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Early life adverse exposures in
irritable bowel syndrome: new
insights and opportunities
Guo Qiong Zhou, Meng Jie Huang, Xin Yu, Na Na Zhang, Shan Tao
and Ming Zhang*

Department of General Practice, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China

Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder
worldwide. Extensive research has identified multiple factors contributing to its
development, including genetic predisposition, chronic infection, gut dysbiosis,
aberrant serotonin metabolism, and brain dysfunction. Recent studies have
emphasized the critical role of the early life stage as a susceptibility window for
IBS. Current evidence suggests that diet can heighten the risk of IBS in offspring
by influencing the microbiota composition, intestinal epithelium structure, gene
expression, and brain-gut axis. The use of antibiotics during pregnancy and the
neonatal period disrupts the normal gut microbiota structure, aligning it with the
characteristics observed in IBS patients. Additionally, early life stress impacts
susceptibility to IBS by modulating TLR4, NK1, and the hypothalamic-pituitary-
adrenal (HPA) axis while compromising the offspring’s immune system. Formula
feeding facilitates the colonization of pathogenic bacteria in the intestines,
concurrently reducing the presence of probiotics. This disruption of the Th1 and
Th2 cell balance in the immune system weakens the intestinal epithelial barrier.
Furthermore, studies suggest that delivery mode influences the occurrence of
IBS by altering the composition of gut microbes. This review aims to provide a
comprehensive summary of the existing evidence regarding the impact of
adverse early life exposures on IBS during pregnancy, intrapartum, and neonatal
period. By consolidating this knowledge, the review enhances our understanding
of the direct and indirect mechanisms underlying early life-related IBS and
offers new insights and research directions from childhood to adulthood.
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1. Introduction

Irritable bowel syndrome (IBS) is a prevalent and chronic gastrointestinal disease that

affects individuals of various genders and age groups, characterized by recurring

symptoms (1). The pathogenesis of IBS involves several factors, including visceral

hypersensitivity, small intestinal bacterial overgrowth, intestinal dysbiosis, gut immune

dysregulation, dietary intolerance, alterations in the gut-brain axis, and stress, among

others. However, the precise mechanisms underlying IBS remain incompletely understood.

In the 1980s, D. Barker introduced the “Developmental Origins of Health and Disease”

hypothesis (2), revolutionizing chronic disease studies by highlighting the importance of

early life stages. Subsequently, numerous studies have demonstrated that early life

exposures can increase the risk of metabolic, mental, cardiac, and chronic intestinal

diseases in offspring (3–5).
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Recent evidence has also revealed that the uterus is not a sterile

environment (6), and gut microbiota composition in early life is

less stable than in adults. Factors such as antibiotic use and

dietary intake can disrupt the gut microbiota composition.

Considering the crucial role of microbiota in intestinal growth

and the development of IBS, it is evident that early life exposures

can influence IBS by altering the initial gut microbiota

composition.

Furthermore, animal studies have shown that early-life

exposure to maternal over-nutrition and antibiotics can cause

dysbiosis, affecting offspring cognition and behavior (7, 8).While

many studies indicate that early-life factors can affect offspring

temporarily or long-term (9, 10) (Figure 1), the ability to

prevent IBS is impeded by a lack of understanding of the

intricate interplay between environmental factors and the disease.

Therefore, this review aims to summarize the maternal,

intrapartum, and neonatal adverse exposures directly or

indirectly related to the development of IBS (Table 1) and

explore possible mechanisms. By doing so, this review will offer

new insights into the prevention and treatment of IBS.
2. Adverse exposures in early life and
IBS

2.1. Maternal adverse factors

2.1.1. Maternal inappropriate carbohydrate intake
Carbohydrates, found in diverse foods, are humans’ primary

energy source. They can be classified into monosaccharides,

disaccharides, and polysaccharides. Different dietary patterns can
FIGURE 1

Early life adverse exposures might contribute to irritable bowel syndrome in adu
and influence the brain-gut-microbiota axis, and these exposures include ma
cesarean section (C-section) and low birth weight, formula feeding of inf
irritable bowel syndrome (IBS) in the childhood and even adulthood.
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lead to variations in the composition of gut microbiota in

offspring, and early-life microbiota alterations have been shown

to influence susceptibility to diseases later in life (31). A cohort

study conducted in Norway investigated 60 pregnant women and

examined their dietary habits during pregnancy. Four days after

delivery, the intestinal microbiota of these women was analyzed.

The study found that increased sugar consumption was

associated with a higher Actinobacteria/Firmicutes ratio (32).

