAF

5 (77) 28 1,145 HMF
DOL 10

14, 30 AD, H Mild, diffuse,
small bowel
distension; no
PI

PE NEC 1, CMA Improved after NPO and
ABX. Restrained MOM
fortified with Nutramigen
without dietary
restrictions.

MOM

6 (80) 28 1,133 HM +
Formula

25 H, AD PI, dilated
bowel

PE, FE, eleavted
inflammatory
markers, Th

NEC Ex Lap revealed NEC,
performed ileostomy

b

7 (81) 30 1,340 PTF/
Fortified
HM

8 H, mucinous stool Nml PE, anemia, biopsy
with EI, skin prick
+, RAST + at 10
months

Allergic Colitis Made NPO. Continued to
have bloody stools on EHF
requiring 3 blood
transfusions. Improved on
AAF.

AAF

8 (82) 30 965 HM +
HMF
(DOL 8)

10 lethargy, E, AD, H,
mucous stools

Nml PE Allergic Colitis Improved with NPO, but
symptoms reoccurred
when restarting BM.
Improved on AAF.

AAF

9 (82) 30 1,340 HM +
HMF
(DOL 8)

10, 27 AD, +FOBT,
tenderness

Nonspecific
diffusely dilated
bowel loops, PI

PE NEC 2A Improved with NPO then
symptoms reoccurred after
fortification. Treated for
NEC then transitioned to
AAF.

AAF

10
(83)

31 b CMF 30 E, H, AD Nml anemia, FE,
elevated fecal
calprotectin

CMA Required a blood
transfusion and improved
with ABX and EHF

EHF

11
(83)

31 b CMF H Fecal eos, elevated
fecal calprotectin

CMA Improved after
transitioning to EHF

EHF

12
(84)

31 1,300 HM 16 AD, +FOBT Dilated loops PE NEC, CMA Improved with NPO, ABX
and AAF

AAF

13
(84)

31 1,215 HM +
HMF

20 AD, +FOBT Dilated loops PE NEC, CMA Improved with NPO, ABX
and AAF

AAF

14
(84)

32 1,950 HM/CMF 12 Diaper rash, H, AD Nml Leu, elevated CRP NEC, CMA Improved once
transitioned to AAF by
DOL 6

AAF

15
(84)

32 1,600 CMF, SBF 15,24 Watery diarrhea, H,
lethargy,
hypothermia, AD,
decreased BS

distended
loops,
intramural air
in stomach

Leu NEC Improved while NPO and
started SBF. CMF at 24
DOL with systemic
symptoms. Improved while
NPO on ABX and AAF.

EHF

16 (7) 33 2,570 CMF 1 H, acidosis, AD Nml Leu, PE, anemia, EI CMA Improved with NPO.
Bloody stool persisted with
reintroduction of formula
feeds. Improved after abx
and AAF

AAF

17
(85)

33 2,350 MOM/
CMF

2 H Nml PE CMA Improved on AAF AAF

18
(86)

33 2,090 NPO 1 H Dilated gas
filled loops

PE, Acidosis, Leu CMA Improved with HM and
casein hydrolyzed formula

HM

(Continued)
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TABLE 1 Continued

Case GA BW
(g)

Feeds Day of
presentation

Symptom Abd x-ray Laboratory Diagnosesa Outcome Diet

19
(84)

34 1,495 HM +
HMF

14 AD, +FOBT Dilated loops PE, elevated CRP NEC, CMA Improved on AAF AAF

20
(79)

35 2,670 MOM,
CMF

10 H, mucinous stool,
AD, tenderness

Abnormal gas
pattern, no
intramural gas

PE, rectal biopsy EI,
RASTb

CMPI Improved after NPO HF

21 (6) 35 2,700 MOM 35 H, sleepiness PI Nml NEC Improved after NPO and
ABX

EHF

22
(84)

