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Necrotizing enterocolitis (NEC) is one of the most fatal diseases in premature
infants. Damage to the intestinal epithelial barrier (IEB) is an important event in
the development of intestinal inflammation and the evolution of NEC. The
intestinal epithelial monolayer formed by the tight arrangement of intestinal
epithelial cells (IECs) constitutes the functional IEB between the organism and the
extra-intestinal environment. Programmed death and regenerative repair of IECs
are important physiological processes to maintain the integrity of IEB function in
response to microbial invasion. However, excessive programmed death of IECs
leads to increased intestinal permeability and IEB dysfunction. Therefore, one of
the most fundamental questions in the field of NEC research is to reveal the
pathological death process of IECs, which is essential to clarify the pathogenesis
of NEC. This review focuses on the currently known death modes of IECs in NEC
mainly including apoptosis, necroptosis, pyroptosis, ferroptosis, and abnormal
autophagy. Furthermore, we elaborate on the prospect of targeting IECs death as
a treatment for NEC based on exciting animal and clinical studies.
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1. Introduction

NEC is the most common and fatal gastrointestinal emergency in the neonatal intensive

care unit (NICU) (1, 2), and 90% of these infants who develop NEC are preterm (3, 4).

Epidemiological results show that the total incidence of NEC in NICU infants is 2% to

5%, among which the morbidity and mortality very low birth weight (VLBW; <1,500 g)

neonates are 4.5%−8.7% and 20%−30%, respectively, while the mortality rate in extremely

low birth weight (ELBW; <1,000 g) infants is even as high as 30% to 50.9% (5–7). A

better understanding of the pathogenesis of NEC is the key to finding better diagnostic,

preventive, and therapeutic strategies.

The intestinal tract of premature infants is characterized by incomplete development of

immune defense function, and impairment of the intestinal epithelial barrier (IEB) function

exacerbated after experiencing hypoxia and hypothermia (8, 9). The disruption of IEB is a

key factor in the development of intestinal inflammation (10), while increased intestinal

permeability caused by IEB injury can be further amplified by intestinal inflammation,

thus forming a positive feedback loop (10). Furthermore, the aggravated intestinal
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http://crossmark.crossref.org/dialog/?doi=10.3389/fped.2023.1199878&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fped.2023.1199878
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fped.2023.1199878/full
https://www.frontiersin.org/articles/10.3389/fped.2023.1199878/full
https://www.frontiersin.org/articles/10.3389/fped.2023.1199878/full
https://www.frontiersin.org/articles/10.3389/fped.2023.1199878/full
https://www.frontiersin.org/journals/pediatrics
https://doi.org/10.3389/fped.2023.1199878
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Yang et al. 10.3389/fped.2023.1199878
permeability and altered intestinal microbiome work together to

cause the transfer of bacteria or bacterial products across the

IEB, triggering a more intense inflammatory response, and even

adverse consequences such as NEC, late-onset sepsis (LOS),

intestinal perforation, and death (11–13). Therefore, it has been

proposed that NEC evolves from the destruction of the IEB (14)

and further develops into LOS in the imbalance between IEC

damage and repair (15).

The anti-permeability of IEB is mainly maintained and

regulated by intestinal epithelial cells (IECs) and the tight

junction (TJ) formed between IECs in the apical region (16). The

intestinal epithelium is a single-cell layer structure composed of

multiple cells differentiated from intestinal stem cells (ISCs) (17).

Eighty percent of the IECs are absorptive villi epithelial cells,

which are responsible for maintaining the barrier function of the

IEB, while the Paneth cells located in the basement of the

intestinal crypts are considered to be “reserve ISCs” and play an

important role in the repair of the intestinal epithelium (18).

Severe injury of IEB and increased intestinal permeability are the

most prevalent microscopic phenotypes in NEC (19). More

importantly, increased intestinal permeability occurs before the

appearance of NEC signs (20), and the destruction of IEB in

turn makes premature infants susceptible to NEC (21).

Therefore, understanding the cellular damage mechanism of IECs

is key to revealing IEB dysfunction.
2. Death of IECs

The definition of NEC is derived from the fact that IECs die in

this disease (22). Therefore, one of the most basic problems in the

field of NEC research is how do IECs die. Answering this question

is essential for elucidating the pathogenesis of NEC. The currently

known death modes of IECs in NEC mainly include apoptosis,

necroptosis, pyroptosis, ferroptosis, and abnormal autophagy

(Figure 1).
2.1. IECs apoptosis

Intestinal epithelial cells have an extremely high rate of self-

renewal, and their self-clearance at the end of the life cycle in an

apoptotic manner is essential. However, excessive apoptosis may

exacerbate the disruption of the intestinal barrier, allowing more

microorganisms to enter the submucosa and producing large

amounts of cytokines, and further inducing IECs apoptosis (23).

