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The development and validation
of an artificial intelligence-based
screening method for atrial septal
defect in children’s chest x-rays
Li Zhixin, Luo Gang, Ji Zhixian and Pan Silin*

Heart Center, Women and Children’s Hospital, Qingdao University, Qingdao, China

Purpose: For precise diagnosis and effective management of atrial septal defects,
it is of utmost significance to conduct elementary screenings on children. The
primary aim of this study is to develop and authenticate an objective
methodology for detecting atrial septal defects by employing deep learning (DL)
on chest x-ray (CXR) examinations.
Methods: This retrospective study encompassed echocardiographs and
corresponding Chest x-rays that were consistently gathered at Qingdao
Women’s and Children’s Hospital from 2018 to 2022. Based on a collaborative
diagnosis report by two cardiologists with over 10 years of experience in
echocardiography, these radiographs were classified as positive or negative for
atrial septal defect, and then divided into training and validation datasets. An
artificial intelligence model was formulated by utilizing the training dataset and
fine-tuned using the validation dataset. To evaluate the efficacy of the model,
an assessment of the area under the curve, sensitivity, specificity, accuracy,
positive predictive value, and negative predictive value was conducted
employing the validation dataset.
Results: This research encompassed a total of 420 images from individuals. The
screening accuracy and recall rate of the model surpass 90%.
Conclusions: One of profound neural network models predicated on chest x-ray
radiographs (a traditional, extensively employed, and economically viable
examination) proves highly advantageous in the assessment for atrial septal defect.

KEYWORDS

artificial intelligence, screening method, chest x-ray, congenital heart disease, atrial septal

defect
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2023.1203933&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fped.2023.1203933
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fped.2023.1203933/full
https://www.frontiersin.org/articles/10.3389/fped.2023.1203933/full
https://www.frontiersin.org/articles/10.3389/fped.2023.1203933/full
https://www.frontiersin.org/articles/10.3389/fped.2023.1203933/full
https://www.frontiersin.org/journals/pediatrics
https://doi.org/10.3389/fped.2023.1203933
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Zhixin et al. 10.3389/fped.2023.1203933
GRAPHICAL ABSTRACT

Model schematic.
Introduction

Atrial septal defect (ASD) is the most common type of

congenital heart disease, including several types of interatrial

communication defects that allow blood shunting between the

systemic and pulmonary circulation (1). There are five types of

atrial septal defects ranging from most frequent to least: patent

foramen ovale, ostium secundum defect, ostium primum defect,

sinus venosus defect, and coronary sinus defect (2, 3). Most

children with isolated ASD do not display symptoms. However,

as they age, they are at risk for decreased exercise tolerance,

atrial arrhythmias, right ventricular dysfunction, and pulmonary

hypertension. Untreated adult patients with a defect have a

reduced life expectancy, and females or those of advanced age

with untreated defects have an increased risk of developing

pulmonary vascular disease, a potential lethal complication (4).

Surgical intervention is a safe and effective method to address

ASD (5). Surgery before the age of 25 results in a life expectancy

equivalent to that of the general population (6). Therefore, early

detection and treatment are crucial management principles (7).

Currently, the commonly employed cardiovascular diagnostic

methods in clinical practice encompass electrocardiography, chest

radiography, echocardiography, magnetic resonance imaging

(MRI), and computed tomography (CT). Echocardiography has

emerged as the gold standard for diagnosing atrial septal defects

due to its non-invasive, convenient, and intuitive nature. However,

interpreting the images of echocardiography requires experienced

cardiac sonographers as there are significant variations among

different imaging planes, making standardized interpretation

difficult and rendering it inadequate as an ideal screening tool.

Electrocardiography lacks specificity and may pose challenges in

uncooperative children, while being sensitive to external chest

factors such as the lungs, thoracic cavity, and chest wall. MRI and

CT, on the other hand, are expensive and not ideal screening tools.

Chest radiography provides a simple, rapid, non-invasive, and

cost-effective screening method for detecting atrial septal defects. In

the chest radiography, certain characteristic findings can be

observed, such as enlargement of the right atrium and pulmonary

artery, especially in the anterior-posterior view, while right

ventricular enlargement can be seen in the lateral view. Likewise,

left atrial enlargement and distension (related to mitral regurgitation

in type II congenital atrial septal defects) are also evident in the
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lateral view. The marked size differences between the pulmonary

artery and relatively fewer peripheral blood vessels may indicate

pulmonary vascular obstructive diseases (8, 9). These discoveries

prompt further examination and confirmation by clinical

practitioners. Therefore, we have chosen chest radiography as a

more ideal screening method for children with atrial septal defects.