Another Australian pregnancy cohort study published in 2023

indicated a relationship between sugar consumption and

decreased maternal microbial Shannon diversity (33). Conversely,

reducing carbohydrate intake has been associated with an

increased abundance of beneficial bacteria in the intestines, such

as Roseburia spp., Bifidobacterium spp., and Eubacterium rectale

(34). It has been established that there is an increase in pro-

inflammatory bacteria in the gut of patients with irritable bowel

syndrome (35). In 2021, Laura A. Bolte published high-quality

evidence pointing out that the diet pattern is closely related to

the composition of the microbiota and inflammation markers in

human. Specifically, a high intake of carbohydrates has been

shown to dramatically increase the presence of mucolytic bacteria

and bacteria associated with energy harvesting, thereby

promoting inflammation and increased gut permeability.

Furthermore, long-term carbohydrate intake has been associated

with higher quinone synthesis, which can also trigger intestinal

inflammation (36). These studies have revealed the relationship

between IBS, pro-inflammatory microbiota, and high sugar

intake in adults. However, further evidence is needed to verify

similar results in the early stages of life.

Carbohydrate intake has been closely linked to conditions like

diabetes and obesity, as excessive consumption can lead to elevated
lthood. Adverse exposures in early life disturb the gut microbiota of infants
ternal diet exposure such as high fat diet, stress, drug use in pregnancy,
ants. These effects may directly or indirectly increase susceptibility of
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TABLE 1 Summary of early life adverse exposures affected directly in irritable bowel syndrome.

Adverse exposures Authors Publication
year

Study type Study populution Outcome

High fat diet in offspring Zhu et al. (11) 2014 Cross-sectional
study

Chinese children in grades 1
through 6

Eating fried food is a risk factor for IBS

Stress exposure NMS Riba et al. (12) 2018 Experimental
study

/ /

Yi et al. (13) 2017 Experimental
study

/ /

Tang et al. (14) 2017 Experimental
study

/ /

O’Mahony et al. (15) 2009 Experimental
study

/ /

Early life adverse
experiences

Park et al. (16) 2016 Case-control
study

IBS patients and health controls Various types of EALs are significant
predictor of IBS

Bradford et al. (17) 2012 Case-control
study

IBS patients and health controls Various types of EALs are associated
with the development of IBS

Ju et al. (18) 2020 Case-control
study

IBS Patients and health controls A greater number of EALs and higher
perceived trauma severity were
associated with increased odds of IBS

Rahal et al. (19) 2020 Case-control
study

IBS Patients and health controls Fear improved prediction of IBS over
the total number of EALs

Adverse
perinatal period
factors and
formula feeding

C-section Waehrens et al. (20) 2018 Cohort study A national cohort of persons who
were born in Sweden

Significant risk factors for IBS
(caesarean, low birth weight, being
second in birth orderfoetal growth ≥1
SD, young maternal age (<20 years),
maternal marital status (divorced/
widowed), maternal education of 10–11
years, maternal education of 12–14
years, parental history of IBS, parental
history of anxiety, parental history of
depression

Lower birth
weight

Waehrens et al. (20) 2018 Cohort study As above As above

Raslau et al. (21) 2016 Case-control
study

IBS Patients and health controls Lower birth weight increased the odds
for IBS

Formula feeding Koloski et al. (22) 2005 Case-control
study

A random population sample
from Sydney, Australia

Development of IBS was associated
with childhood factors-a shorter
duration of breastfeeding

Pediatric
diseases related
to IBS

Acute
gastroenteritis

Cremon et al. (23) 2014 Cohort study 1,811 patients (primarily
children) who were infected with
foodborne Salmonella enteritidis
in Bologna, Italy in 1994

The prevalence of IBS was higher in
individuals exposed Salmonella as
children than in controls

Thabane et al. (24) 2010 Cohort study Children exposed to domestic
water contaminated with E. coli
0157:H7 and Campylobacter in
Walkerton, Ontario, May 2000

Acute bacterial gastroenteritis is
associated with subsequent IBS in
children as in adults

Functional
constipation

Khan et al. (25) 2007 Case-control
study

Pediatric FCC patients and
health control

Childhood constipation appears to be a
predictor of IBS in adulthood

Urinary tract
infection

Tan et al. (26) 2018 Cohort study UTI infants and health controls Infants with UTI had higher risks of
childhood IBS

Atopic dermatitis Tsai et al. (27) 2018 Cohort study AD children and health controls AD children had a greater risk of
developing IBS

Food allergy/
intolerance

Mansueto et al. (28) 2015 Experimental
study

/ /

Childhood
physical/
emotional trauma

Bradford et al. (17) 2012 Case-control
study

294 IBS patients and 435 controls EALs had an independent association
with IBS

Childhood
abdominal pain

Howell et al. (29) 2005 Cohort study 1972 birth cohort (Dunedin, NZ) CAP can progress to adult IBS in some
children