For example, TNF-α leads to apoptosis of IECs by inducing

mitochondrial reactive oxygen species production and activating

the JNK/p38 signaling pathway (24). In the neonatal rat NEC

model, the mRNA ratio of Bax/Bcl-2 and the protein expression

level of Bax were significantly increased in the damaged ileum

tissue. Besides, the number of cleaved-caspase-3 positive cells was

also markedly increased in the epithelial cells of the terminal

ileum. Considering that the ileum is the most vulnerable

intestinal tissue in NEC, these results indicate the existence of

abnormal apoptosis of IECs in NEC (25).
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In the small intestinal tissue of neonatal mice, TLR4 activates

the NF-κB signaling pathway and leads to increased apoptosis of

intestinal cells (26). In contrast, LPS-induced IECs apoptosis and

the incidence of NEC were markedly reduced in TLR4 knockout

mice (27). In addition, TLR4-induced endoplasmic reticulum

stress also led to increased apoptosis of ISCs (28), thereby

affecting the repair of the intestinal epithelium. An increased

mRNA ratio of Bax/Bcl-2 was also observed in the resected ileal

tissues from NEC infants (29). A large number of TUNEL-

positive cells were observed in the apical villus cells, and these

cells also showed positive nitrotyrosine staining, suggesting that

the apoptosis of IECs may also be associated with the formation

of peroxynitrite caused by NO (30).

Despite species differences, human breast milk-derived

exosomes have been shown to prevent H2O2-induced cytotoxicity

and reduce oxidative stress damage in IECs in a mouse NEC

model (31). Oxidative stress is one of the main factors that

increase the expression of the tumor suppressor p53, which

promotes apoptosis (32). Breast milk-derived exosomes were

further shown to regulate IECs injury by targeting p53 through

the delivery of miRNA-125b (33).

In addition, stem cell therapy has been gradually applied in

NEC treatment in recent years. Stem cells have self-renewal

ability, multi-directional differentiation, and good applicability.

Injecting stem cells into NEC model rats can effectively inhibit

apoptosis, reduce inflammation and protect the intestinal barrier

(34, 35). Mesenchymal stem cells (MSCs) have been shown to

reduce the incidence and severity of experimental NEC in rats

(36, 37). Intraperitoneal injection of amniotic fluid-derived

mesenchymal stem cells (AF-MSCs) can suppress Bax expression

by activating Bib and upregulating CHOP, thereby resisting the

apoptosis of IECs caused by endoplasmic reticulum stress

(38, 39). Stem cell therapy has been successfully applied to

clinical cases in 2019 (40), but more evidence is still needed to

further elucidate the therapeutic mechanisms of stem cells in

NEC to achieve breakthroughs in clinical trials.
2.2. IECs necroptosis

Although apoptosis has long been recognized as the major

mode of IECs death in NEC (25, 41). However, intestinal

inflammation is an important hallmark of NEC (21), whereas

apoptosis, as a non-inflammatory type of cell death (42), seems

insufficient to explain the rapid and intense inflammatory

response in NEC, suggesting that apoptosis is more like a

consequence than a cause of NEC (22). Programmed necrosis is

another highly regulated type of programmed cell death also

known as necroptosis, which is a highly inflammatory type of

cell death independent of caspase activation (43). Necroptosis is

characterized by the formation of necrosome upon activation of

receptor-interacting protein kinases (RIPK1 and RIPK3), which

in turn activate mixed-lineage kinase-like (MLKL).

Phosphorylated MLKL oligomerizes and translocates to the cell

membrane, resulting in cell membrane rupture and release of

damage-associated molecular patterns (DAMPs) to trigger an
frontiersin.org
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FIGURE 1

NEC induces programmed death of IECs. Programmed cell death including apoptosis, necroptosis, pyroptosis, ferroptosis and autophagy occurs in IECs
during the development of NEC, resulting in the damage to the IEB. The figure shows the signaling pathways in different death types of IECs.
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inflammatory cascade response (43). Necroptosis is associated with

the pathogenesis of a variety of mucosal inflammatory diseases

(44), including inflammatory bowel disease and allergic colitis in

children, and lethal ileitis during intestinal development (45, 46).