36 2,500 MOM 4 H, pallor Nml PE, elevated CRP,
anemia

NEC, CMA Improved on AAF AAF

AAF, amino acid formula; ABX, antibiotics; AD, abdominal distention; BS, bowel sounds; BW, birth weight; CMA, cow’s milk allergy; CMF, cow’s milk formula; CMPI, cow’s

milk protein intolerance; CRP, C reactive protein; E, emesis; EHF, extensively hydrolyzed formula; EI, eosinophilic infiltrate; Ex Lap, exploratory laparotomy; FE, fecal

eosinophilia; GA, gestational age; H, hematochezia; Leu, leukocytosis; MOM, mother’s own milk; NEC, necrotizing enterocolitis; Nml, normal; NPO, Nil Per Os; PE,

peripheral eosinophilia; PI, pneumatosis intestinalis; SBF, soy based formula; Th, thrombocytopenia.
aIncludes initial and final diagnosis.
bInformation unavailable.
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Diagnosis of CMPI

CMPI is a clinical diagnosis based on clinical history; there are

no diagnostic tests used to make the diagnosis as it is a non-IgE-

mediated disease process. Skin testing and serologic milk-specific

IgE testing are not indicated unless there is immediate onset of

IgE-mediated symptoms (e.g., urticaria, angioedema, cough) after

milk ingestion. The diagnosis of CMPI is often based on clinical

response to a milk elimination diet (71, 93, 94).

Some refractory cases of CMPI require flexible sigmoidoscopy

with biopsy. Histology may show inflammatory changes (e.g., focal

erythema, friable appearing mucosa, multiple surface erosions with

microscopic findings which can show normal architecture without

crypt atrophy or branching and focal aggregates of eosinophils in

all mucosal layers, particularly the lamina propria (95, 96). When

flexible sigmoidoscopies are done, tissue eosinophils are usually

high in biopsies. Peripheral blood eosinophilia and/or microcytic

anemia have also been reported (12, 88, 97). One meta-analysis

identified peripheral blood eosinophilia in 43.8% of infants with

CMPI and gastrointestinal eosinophilic infiltration in 89.3% (97).

Endoscopy with biopsy is the most sensitive diagnostic tool,

however it is invasive and therefore elimination diets are the

more common first line approach (95). Endoscopy should be

reserved for refractory cases to exclude other causes, such as very

early onset inflammatory bowel disease (IBD) (82).

CMPI has a more benign clinical course compared to NEC but

in severe cases can present with pneumatosis intestinalis on

abdominal x-ray, similar to that seen in NEC (6). Given that

CMPI can present severely in neonates, NEC must remain at the

top of the differential diagnosis (often prompting appropriate

infectious work up, clinical management and antibiotics) and be

ruled out before a diagnosis of CMPI is made.

Interestingly, eosinophilia can also be seen in prematurity

associated with inflammatory states such as infection or NEC

and is considered nonspecific (77, 98). Transient eosinophilia is

reported to occur in 76% of premature infants and is commonly

referred to as eosinophilia of prematurity (88). Emerging areas of

research include biomarkers such as inflammatory cytokines,

platelet-activating factor and fecal calprotectin, which are actively
Frontiers in Pediatrics 07
under investigation in both conditions (99–102). In addition,

fecal calprotectin levels are higher in non-IgE mediated CMPI

compared to IgE-mediated allergy and improve once milk is

eliminated. Calprotectin can increase during inflammatory states

so could be considered a useful biomarker for follow up

treatment and recurrence monitoring in CMPI (103, 104).
Treatment for CMPI and NEC

Early, accurate diagnosis of NEC is key as timing to treatment

leads to more favorable outcomes (105). Management of NEC

involves bowel decompression followed by bowel rest, empiric

antibiotics, and possibly surgery if intestinal perforation occurs

(106). The initial management of CMPI in infants is influenced

by the suspicion of NEC. However, after the accurate diagnoses

of CMPI, strict milk elimination from the diet and close

monitoring for eventual re-introduction into the diet is standard

of care (64).
Special diets

In the breastmilk-fed infant, maternal dietary milk elimination

is recommended. Maternal elimination of milk can be burdensome

from both a physiologic and psychologic standpoint and mothers

may or may not be motivated to do so, thus elimination diets are

likely to be associated with early weaning. Additionally, there is a

wide range of antigen exposure in breastmilk varying from

mother to mother (107). It may take several weeks after maternal

dietary milk elimination for symptoms, especially bloody stool, to

resolve, as it can be found in the breast milk of lactating women

for 7 days. In one small recent study using nanoflow-HPLC-

tandem mass spectrometry, dietary peptides were rapidly evident

at 1 h, but ultimately undetectable at 6 h after CM ingestion

suggesting cow’s milk-associated proteins may clear in less time

than previously suspected with others citing in as little as 72 h

(107, 108). Furthermore, published CMA guidelines support

continued breastfeeding through the initial phase of maternal
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elimination without any need for a “washout” period, unless

symptoms are severe (i.e., hypoproteinemia or severe anemia).