Machine learning and computer vision technologies provide the

means to enhance insight, increase accuracy, and optimize workload

times for interpretation purposes. With the improvement in both the

quality and availability of medical imaging equipment, alongside the

promotion of effective healthcare policies, medical imaging has

become a critical step in modern medical diagnosis and treatment.

The interpretation of medical imaging requires specialized training

and can be time-consuming. Traditional machine learning

techniques in medical imaging involve matching features designed

by domain experts, which is a tedious and limited process. Recent

advances in deep learning techniques, coupled with the increasing

prevalence of powerful Graphics Processing Units (GPUs), allow for

data-driven approaches that make image-based diagnosis automation

possible (10, 11). One particular area of interest is the development

of AI-based screening methods for the early detection of

cardiovascular conditions in children. Among these conditions, atrial

septal defect stands as a significant concern due to its prevalence

and potential complications. The aim of this study was to develop

and validate an AI-based screening method specifically tailored for

the detection of atrial septal defect in children’s chest x-rays.

Through the utilization of the potent force of artificial intelligence,

this research strives to heighten the detection rate of children

afflicted with ASD. Consequently, it aids physicians in expeditiously

and promptly identifying cases of ASD, ultimately contributing to

the enhancement of patients’ treatment outcomes.
Materials and methods

Study design

We have developed a deep learning-based model that uses digital

chest x-ray to classify Atrial septal defect. We retrospectively

collected chest x-ray images from pediatric patients diagnosed with

ASD at our hospital. The diagnosis of Atrial Septal Defect in a
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patient is determined by two experienced sonographers with over a

decade of cardiac ultrasound expertise. They assess the two-

dimensional echocardiogram to confirm the presence of ASD. We

then established a classification neural network model using deep

learning techniques. Subsequently, we applied classification

activation maps to identify the regions of interest in the chest

radiographs. The protocol of our study was reviewed and

approved by the ethics committee of our institution. Because these

images were obtained from patients who consented to the

comprehensive research use of their data during routine clinical

practice, the need for informed consent was waived. Patients were

assured the opportunity to opt out of the study.
Data partition

The dataset used in this study was collected from Qingdao

Women’s and Children’s Hospital, consisting of digital

radiography results of 420 children divided into a normal group

and an atrial septal defect group. To ensure data quality, we

included patients in the dataset whose time interval between

chest x-ray and echocardiographic examinations did not exceed 5

days. The x-ray images were saved in JPG format and underwent

operations such as cropping and rotation during model training

to ensure data quality and matched sample sizes through data

preprocessing.

The dataset included clear radiography results of children with

normal examinations or atrial septal defects before surgery. The

exclusion criteria included congenital chest/lung abnormalities,

pulmonary infections or lesions, right-sided heart, post-cardiac

surgery, lateral or oblique images, and other factors that may

affect image quality.
Image acquisition

In this study, retrospective posteroanterior chest x-ray of

patients were obtained using the DRX Evolution Plus

(Carestream Health, USA) imaging system after diagnosis by a

treating clinician. All radiographs that met the appropriate

diagnostic criteria for ASD were collected for analysis. This

approach ensured that all included radiographs were clinically

relevant and met the necessary standards for accurate diagnosis.
Data partitioning

To facilitate the training and evaluation of the deep learning

models, the labelled chest x-ray were partitioned into distinct

training and validation datasets in an 8:2 ratio. Through the

partitioning of our dataset into distinct training, validation sets,

the models were trained and evaluated on independent subsets of

data, leading to a more precise and reliable evaluation of their

diagnostic performance. This careful partitioning approach

helped eliminate potential confounding variables that may have

impacted the accuracy and robustness of our findings.
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Model development

We built a ResNet18 model using the PyTorch framework

(12, 13). The model was trained using the transfer learning

method with the training dataset and fine-tuned using the

validation dataset to identify features that distinguish between

ASD positive and ASD negative images during training. To

enhance the images, we applied random rotation, random

shift, and brightness shift (14–16). The best-performing model

was selected as the one with the minimum loss function value

in the validation dataset during 50 epochs.
Visualizing regions of interest for the trained
model by using heat maps