Asthma Sjolund et al. (30) 2021 Cohort study Children born in Sweden from
1994 through 1996

Asthma is positively associated with IBS

NMS, Neonatal maternal separation; C-section, cesarean-section; EALs, early adverse life events; FCC, functional childhood constipation; UTI, urinary tract infection; AD,

atopic dermatitis; CAP, childhood abdominal pain.
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blood glucose levels. The incidence of diabetes has been increasing

alongside economic development. Interestingly, the incidence of

IBS has also been on the rise in recent years. Specifically, a diet
Frontiers in Pediatrics 03
high in glucose and fructose was found to decrease the

abundance of Bacteroidetes while increasing the levels of

Proteobacteria and Akkermansia muciniphila in mice (37). These
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findings align with alterations observed in IBS patients and animal

models (38, 39).

Interestingly, the offspring of the female rats in the diabetic

model group had worse intestinal maturation when compared

with those in the healthy control group. Specifically, the offspring

from the diabetic model displayed thin intestinal mucosa and

irregular arrangement of intestinal cells by the 10th day. As they

reached the 45th day, the intestinal glands showed degeneration,

and there was a further reduction in goblet cells (40).

Furthermore, reports suggest that damage to the enteric nervous

system (ENS) is involved in gastrointestinal motility changes in

individuals with diabetes. This damage is believed to be linked to

various factors, including enhanced apoptosis, oxidative stress,

advanced glycation end products, alterations in intestinal muscle

contractility, and brain-gut interactions. However, it is worth

noting that these mechanisms are rarely discussed in the context

of early life research (41).

Currently, there is no direct evidence demonstrating that a

high-glycemic diet early in life promotes the occurrence of IBS

(42). It is worth noting that the influence of maternal high sugar

diet and maternal high blood glucose on IBS in offspring has not

received adequate attention. Further research is needed to explore

the potential effects of maternal high sugar diet and maternal

high blood glucose levels on the development of IBS in offspring.

2.1.2. Maternal high-fat diet
Increasing evidence links a high-fat diet to a heightened risk of

inflammatory bowel disease. Shared pathogenesis between IBD and

IBS indicates overlapping risk factors. Some researchers even

propose that IBS represents the pre-IBD period (43, 44). In

animal study, long-term consumption of a high-fat and high-

sugar diet has already been established as a risk factor for pre-

IBD (45). Experiments of mice have shown that interventions

with a high-fat diet before, throughout, and after gestation can

significantly alter the composition of the microbiota. Offspring

from mice subjected to high-fat diet interventions exhibited

increased levels of Lachnospiraceae and Bacteroides, and

decreased levels of Lactobacillus, Allobaculum, and Prevotella.

Importantly, these changes were not entirely consistent with

alterations in the maternal microbiota. Furthermore, the effects

of a high-fat diet could persist until adulthood in mice study

(46). These changes in the microbiota caused by a high-fat diet

create an opportunity for IBS. This hypothesis was supported by

a previous cross-sectional study, which found a direct link

between a high-fat diet in early life and the presence of IBS in

children aged 8–13 years. The authors of the study suggested

that dietary changes should be considered to prevent IBS in early

life (11). Latest findings suggest adults with IBS consume more

high-fat diets than those without the condition (47).

Unfortunately, this study did not explore whether high-fat

dietary habits were formed in the early life stage. Therefore,

more research is needed to investigate dietary habits in early life.

In-depth studies have shown that a high-fat diet can alter the

expression of genes associated with colon structure and function

during the gut development of two-week-old transgenic mice.

Specifically, genes such as Abca1, Mgat4b, Id1, and Tpp1 were
Frontiers in Pediatrics 04
found to be affected by the high-fat diet. Further analysis using a

clustered image map revealed that the high-fat diet induced

changes in the function of the colon by regulating these genes in

these mice, which the microbiota may influence in some way

(48). Moreover, it has been reported that a maternal high-fat diet

could increase anxiety-like behavior in female macaque offspring.

This finding is significant given that psychological factors have

been established as important pathogenesis mechanisms in IBS (49).

2.1.3. Maternal antibacterial agent exposure
Antibiotic exposure has been shown to be a risk factor for IBS

in adulthood in human (50). However, there is limited direct

evidence indicating that maternal antibiotic exposure can trigger

the occurrence of IBS in adulthood.

The gut microbiota of infants is highly susceptible to the effects

of antibiotics. Disruptions in microbiota composition and

microbial colonization can significantly affect human health (51).