Caution should be exercised when recommending milk-free diets

without a diagnosis of CMPI (108, 109). Prophylactic milk-free

maternal diets may increase the risk of IgE-mediated allergy later

in childhood (110).

In formula-fed infants, an extensively hydrolyzed (EH) formula

is recommended in infants with CMPI. Most formula-fed infants

will respond to this change; however, approximately 10% of

infants will need to escalate to an amino acid-based formula,

especially those who present with severe enteropathy (109).

Hypoallergenic formulas are not without risks. Extensively

hydrolyzed and amino acid-based formulas are generally

designed for term infants and have less calcium, phosphorous,

and protein than preterm infant formula. Hypoallergenic

formulas generally cannot fully support the nutritional needs of

preterm infants, and concentrating these formulas to higher

calories results in high osmolality, which is often poorly tolerated.
Re-introduction of cow’s milk protein and
prognosis of CMPI

The prognosis for CMPI is reassuring with about half of

patients able to ingest milk in their diet by age 1 and >90% with

resolution by age 5 (84, 111). Generally, it is recommended to

introduce milk protein in the form of baked goods prior to

direct (uncooked) milk protein exposure. Once an infant is able

to tolerate milk protein in their diet, a fully unrestricted diet is

recommended in order to maintain milk protein tolerance and

reduce the risk for developing IgE mediated milk allergy and

other forms of non-IgE mediated food allergy like FPIES. This is

especially important as infants with CMPI are at increased risk

for developing many atopic diseases, including asthma, atopic

dermatitis, allergic rhinitis, and food allergy (112, 113).
Diagnostic overlap between CMPI and
necrotizing enterocolitis

As mentioned above, symptoms of CMPI can mimic the

symptoms of NEC in preterm infants. There are also reports that

NEC may be the sensitizing event preceding a CMPI. On the

other hand, there are reports that CMPI is the sensitizing event

predisposing a neonate to NEC. Ultimately, the association

between NEC and CMPI is unclear. We highlight 34 cases in

Tables 1, 2 that highlight the clinical overlap between NEC and

CMPI. We summarize three theories regarding CMPI’s

association with NEC.

1. Preterm CMPI is an entity that is misdiagnosed as NEC

The majority of reported cases of preterm CMPI are mistaken

as NEC (Table 1). A preterm infant may be first diagnosed with

suspected NEC then subsequently diagnosed with CMPI with

improvement of symptoms after treating NEC (6, 71, 77, 78, 82,

84). There are also reports of term and preterm infants with
Frontiers in Pediatrics 08
CMPI who first presented with systemic symptoms concerning

for NEC (6, 7, 71, 78–116). Eight of the 34 (24%) infants had

pneumatosis intestinalis seen on abdominal x-rays at the time of

presentation (6, 78, 82, 84, 115, 116). Coviello et al. suggest that

CMPI can be mistaken as NEC with two cases of CMPI in

preterm twins born at 30 weeks. Both were fed exclusively

human milk diets until day of life 8 when they were fed fortified

human milk. Symptoms began on day of life 10 for both infants

with the first twin presenting with recurrent proctocolitis and the

second with a NEC-like episode. The second twin was diagnosed

with stage 2A NEC based on an abdominal x-ray showing diffuse

pneumatosis. Both infants had recurrence of symptoms when

restarted on human milk and subsequently transitioned to

amino-acid-based formula with resolution of symptoms (82).

Atkas et al. presented 5 cases of suspected CMPI that were all

originally considered to be NEC (71).

2. CMPI is a pre-existing condition that increases the risk of NEC

While there are many reports of CMPI mimicking NEC, there are

other reports suggesting that CMPI is a predisposing event to NEC.