To enhance the classification performance of the best-

performing deep learning model in detecting ASD in chest x-

ray, a heat map was generated for each radiograph to visualize

its areas of focus. This was achieved using a classification

activation map that applied global average pooling on the last

convolutional layer of the model (17). By utilizing the trained

weights for each output from the global average pooling layer,

the relevance and importance of each feature map from the last

convolutional layer were determined. Subsequently, these

weights were applied to the corresponding feature maps, which

were then superimposed on the original chest x-ray. The

resulting class-discriminative visualization allowed for a more

comprehensive understanding of the model’s decision-making

process (18).
Statistical analysis

In this study, the performance of various models was assessed

using several key metrics, including sensitivity, specificity,

accuracy, positive predictive value (PPV), negative predictive

value (NPV), and the area under the receiver operating

characteristic curve (AUC). To ensure the reliability of

the metric estimates, a statistical approach based on the

Clopper-Pearson method was employed to calculate 95%

confidence intervals for the aforementioned performance

metrics. This approach provides a measure of uncertainty

around each estimate and allows for a more robust evaluation

of model performance.
Role of the funding source

The funding source for this study did not participate in the

design of the study, collection, analysis, interpretation of data or

preparation of the report. The corresponding author had

unrestricted access to all data generated during the study and

had the final responsibility to decide on the publication of

the manuscript.
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TABLE 1 Dataset demographics.

Training
dataset

Validation
dataset

Total no. of radiographs 336 84

Total no. of echocardiography 336 84

Total no. of patients 336 84

Male 155 45

Female 181 39

Mean age (years ± SD) 4.5 ± 1.5 4.5 ± 1.9

Mean period between examinations
(days ± SD)

2 ± 1 2 ± 1

Zhixin et al. 10.3389/fped.2023.1203933
Results

Datasets

A total of 420 x-ray images and 420 corresponding

echocardiographic examination reports from 420 patients were

used in this study. The training dataset consisted of 336 images

(336 patients; age range: 1–10 years, mean ± SD: 4.5 ± 1.5 years).

The validation dataset consisted of 84 images (84 patients; age:

1–10 years, mean ± SD: 4.9 ± 1.9 years). The flowchart of the

dataset standard process is shown in Figure 1. The dataset

information is shown in Table 1.
Model development

The independent development of each model in this study

involved training them for 50 epochs on the provided training

dataset, followed by evaluation based on their loss value on a

separate validation dataset. To ensure a fair comparison, identical

hyperparameters were used across all models, including the

Adagrad optimizer, an image size of 500 pixels, three channels,

and global average pooling.

These specific hyperparameters were selected based on prior

experimentation and were found to yield optimal performance.

Consistent use of these parameters across all models helped

eliminate confounding factors that could potentially impact the
FIGURE 1

Review and allocation flowchart.
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model’s performance, enabling a more accurate assessment of

their relative diagnostic capabilities. Overall, this approach

ensured a rigorous and systematic evaluation of each model’s

performance and minimized any sources of bias or variability.
Model evaluation

The radiographic images in this study were classified into two

distinct categories, namely Normal, ASD, using an artificial

intelligence-based classification model. The model’s performance

was evaluated by comparing its output with the ground truth

labels assigned to each image. To assess the model’s accuracy

more comprehensively, performance metrics such as precision,

recall, F1-score, etc., were calculated for each category (Table 2).
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TABLE 2 The effect of the model.

Type Precision Recall F1-score Support Accuracy AP AUC
ASD 0.971 0.895 0.932 38.000 0.895 0.982 0.981

Normal 0.909 0.976 0.941 41.000 0.976 0.982 0.981

Macro avg. 0.940 0.935 0.936 79.000 0.935 0.982 0.981

Weighted avg. 0.939 0.937 0.937 79.000 0.937 0.982 0.981

Zhixin et al. 10.3389/fped.2023.1203933
Figure 2 displays the receiver operating characteristic (ROC)

curve, which is a graphical representation of the true positive

rate versus the false positive rate of the model’s predictions. This

curve provides an intuitive measure of the model’s ability to

accurately discriminate between different categories. On the other

hand, Figure 3 presents the confusion matrix, which is a table

that summarizes the model’s classification performance across all

categories. The rows and columns of the matrix correspond to

the predicted and actual labels, respectively.

