The purpose of this study was to investigate the quantitative retinal vascular morphological characteristics of Retinopathy of Prematurity (ROP) and Familial Exudative Vitreoretinopathy (FEVR) in the newborn by the application of a deep learning network with artificial intelligence.
Standard 130-degree fundus photographs centered on the optic disc were taken in the newborns. The deep learning network provided segmentation of the retinal vessels and the optic disc (OD). Based on the vessel segmentation, the vascular morphological characteristics, including avascular area, vessel angle, vessel density, fractal dimension (FD), and tortuosity, were automatically evaluated.
201 eyes of FEVR, 289 eyes of ROP, and 195 eyes of healthy individuals were included in this study. The deep learning system of blood vessel segmentation had a sensitivity of 72% and a specificity of 99%. The vessel angle in the FEVR group was significantly smaller than that in the normal group and ROP group (37.43 ± 5.43 vs. 39.40 ± 5.61, 39.50 ± 5.58,
The deep learning technology used in this study has good performance in the quantitative analysis of vascular morphological characteristics in fundus photography. Vascular morphology was different in the newborns of FEVR and ROP compared to healthy individuals, which showed great clinical value for the differential diagnosis of ROP and FEVR.