This could explain why some infants, but not all, have severe

reactions to related to the presence of cow’s milk proteins into

the diet. The three essential components for the development of

NEC are (1) injury to the bowel mucosa, (2) presence of bacteria

and (3) availability of metabolic substrate (115, 117). One could

hypothesize an increased sensitivity to an allergen could

perpetuate injury to the bowel mucosa. CMPI is due to an

exaggerated immunological response either by (1) toxicity, (2) an

exaggerated immunological response to milk proteins, or (3) a

combination of both theories (115).

Cow’s milk formula enteral feeding is associated with NEC and

sepsis (118). Dietary antigen sensitization may function in

promoting and/or sustaining inflammation in both conditions

(118). Chuang et al. examined in the systemic and mucosal

immune compartments for evidence of bovine milk antigen

sensitization in infants with NEC, which could be a potential

mechanism for a direct contributory role of CMP in the

pathogenesis of NEC. They suggest that T helper type I/II pro-

inflammatory cytokine balance plays a role in gut

immunoregulation with a propensity towards Th1 polarization in

most intestinal inflammatory conditionings. It is possible that

CMP may play a role in the inflammatory cascade of NEC by

eliciting adaptive harmful Th1/Th2 responses. This study

examined T cell response to bovine milk protein antigens in

babies with NEC. They compared TH1/Th2 cytokine profile in

infants who develop NEC compared to normal neonates with in

vitro stimulation. NEC infants, compared to controls, showed

elevation in baseline peripheral blood monocytes (cytokine

secreting cells), vigorous mitogen responses (20–120 fold

increase) for IFN-Y, IL-4, and IL5 (p < 0.001), strong responses

to BLG (IFN-Y >IL-4/IL-5, p < 0.001) and some small casein

responses. In the lamina propria, a small but significant increase

in cytokine-secreting cells was seen in NEC infants (p < 0.001)

with IFN-Y/IL-4 predominant response. This study shows

evidence of CMP sensitization as an underlying factor in some

cases of NEC, primarily in the systemic compartment, with
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TABLE 2 Case reports of term infants with diagnosis of cow’s milk allergy in the literature.

Case GA BW
(g)

Feeds Day of
presentation

Symptom Abd x-ray Laboratory Diagnosis Outcome Diet

1 (1) 37 - NPO 1 Bloody gastric
aspirates, H

Nml Anemia, PE,
Colonic biopsy
with EI

Eosinophilic
Gastroenteritis

UGI with stomach edema
and sigmoidoscopy with
erythema. Improved on after
NPO with ABX and AAF.

MOMa

2
(114)

38 2,958 MOM 10 Bilious E, H Decreased intestinal
gas, nml contrast
study

PE, Leu CMA Improved while NPO. Pt was
switched to SBF with
resolution of symptoms.

SBF

3 (80) 38 1,980 HM 6 Bilious E, H gasless abdomen PE, EI, elevated
CRP, Th

NEC UGI Nml. Ex lap revealed
inflammation with proximal
jejunostomy; recovered with
NPO and ABX.

-

4
(115)

39 2,900 CMF 2, 20 H, AD PI PE, Acidosis,
Leu

NEC, CMA Improved after NPO with
ABX and resuming oral feeds
on DOL 18 provoking a
second episode that
improved after transitioned
to EHF and MOM

EHF
and
HM

5 (84) - 2,000 CMF,
SBF

4, 19, 32 diarrea, E,
hypothermia,
AD, H

PI Leu,
coagulopathy

NEC Three episodes where the
first improved with feeding
with SBF then had a second
event after restarting CMF.
The third episode was
accompanied with systemic
signs that improved with
treatment for NEC and then
tolerated EHF.

EHF

6 (69) - - MOM 4 H Nml; barium enema
with colonic spasm

PE, Rectal
biopsy EI, skin
prick +, RAST +

Allergic
proctitis

Improved after NPO and
ABX and transitioned to EHF

EHF

7 (70) - 3,800 CMF 2 H Paucity of bowel gas PE, Colonic
biopsy with EI

AC Improved after NPO and
ABX with blood stools for 5
days. HF restarted on DOL 6
and discharged on DOL 8

HF

8 (70) - 3,300 CMF 2 H Nml Colonic biopsy
with EI

AC Improved after NPO and
ABX. HF restarted on DOL 7
and discharged on DOL 8

HF

9 (70) - 4,000 MOM/
CMF

2 H Nml Biopsy with IE AC Improved on casein
hydrolysate formula and
discharged.

HF

10
(93)

- 3,250 MOM/
CMF

8 Bilious E, tarry
stool

Nml PE, Leu CMA UGI study showed mucosal
edema. Improved after NPO
then given MOM with HF.