One of the most notable changes in the gut microbiota following

antibiotic exposure is the enrichment of three genera: Bacteroides,

Peptostreptococci, and Enterobacteria, while the abundance of the

Bacteroidetes phylum is decreased (52). Additionally, in a rat

study, beneficial bacteria like Lactobacillus are reduced, and there

is an increase in the relative abundance of pathogenic bacteria

such as Enterobacter, Shigella sonnei, Enterococcus hormaechei,

and Acinetobacter sp. (53). A European infants study observed

that maternal antibiotic use during the perinatal and/or

breastfeeding periods could decrease the number of Bacteroides,

and antibiotic use in newborns could shape the microbiota

composition by increasing the proportion of Enterobacteria (54),

which is shared by patients with IBS. These changes in gut flora

mentioned above can increase the risk of intestinal diseases,

including IBS, by modulating the intestinal microbiota. However,

a case-control study published in 2016 reported that early-life

antibiotic use is not a risk factor for IBS (21). Long-term

assessments of antibiotic effects on gut flora and large-scale

retrospective studies are still needed to investigate the

relationship between early-life antibiotic exposure and the

incidence of IBS.

2.1.4. Maternal stress
Prenatal maternal stress treatment can inhibit intestinal

development in offspring mice at 3 weeks of age, impair their

intestinal barrier function, and induce low-grade inflammation in

the gut (55) Beyond directly influencing the gastrointestinal

development of the offspring, maternal stress can also disrupt the

neuroimmune network in the offspring. The fetal immune

system and central nervous system are very sensitive to external

disturbances during pregnancy, so stress in early life can enhance

the function of HPA axis, increase systemic immune response

and disturb intestinal microbiota in offspring (15). The early

immune system change can persist throughout the whole life,

and the maternal immune functional disturbances caused by

stress can be passed to the next generation, which means that the

ability of offspring to absorb maternal immunoglobulin is

impaired and immune system is depressed (56, 57). Similarly,

research has begun to uncover how these disturbances may affect
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the gut environment of the offspring. In 2023, a study revealed the

impact of maternal stress on the offspring’s gut microbiota by

examining the fecal microbiota of infants. The study found that

maternal psychological stress led to a decrease in offspring’s gut

microbial alpha diversity and a reduction in the number of

probiotic like Bifidobacterium. Therefore, maternal stress might

cause the occurrence of IBS by triggering gut microbiota disorder

in the offspring (58). Animal experiments have also found that

prenatal stress leads to a reduction in the number of

Bifidobacteria and Lactobacilli in the feces of young monkeys

(59). Furthermore, a rat study has shown that prenatal maternal

stress can lead to visceral hypersensitivity in the offspring, and

this change may be mediated by the upregulation of

cystathionine-β-synthase and Nav1.7 expression. Animal studies

have also reported that miR-485/ASIC1 signaling and BDNF

expression are associated with the occurrence of visceral

hypersensitivity in offspring following prenatal stress (60, 61).

Therefore, stress during pregnancy could also increase the risk of

offspring developing IBS through a mechanism of visceral

hypersensitivity (62).

2.1.5. Maternal smoking
Currently, there is no direct evidence that maternal smoking

leads to an increased risk of IBS in offspring. However, human

studies have found that maternal smoking exposure during

pregnancy is associated with DNA methylation in offspring

peripheral blood, unfortunately, these methylation sites were not

found to be associated with IBS (63). Further research

emphasizes the multifaceted impact of maternal smoking on

offspring. Smoking during pregnancy leads to a decrease in fecal

microbiota diversity in newborns, and an increase in colonization

by Enterobacteriaceae. At 6 months, these infants have a higher

abundance of Bacteroides and Staphylococcus in their feces

(64).Studies on autism have shown that maternal smoking can

cause the onset of autism by altering the gut microbiota and

acting through the gut-brain axis, as well as shaping early brain

development (65, 66). However, no studies have proven that

maternal smoking promotes the occurrence of IBS through these

mechanisms.

2.1.6. Maternal mental health
Maternal mental health may have an impact on the onset of

IBS in offspring. Familial clustering of IBS has been observed,

and in addition to genetic factors, sociological learning can also

affect the prevalence of IBS in offspring. Early-life sociological

learning primarily comes from parents. Studies have pointed out

that the offspring of mothers with IBS are more likely to be

troubled by gastrointestinal symptoms, and both mothers and

children are more likely to experience anxiety and depression.

This could be related to the intergenerational transmission of

psychological disorders such as anxiety and depression (67).

Therefore, maternal mental health is extremely important.

Moreover, research on infant gut microbiota suggests that

maternal anxiety and depression can affect the composition of

the offspring’s gut microbiota, reducing the number of

probiotics, changing the levels of cytokines in the body, and
Frontiers in Pediatrics 05
thereby increasing the likelihood of offspring suffering from IBS

through brain-gut axis mechanisms (58). However, there have

also been contradictory conclusions. Some studies have

confirmed a connection between maternal anxiety and a decrease

in pro-inflammatory bacteria like Proteobacteria, in infants, while

other studies have proposed opposite conclusions. The authors

believe this may be due to differences in fecal microbiota

detection methods and ways of measuring maternal anxiety (59).