Additionally, Figure 4 depicts the saliency maps of the top-

performing models, which highlight regions of the input image

that the model pays more attention to when making its

prediction (19–21). These maps provide valuable insights into

the model’s decision-making process and can aid in identifying

areas for improvement or potential biases.
Discussion

Advanced deep learning techniques were utilized in this

investigation to develop a screening model capable of detecting the

likelihood of ASD from chest x-ray. The highest-performing model

exhibited exceptional screening accuracy, achieving an AUC exceeding

0.93 on both the validation and test datasets, indicating high sensitivity
FIGURE 2

Receiver operating characteristic (ROC) curves were generated for the validatio
the different validation datasets.
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and specificity. The results highlight the potential use of chest x-ray as

a valuable tool for screening individuals for ASD, especially in

resource-limited settings where other imaging modalities may not be

readily available or feasible. Importantly, these findings provide

evidence supporting the value of machine learning-based approaches

in healthcare, as they can significantly improve screening accuracy and

efficiency. Moreover, this study represents the first attempt to establish

a screening model for ASD based on chest x-ray. By utilizing heat

maps, specific regions on chest x-ray indicative of the likelihood of

these conditions were identified, providing novel insights into the

underlying pathophysiology of these diseases.

This knowledge could ultimately lead to improved patient

outcomes through earlier detection and intervention. Expanding

the chest radiograph dataset for cardiovascular disease has the

potential to offer modeling advantages. Furthermore, our proposed

model could prove to be a valuable asset given the challenges

faced by pediatric patients who are unable to undergo traditional

echocardiographic examinations. Notably, utilizing chest x-rays as

an alternative can enable faster diagnosis and treatment.

It is important to recognize that additional research is required to

validate the effectiveness and precision of this approach. The

limitations of this study, including its retrospective design and the

requirement for prospective multicenter investigations, highlight the

necessity for ongoing efforts to improve and optimize this model.
n and test datasets for each model, with different colors corresponding to

frontiersin.org

https://doi.org/10.3389/fped.2023.1203933
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


FIGURE 3

These panels display the confusion matrices for the model on both the
validation and test datasets. Each figure is divided into four parts, with
the numbers indicating the quantity of radiographs. The background
color changes to a darker blue as the number of radiographs increases.

Zhixin et al. 10.3389/fped.2023.1203933
Nonetheless, our findings demonstrate encouraging progress inmedical

machine learning, showcasing the potential for novel strategies to

advance clinical outcomes and diagnosis. With adequate validation

and refinement, the proposed model has the potential to serve as a

valuable tool for improving patient care, particularly for pediatric

patients who face difficulties with traditional diagnostic methods.

The retrospective design of this study introduces inherent bias and

may impact the generalizability and reliability of its findings.While heat

maps were utilized as a means of visualizing regions of interest in the

model, the precise features and criteria utilized by the algorithm to

determine the clinical significance of these areas are currently
FIGURE 4

These saliency maps illustrate the features of chest x-ray that were important
the areas of the radiographs that the model focused on when making the diagn
as well as radiographs of children with ASD.

Frontiers in Pediatrics 06
unclear. Retrospective studies, such as this one, have limitations that

must be taken into account when interpreting their results. These

include potential confounding factors, selection bias, and recall bias,

among others. As such, caution should be exercised when drawing

conclusions from these types of investigations. Although heat maps

can provide valuable insights into patterns of activity or association

on imaging studies, their interpretation requires a thorough

understanding of the underlying mechanisms that give rise to these

patterns. Without this knowledge, the clinical relevance and utility of

identified regions may be limited. In light of these considerations, it

is important to further explore the diagnostic and prognostic

potential of medical machine learning approaches while carefully

considering the limitations of retrospective studies and the challenges

associated with the interpretation of complex imaging data.

In conclusion, our study has demonstrated the successful

development of a sophisticated deep learning-based artificial

intelligence model with the ability to accurately diagnose ASD. The

clinical implications of this model are promising, as it holds significant

potential to assist physicians in making diagnostic decisions for

patients with these conditions. Nonetheless, it is imperative to

acknowledge that further research is needed to validate these findings.

Prospective multicenter studies are particularly important to confirm

the robustness and generalizability of our model’s diagnostic

performance across different patient populations and imaging

modalities. Furthermore, exploring the comparative performance of

machine learning models versus radiologists or using our model as a

second reader could be a promising direction for future investigations.

This approach could help assess the value of machine learning-based

models as an adjunct to human expertise in medical diagnostics,

potentially improving both accuracy and efficiency in clinical practice.
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