Recent studies have reported that necroptosis is observed in IECs

of human and mouse NEC models, especially in differentiated

villous epithelial cells. Blocking necroptosis by inhibitors or gene

knockdown can reduce the pathological damage of IEB in NEC

mice (22), suggesting that necroptosis of IECs plays an important

role in NEC-related IEB injury. Interestingly, in addition to

mediating apoptosis of IECs, TLR4 also mediates necroptosis in

the development of NEC (47).

The cell types of IECs affected by apoptosis and necroptosis are

different in the pathogenesis of NEC. Apoptosis occurs mainly in

the intestinal crypt epithelial cells (e.g., Paneth cells) (28, 33),

while necroptosis mainly occurs in intestinal epithelial villi cells

(22). Differences in the death types of IECs may be related to

their different biological roles in the pathogenesis of NEC.

Apoptosis of ISCs can lead to intestinal mucosal epithelial repair

disorder, affecting the recovery of IEB function (29). Necroptosis

explains the rupture of intestinal villi in NEC, which facilitates

microbial translocation across the IEB and promotes the

development of LOS (22). In addition, necroptosis that occurs in

infiltrating lymphocytes in the neonatal intestine can further

promote the loss of IECs (22). Therefore, necroptosis of IECs

may be a more direct pathological death mode in IEB lesions

due to NEC.

2-fucosyl lactose isolated from breast milk can effectively

prevent the activation of necroptosis-characteristic genes in the
Frontiers in Pediatrics 03
ileum tissue of premature infants with NEC (22). This result

partially explains why infants fed breast milk have a lower risk of

NEC than infants fed formula milk, which is due to the lack of

2-fucose lactose in formula milk. miR-141-3p mimics can inhibit

the up-regulation of necroptosis-related molecules and the

interaction of RIPK1 and RIPK3 in LPS-induced Caco-2 cells

(48), suggesting that miR-141-3p protects IECs from cellular

injury by inhibiting RIPK1-mediated necroptosis and

inflammatory cytokine release, providing a perspective for

exploring the pathogenesis of NEC.
2.3. IECs pyroptosis

Pyroptosis is another inflammatory mode of programmed cell

death reported in recent years (49). It mainly relies on

inflammasomes to activate caspase-1, resulting in the shearing of

gasdermin D (GSDMD). Subsequently, the cleaved GSDMA

translocates to the cell membrane and forms pores through

polymerization, leading to cell membrane rupture and cell death,

accompanied by the release of large amounts of cytokines (50).

In addition, activated caspase-1 also cleaves the precursors of

IL-1β and IL-18 to form mature IL-1β and IL-18, which are then

released into the extracellular and aggravate the inflammatory

response (51). Cronobacter sakazakii has been reported to induce

NEC. The underlying mechanism is to promote the activation of

NLRP3 inflammasome by activating TLR4/MyD88/NF-kB

signaling pathway, resulting in the up-regulation of downstream

caspase-1 expression and the increase of IL-1β release, and
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ultimately inducing pyroptosis of intestinal cells (52). Significantly

increased mRNA expression of IL-1β, IL-18 and NLRP3, and

protein expression of caspase-1 p20/p10 were also observed in

the ileocecal region of NEC model mice (53). Therefore, there

seems to be the possibility of intestinal epithelium pyroptosis in

the animal models of NEC, but more detailed pathological

diagnosis and anti-pyroptosis treatment studies still need to be

further carried out. In addition, increased levels of IL-1β were

detected in the peripheral blood of infants with NEC, and the

expression of IL-1β and caspase-1 was also observed in the

intestinal epithelium (54).