2.1.7. Maternal infection
Current evidence suggests a strong association between

maternal infection and the onset of neuropsychiatric disease in

offspring (68), but there isn’t enough evidence to indicate that

maternal infection during pregnancy increases the risk of IBS in

offspring. More animal experiments and cohort studies are

needed in the future to elucidate the relationship between

infection during pregnancy and IBS.
3.1. Postpartum adverse factors

3.1.1. Neonatal high blood glucose
Type 1 diabetes (T1D) typically occurs in early life stages.

Although the mechanisms of T1D are diverse, it is useful for

understanding the connection between high blood glucose and

IBS in early life. A Finnish cohort study analyzed fecal

microbiota compositions from pediatric T1D patients. The study

observed a decrease in alpha diversity and an increase in the

presence of Ruminococcus gnavus and Streptococcus infantarius

in T1D patients. These two strains are known to be pathogenic

bacteria that can disrupt the intestinal barrier and promote gut

inflammation. Additionally, further investigation found elevated

levels of human β-defensin 2 (hBD2) in samples from T1D

patients. hBD2 is an antimicrobial peptide produced by epithelial

cells to defend against pathogens (69). It has been previously

established that IBS is characterized by low-grade inflammation

in the gut (70). Therefore, the evidence mentioned above reveals

the relationship between increased inflammation in the gut and

metabolic disturbances in early life.

Glucagon-like peptide 1 (GLP-1) is a molecule that plays a

significant role in regulating blood glucose levels. It is produced

by enteroendocrine L-cells in the intestine. It has been

established that carbohydrates in the lumen of the intestine

stimulate the secretion of GLP-1, suppressing gastrointestinal

motility in human (71, 72). While studies have indicated that

GLP-1 analogs can alleviate abdominal pain in IBS patients, the

exact role of GLP-1 in IBS physiology is still not fully

understood. An animal study suggested that increased levels of

GLP-1 are involved in the mechanism of IBS-C (73). However, a

different human study found decreased levels of GLP-1 in the

blood of IBS-C patients (74). Furthermore, a human study

published in 2015 demonstrated that maternal high blood

glucose levels could lead to decreased GLP-1 levels in offspring

(75). From this, we can infer that maternal dietary patterns that

result in high blood glucose may represent a new risk factor for

the development of IBS in offspring.
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3.1.2. High-fat diet in offspring
It is now understood that high-fat diets contribute to obesity

and have been established as risk factors for cardiovascular and

metabolic diseases. In addition, a cross-sectional study conducted

in China demonstrated that a high-fat diet is also a risk factor

for IBS in children (11). Interestingly, obesity has been

extensively linked to the development of IBS. Studies have shown

that obese adults are more likely to be diagnosed with IBS, and

similar findings have also been reported in children (76).

Dysbiosis, or an imbalance in the gut microbiota, is one of the

main mechanisms associated with IBS. Interestingly, similar

alterations in gut microbiota have been observed in obese

individuals (77). Moreover, further evidence suggests possible

connections between the microbiota profiles associated with IBS

and those induced by a high-fat diet in early life (78, 79).

Currently, there is no direct evidence indicating that a high-fat

diet in early life leads to an increased incidence of IBS in

adulthood. An animal study showed that a high-fat diet given to

mice from weaning until 6 weeks of age significantly reduced the

relative abundance of the Muribaculaceae family in the mouse

gut microbiota by the age of 14 weeks. Muribaculaceae is

associated with the production of propionate, a short-chain fatty

acid (80). Other animal studies have pointed out that a high-fat

diet in juvenile mice reduces the number of Bifidobacterium and

Akkermansia in the gut, and promotes the increase of pro-

inflammatory bacteria like Dorea (81). Importantly, a study

involving juvenile high-fat diet intervention demonstrated

increased plasma insulin levels and decreased insulin sensitivity

(82). These metabolic changes may interact with GLP-1

secretion, as discussed earlier. Furthermore, disruption of the

enteric epithelial barrier and increased intestinal permeability

have been observed in patients with IBS (83). Early-life high-fat

diet intake might, based on evidence, predispose to IBS by

damaging the gut barrier and enhancing intestinal permeability.