MOM
+HF

11
(93)

- 2,970 CMF 5 Bloody/
mucinous stool,
bilious E

Nml PE, Rectal EI,
leucocitosis

CMA Nml UGI. Improved while
NPO and restarted on MOM
on DOL 11

MOM

12
(116)

- 4,150 CMF 3 Lethargy, fever,
AD, E, melena,
shock, anuria

PI,
pneumoperitoneum

- NEC Ex lap revealed perforated
colon and NEC. Treated with
small bowel resection, abx,
NPO and TPN

EHF

AAF, amino acid formula; ABX, antibiotics; AD, allergic colitis; AD, abdominal distention; BW, birth weight; CMA, cow’s milk allergy; CMF, cow’s milk formula; CRP, C reactive

protein; E, emesis; EHF, extensively hydrolyzed formula; EI, eosinophilic infiltrate; H, hematochezia; HF, hydrolyzed formula; GA, gestational age; H, hematochezia; HM,

human milk; Leu, Leukocytosis; NEC, necrotizing enterocolitis; NPO, Nil Per Os; Nml, normal; MOM, mother’s own milk; PE, peripheral eosinophilia; PI, pneumatosis

intestinalis; RAST, radioallergosorbent test; SBF, soy based formula; Th, thrombocytopenia; UGI, upper gastrointestinal series.
aMaternal milk with elimination diet.
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relatively minor mucosal activation. The bovine milk protein

directed effector response is of both Th1 and Th2 type at the

systemic level. This contrasted markedly with findings in normal

neonatal controls where both peripheral blood mononuclear cells

and mucosa lamina propria cells remained quiescent under

identical stimulatory conditionings. Therefore, there is sufficient

translational evidence to suggest cow’s milk protein may add to

the inflammatory cascade in some cases of NEC, and that these
Frontiers in Pediatrics 09
cases could be identified by underlying cow’s milk protein

sensitivity. There is evidence that currently supports this

theory (119).

One clinical trial has investigated the impact of maternal cow’s

milk protein intake on NEC occurrence. Khalesi et al. conducted a

single-center randomized double-blind study to evaluate the effect

of maternal diet without bovine protein on the incidence of NEC in

VLBW infants. The intervention group consisted of mothers on a
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milk-free diet for the first 14 days of the infants’ onset of feeding

and the control group had an unrestricted diet. A maternal diet

devoid of bovine protein for 14 days significantly reduced the

incidence of NEC (0% NEC in the intervention group vs. 10% in

the control group, p = 0.028). This supports the idea that

exposure to cow’s milk protein can be a predisposing event for

NEC given that infants receiving cow’s milk formula or exposure

of antigens through breast milk were more likely to develop NEC

(120). Postnatally, precocious exposure to cow’s milk proteins

can increase the risk of CMPI which could further increase

vulnerability in the gut wall to precipitate NEC or NEC-like

illness through inflammatory damage to the gastrointestinal

mucosa (120).

Interestingly, in vitro and in vivo animal studies have

demonstrated that intestinal permeability is regulated by multiple

factors including exogenous factors, epithelial apoptosis,

cytokines and immune cells (121). Immune-mediated intestinal

barrier dysfunction is thought to be critical in the predisposition

to and exacerbation of several autoimmune and inflammatory

conditions, including IBD, food allergy, celiac disease, and

diabetes (122). Stimulation of colonic epithelial cells with IL-4 or

−13 induced an increase in the intestinal permeability (123–125).

Additionally, Anti-CD3-induced CD4+ T-cell activation in mice

promotes an increase in transcellular and paracellular intestinal

permeability and the release of proinflammatory cytokines such

as IFNγ and TNFα (121). Chuang et al. explore the cytokine

response in infants exposed to bovine milk antigen and

highlights many of these cytokine responses that are seen in

animal models in these studies (119).