Toll-like receptor 4 (TLR4) is a member of the pattern

recognition receptor family and plays a role in the inflammatory

process in animal models of obesity. Recent studies have

indicated that mice receiving a high-fat diet for 16 weeks starting

from 3 weeks old exhibited visceral hypersensitivity. This

outcome could be attributed to the increased expression of TLR4

protein in both the central and peripheral nervous systems (84).
3.1.3. Neonatal stress exposure
According to the Rome IV criteria, IBS is considered a disease

related to the gut-brain axis, where stress and psychological factors

play a significant role in its pathogenesis. Clinical studies have

shown a strong correlation between early life adverse experiences

and the development of IBS (18). A case-control study supported

that early-life emotional abuse increases the risk of developing

IBS in adulthood. Additionally, another study identified

household mental illness as the strongest predictor for IBS in

adulthood among various early-life adverse events (16, 17).

Further research has suggested that a sense of fear and

dissociation following early-life trauma can predict the

occurrence of IBS later in life (19).
Frontiers in Pediatrics 06
Neonatal maternal separation (NMS) has become a widely

accepted experimental model for studying IBS, and it has

provided insights into the mechanisms related to stress in IBS

development (12). Animal experiments using this model have

demonstrated that NMS can induce visceral hypersensitivity and

abnormal behavior in rats from early life to adulthood (13). The

underlying mechanism for these effects involves increased Toll-

like receptor 4 (TLR4) expression in microglial cells (14).

Regarding visceral hyperalgesia, nerve growth factor (NGF) is

crucial in mediating neuronal plasticity (85). In an animal

experiment, male Wistar rats were subjected to NMS for 3 h per

day starting from the second to fourteenth days after birth.

When sacrificed at the 12th week, these rats exhibited colon mast

cell hyperplasia and increased neurokinin 1 (NK1) receptor

expression in the spinal cord. It has been established that

substance P, which binds to NK1 receptors, can mediate pain

transmission and regulates pain responses. During maternal

separation, anti-NGF antibody treatment in NMS rats reduced

enteric nerve synapses formation and mast cell counts, implying

NGF’s role in early-life stress-induced IBS development (86).

Early immune system disturbance and dysfunction of the HPA

axis have been closely associated with IBS and can persist

throughout an individual’s life. male NMS rats have been

observed to exhibit increased corticosterone levels, enhanced

HPA axis activity, and abnormal behaviors (15). In NMS rats,

the activation of metabotropic glutamate receptor-7 has been

shown to reduce visceral hypersensitivity by modulating immune

responses (87).

The intestinal mucosa contains a large number of immune cells

and is vital to the functioning of the immune system. Animal

studies have shown that at the age of 14 days, the colonic

mucosa of neonatal maternal separation (NMS) rats showed an

increase in mast cells compared to the control group, a

phenomenon that persisted at 12 weeks. Simultaneously, the

experiment found that at 14 days and 12 weeks, the expression

of NGF in the mucosal and muscular layers of the NMS rat

colon was significantly increased compared to the control group,

consistent with changes in intestinal hypersensitivity in both

groups (88). Other study has also revealed persistent

hypersensitivity function of secretomotor neurons and

upregulation of acetylcholine activity in pig offspring on the 15th

day after weaning. Additionally, more enteric neurons have been

observed, suggesting a potential link to IBS (89). These findings

provide a foundation for understanding the relationship between

early life stress and the development of IBS.

Psychological therapy has emerged as an important approach

to managing stress-related disorders, including IBS. Studies have

shown that cognitive behavioral therapy and hypnotherapy have

effectively treated children and adults with IBS (90). These

therapeutic approaches offer promising directions for future

research and highlight the significant role of psychological

interventions in managing IBS symptoms.

3.1.4. Neonatal formula feeding
Neonatal feeding modalities encompass breastfeeding, formula

feeding, and mixed feeding. Recent research has shed light on the
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benefits of breastfeeding in growth programming (91).

Breastfeeding during the initial three months has been linked to

reduced infant functional constipation and favorable modulation

of gut microbiota, influencing overall health (92). Evidence

suggests that breastfed infants exhibit increased levels of

probiotic species, such as Bifidobacterium, in their feces, often

more than double that of formula-fed infants. A follow-up study

published in 2023 indicated that formula feeding at 12 months of

age was associated with a decrease in Verrucomicrobiota

compared to breastfeeding (93). Conversely, formula-fed infants

showed a decrease in Bifidobacterium levels and increased

Bacteroides abundance (94, 95). Furthermore, formula-fed infants

exhibited an overrepresentation of C. difficile, and a recent

experiment on neonatal piglets demonstrated that formula-

feeding predisposed them to C. difficile gut infection (96).

Additionally, the effects of combining breast milk with formula

feeding on the microbiota were more similar to exclusive formula

feeding rather than exclusive breastfeeding (97).

Interestingly, prolonged infant breastfeeding has enhanced

their resilience against IBS in adulthood (22). This effect is

believed to be associated with the modulation of Th1 and Th2

immune responses. In individuals with IBS, the immune

response shifts towards Th2 cells (98). Breastfeeding has been

found to promote the development of a Th1 response in human

(22). Additionally, human milk oligosaccharides have been

shown to benefit by modulating cell signaling, gut microbiota

composition and reducing mucosal invasion (99). In contrast,

exclusive formula feeding can alter gut microbiota and increase

susceptibility to gastrointestinal diseases (100). Studies have

indicated that formula feeding can lead to changes in

gastrointestinal morphology, microbial abundance, intestinal

barrier proteins (such as vascular endothelial cadherin), and

interleukin-10 (IL-10) production (101, 102). These alterations

may result in reduced immune education and increased

inflammatory processes. Improving feeding patterns can enhance

immunity, reduce inflammation, and help prevent allergic and

infectious diseases. Importantly, evidence suggests that immune

impairments can have long-term health consequences. A study

involving five European centers found that feeding patterns have

a sustained influence on intestinal microbiota, which persists

even after weaning (103).

Therefore, the choice of feeding method can have a long-term

impact on the gut microbiota, immune system, and intestinal

barrier of offspring. Optimal feeding methods play a crucial role

in preventing the development of IBS from childhood to

adulthood.

3.1.5. Neonatal antibiotic use
Studies have consistently shown that antibiotic exposure in

adults and children increases the risk of abdominal symptoms,

particularly abdominal pain (104). The changes in gut microbiota

caused by early-life antibiotic use have been linked to the

development of abdominal pain. For example, a Swedish study

involving 2,732 12-year-old children found that antibiotic use

during the first 2 years of life was associated with an increased

risk of abdominal pain, especially in girls (105). Additionally,
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long-term or broad-spectrum antibiotic use between the ages of 9

and 12 was found to contribute to the risk of abdominal pain

(106). Since the diagnosis of IBS is based on abdominal

symptoms, it is noteworthy that disorders of gut-brain

interaction in early life have been identified as independent

predictors of IBS in adulthood (25). This suggests that many

individuals experience IBS symptoms (such as altered bowel

habits, changes in frequency of bowel movements, abdominal

cramps, decreased appetite, and/or early satiety, gas and bloating)

from early life into adulthood (107). Further research is needed

to explore the long-term implications of these findings and

provide a more comprehensive understanding of the underlying

mechanisms.

Current research suggests that early-life antibiotic use directly

impacts intestinal epithelial cells. In mouse experiments, early-life

antibiotic exposure accelerated intestinal epithelial maturation,

reducing permeability and the count of vacuolated enterocytes

(108). These changes may be attributed to the stage of intestinal

epithelium development during early life. In contrast, antibiotic

use in adults is often associated with increased intestinal

permeability, which may reflect differences in the developmental

stage of the intestinal epithelium. The decrease in vacuolated

enterocytes resulting from early-life antibiotic use can affect the

absorption of breast milk and potentially diminish the protective

effects associated with breastfeeding.

Indeed, antibiotic use in early life, including the first two years of

childhood, has been associated with an increased risk of various

allergic diseases, including food allergies (109). Allergic diseases, in

turn, have been linked to an increased risk of abdominal pain (110).

Food allergy has also been considered one of the possible causes of

IBS (28). Furthermore, besides clinical use, antimicrobial substances

like triclosan and triclocarban, commonly found in household and

personal care products, can also disrupt the gut microbiota

composition. Studies have shown that increased levels of triclosan

are associated with decreased abundance of Bacteroides fragilis and

enrichment of the Proteobacteria phylum in infants (111). Dysbiosis

of the gut microbiota has been implicated in the development of

functional gastrointestinal disorders and can potentially affect

cognitive function (112). Therefore, it can be inferred that early-life

antibiotic use, including exposure to antimicrobials, may negatively

influence the gut microbiota of offspring and contribute to the onset

of IBS in adulthood. However, more extensive research is still needed

to better understand the relationship between antibiotic use, gut

microbiota, and the development of IBS, especially through large-

scale studies and data analysis.

3.1.6. Low birth weight
Low birth weight has been identified as another risk factor for

IBS (20, 21). It is unclear what are causes of low birth weight (113).

It has been suggested that the increased risk of IBS associated with

low birth weight may be attributed to the immaturity of intestinal

motor function (21, 114). Moreover, very low birth weight infants

have been found to exhibit abnormal patterns of intestinal

microbiota colonization, characterized by reduced population

diversity and an increase in bacterial and fungal pathogens such

as Escherichia coli, Enterococcus sp., Klebsiella pneumoniae,
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Candida spp., and Clavispora spp. These findings support the role

of altered microbiota in the pathogenesis of IBS, as discussed

earlier (115, 116).
3.1.7. Pediatric diseases related to IBS
Indeed, several pediatric diseases have been discovered to have

notable correlations with IBS, highlighting a complex and multi-

faceted etiological landscape. Functional constipation and Salmonella

gastroenteritis in early life, for instance, have been identified as risk

factors for IBS in adulthood (23). Furthermore, there is emerging

evidence of a cross-talk between the urinary and intestinal systems,

with studies supporting the idea that genitourinary disorders can

contribute to gastrointestinal disorders (117, 118). Infants with

urinary infections have been found to have a higher risk of

developing IBS in childhood (26), possibly due to their shared

embryonic origin and peripheral nerve connections (119).