3. Necrotizing enterocolitis can lead to subsequent cow’s milk

allergy

There are cases suggesting NEC as the predisposing factor prior to

the onset of CMPI in neonates. Cordova et al. suggest that

persistent feeding intolerance after recovery from NEC and

reoccurrence of NEC-like illness may be a manifestation of

CMPI in preterm infants. After the treatment of NEC and

resumption of cow’s milk protein, infants continued to manifest

feeding intolerance that only resolved after an EH formula or

amino acid formula was initiated. This clinical course suggests

that events related to severe gastrointestinal injury and onset of

NEC could be involved in the pathogenesis of CMPI in preterm

infants (9).

Walther et al. presented a case of NEC which developed 3 days

after starting formula. During hospitalization, the infant required

bowel resection. During the recovery period, the patient was

changed to an amino acid-based formula with no issues.

However, upon changing to cow’s milk protein formula, the

patient developed severe vomiting and excessive fluid loss from

the stoma, and thus resumed the amino acid-based formula. She

was readmitted at 4.5 months with bowel continuity restored.

Three weeks after the re-anastomosis, cow’s milk protein formula

changed and patient developed acute anaphylactic shock. This

patient developed IgE-mediated milk allergy after recovery from

NEC. In this patient’s case, the compromised gut mucosa could
Frontiers in Pediatrics 10
be a nidus for transfer of macromolecules and allergens which

could contribute to milk protein allergy development (116).

Increased beta-lactoglobulin or casein-specific IFN-Y and IL-4

responses have been detected in recovery phases from NEC as well

as the inflammatory stage which suggests that NEC was a

sensitizing event (118). After the full recovery of NEC, further

assessment of effector and cytokine regulatory profile has shown

significant decline in beta lactoglobulin, casein-specific IFN-Y,

and IL-4 cells but the regulatory TGF-B1 cells were maintained.

This suggests that NEC recovery and tolerance of enteral feeds is

accompanied by a switch from proinflammatory cytokines (beta

lactoglobulin, casein-specific cytokines) to a profile of

predominately TGF-beta regulatory cytokines. There is evidence

that TGF-B1 plays a role in oral tolerance (118). Failure of a

switch to regulatory cytokines, could perhaps perpetuate

inflammation after NEC and contribute to the onset of CMPI or

any gastrointestinal injury (118).

When differentiating pathological causes of rectal bleeding in

neonates, the clinician should evaluate for systemic signs to

direct management and treatment. If systemic instability is

coupled with vomiting, abdominal pain and rectal bleeding, then

NEC is the most important diagnosis to exclude in neonates

(126). Volvulus, congenital anatomical obstruction, meconium

ileus, and Hirschsprung disease must also be considered (126). In

the absence of systemic symptoms in a well-appearing infant,

other diagnoses to consider include CMPI, IBD, ingestion of

maternal blood, anorectal fissure, infectious gastroenteritis, or

lymphoid nodular hyperplasia (127).
Conclusion

We highlighted clinical overlap in the symptoms and

pathophysiology of CMPI and NEC in preterm infants. Both

entities are marked by proceeding gut dysbiosis and

dysregulation of the adaptive immune systems involving T-cell

regulation. The windows of exposure and susceptibilities may

overlap in the preterm period, both in utero and in the NICU.

Given the similar presentation of CMPI and NEC in preterm

infants, it is possible CMPI may be misdiagnosed as NEC and

vice versa. Yet, the appropriate diagnostic stage and treatment for

NEC must take precedence given its high mortality but the

etiology of symptoms at presentation must include CMPI,

especially if re-introduction of cow’s milk protein leads to further

symptoms. We suggest that all infants at risk of NEC and

developing CMPI be screened to include a maternal dietary

history and family history of atopic disease while considering

best practices for nutrition and caution should be taken before

recommending any elimination of diets for a breastfeeding

mother. While infants often outgrow CMPI, periods of dietary

avoidance of milk can increase the risk of developing atopic

disease, including IgE-mediated milk allergy. Preterm infants

who are discharged on hydrolyzed or elemental formulas may

benefit from an allergy referral if they have persistent symptoms.

Further study of the relationship between NEC and non-IgE-

mediated CMPI is needed. Cohesive guidelines are needed for
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prevention, diagnosis, work up and long-term follow-up

particularly in premature infants.
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