Childhood physical or emotional trauma is a risk factor for

developing IBS in adulthood, with studies indicating that early

general trauma, physical punishment, emotional abuse, and

sexual events are strong predictors for the onset of IBS in

adulthood (17). Additionally, post-traumatic stress disorder in

adult has also been confirmed as an adverse exposure for IBS

(120), but the research did not focus on the early life period.

Evidence suggests that fear emotions generated by early physical

or emotional trauma play a critical role in the pathophysiology of

IBS (19). A prospective study published in 2005 pointed out that

some childhood abdominal pain can develop into IBS in adults,

though the specific mechanisms remain elusive (29). In contrast,

other research has found that early life recurrent abdominal pain

may not be connected with IBS in adolescence, leaving

unresolved questions regarding the relationship between

childhood abdominal pain and adult IBS (121).

From the perspective of IBS research, there’s a complex

interplay between the syndrome and associated allergic diseases.

Sudies have found that children with a history of atopic

dermatitis (AD) are more prone to IBS (27). Genetic variations

and local mucosal immune function have been implicated in

both atopy and IBS (122, 123). Children with AD often

experience food allergies closely related to mast cell activation,

and these children have a higher risk of gastrointestinal

dysfunction. Although the exact mechanisms are not yet fully

understood, immune responses in the small bowel have been

proposed as a potential link between food allergy and IBS in

adults (124). Exploring the immune changes in the small bowel

in children and their relationship to the development of IBS in

adulthood holds promise for future research in this area.

Diving deeper into allergy-related diseases, a recent study have

also drawn connections between childhood asthma and the onset

of IBS by age 16. The same research pointed out that children

who had eczema at 1–2 years of age might have an increased

trend to develop IBS at 16 years of age, but unfortunately, the

data did not show a significant statistical difference. Food

hypersensitivity is generally associated with IBS onset at age 16,

but the data did not indicate whether such a link exists in early

life (30).
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4.1. Delivery style

Microbiota is shared between the gut and vagina, and the mode of

delivery significantly affects themicrobiota in newborns. Several studies

have demonstrated that caesarean section (C-section) delivery increases

the risk for IBS (125). The mechanism underlying this association may

be linked to the composition of themicrobiota. Vaginally delivered and

exclusively breastfed infants exhibit the “best” gut microbiota

composition, characterized by a higher abundance of beneficial

bacteria such as Bifidobacteria and Bacteroides, and a lower

abundance of potentially harmful bacteria like Escherichia coli

(E. coli) and Clostridium difficile (125). In contrast, infants born via

C-section seem to have a lower abundance and diversity of gut

microbiota and decreased and delayed colonization of

Bifidobacterium spp. and Bacteroides spp. Instead, they tend to have

increased levels of C. difficile and typical skin bacteria like

Staphylococcus, Corynebacterium, and Propionibacterium spp (126).

Similar results have been found in a large-scale study from the

Netherlands, where C-section delivery was associated with lower

amounts of Bifidobacteria and Bacteroides fragilis (B. fragilis)-group

species and increased amounts of E. coli and C. difficile (125).

Interestingly, emerging research suggests that the influence of

maternal microbiota on the infant’s microbiota is only significant in

vaginally-delivered infants, and this influence is disturbed by C-

section delivery (127). In addition, C-section delivery has been

associated with a higher rate of acute gastroenteritis admission in

children (128). It has been reported that a history of acute

gastroenteritis in children is linked to an increased risk of IBS (24).
5. Conclusions

Lately, there has been increasing evidence showing that adverse

exposures in early life can impact the development of functional

gastrointestinal diseases, including IBS, in adulthood. These

factors during early life stages can influence the risk of

developing IBS later. Some factors, such as diet and stress, are

relatively well-established, while others, including the use of

antibiotics, delivery mode, and feeding patterns, still require

long-term follow-up observations to gather sufficient evidence.

Proper diets and interventions with probiotics in early life have

shown potential therapeutic prospects for preventing IBS.

Therefore, understanding the relationship between adverse

exposures in early life and IBS can open up a new field for

preventing IBS in adulthood. This knowledge can ultimately help

reduce the disease’s burden and contribute to improving

population health and the rational use of medical resources.
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