Curcumin attenuates NLRP3/caspase-1-induced pyroptosis by

activating the SIRT1/NRF2 signaling pathway or inhibiting TLR4

expression, thereby reducing intestinal injury in the rat model of

NEC (55). Emodin has also been reported to reduce intestinal

pyroptosis in NEC neonatal rats by inhibiting the NLRP3/IL-1β

pathway (56). Recently, PHLDA1 was found to be highly

expressed in the intestinal tissues of NEC mice. In sh-PHLDA1

transfected mice with NEC, the survival rate was increased, and

intestinal inflammation, oxidative stress, and cell scorching were

also improved significantly (57). Knockdown of PHLDA1 was

shown to alleviate the NEC phenotype by activating Nrf2 to

inhibit NLRP3 activation and pyroptosis (57). Fan et al. isolated

a novel probiotic candidate strain from fecal samples of healthy

infants and characterized it as Bacteroides fragilis strain ZY-312

(58). ZY-312 can reduce Cronobacter sakazakii-induced

pyroptosis by inhibiting caspase-1 and decreasing IL-1β in NEC

rats. Interestingly, ZY-312 also reversed the increased levels of

caspase-3 and Bax/Bcl-2, suggesting that ZY-312 could

simultaneously block apoptosis induced by Cronobacter sakazakii

(58). As a promising probiotic agent, ZY-312 has great utility for

the prevention and treatment of NEC by reducing dual cell death

forms (pyroptosis and apoptosis) to restore IEB function and

alleviate local inflammatory response.
2.4. IECs ferroptosis

Ferroptosis is an iron-dependent programmed cell necrosis

characterized by lipid peroxidation and membrane damage (59).

In recent years, several studies have demonstrated the presence of

ferroptosis in IEB pathological injury in a variety of colorectal

diseases including ulcerative colitis (60, 61), Crohn’s disease (62),

and intestinal ischemia/reperfusion injury (63, 64). Ferroptosis

leads to elevated levels of lipid peroxidation (LPO)by inhibiting

the activation of glutathione peroxidase 4 (GPx4) and the

oxidation of arachidonic acid (AA) and its esterified

phosphatidylethanolamine (PE) (63, 65), resulting in the death of

IECs and disruption of the intestinal mechanical barrier (66).

Antioxidant enzyme activity is lower in neonates compared to

adults, making infants more susceptible to oxidative stress (67).

Peroxidation-induced ROS accumulation is thought to produce a

strong pro-inflammatory effect in NEC-associated ferroptosis (68).

Bioinformatic analysis and wet experiments have demonstrated the

involvement of ferroptosis in NEC and found that ACSL4, a key

regulator of ferroptosis execution, may participate in NEC by
Frontiers in Pediatrics 04
activating NEC-related Toll-like receptor signaling pathway to

induce IECs death and immune cell activation (69). Meanwhile,

ACSL4 is also involved in autophagy, pyroptosis, apoptosis,

hypoxia, and inflammation of NEC (69). However, there is still a

lack of anti-ferroptosis therapy in NEC. There is currently little

evidence to support the ferroptosis of IECs in NEC, and the

specific mechanism needs to be further confirmed, which will also

provide new insights into the treatment of NEC.
2.5. IECs autophagy

Autophagy is a process of lysosome-dependent degradation of

proteins and organelles and interacts with apoptosis to

synergistically eliminate aging, redundant or damaged cells (70).

Excessive autophagy has been identified as a risk factor for NEC

development (71). Hackam et al. previously reported that gene

expression levels of TLR4, ATG7, LC3, ATG16 and Beclin1 were

significantly increased in the fetal intestine compared to full-term

infants, and that intestinal tissues obtained from aborted fetuses

also showed significantly increased staining for LC3 within the

intestinal epithelium (72). Human β-defensin 3 (hBD3) treatment

inhibits excessive autophagy in IECs may through the CXCR4

signaling pathway. Meanwhile, hBD3 significantly reduces the

expression of autophagy-related proteins (Beclin1, LC3 and p62)

and inflammatory cytokines, leading to improved migration of

IECs and intestinal mucosal integrity, as well as a reduction in

mortality in NEC rats (73). Similarly, erythropoietin in breast

milk protects IECs from excessive autophagy and apoptosis in

NEC mice via the Akt/mTOR and MAPK/ERK signaling

pathway (74). Epidermal growth factor (EGF) treatment

attenuates NEC injury by modulating intestinal autophagy in rat

models (71, 75). β-carotene also attenuates LPS-induced

apoptosis and autophagy in IECs by activating the PI3K/AKT/

mTOR signaling pathway (76). All these studies suggest that

IECs autophagy and apoptosis play an important role in NEC

pathological damage, and modulating IECs autophagy can be

used as an effective complement to anti-apoptotic therapy for NEC.
3. Conclusion and outlook

How does the pathological IECs death mechanism interact and

induce increased intestinal permeability, leading to intestinal barrier

dysfunction? Can targeting one of these cell death mechanisms as a

therapeutic strategy provide effective treatment for infants with

NEC? Although these problems remain questionable, understanding

the mechanisms of IECs’ death has brought new insights to explore

new treatments (77). In this review, we highlight the important role

of IECs death mechanisms in the process of NEC and review

potential therapeutic approaches to alleviate NEC by preventing

IECs death in recent years (Table 1). Future breakthroughs in NEC

treatment should focus on finding drugs or interventions that can

effectively protect IEB. Mechanistically, it is desirable that these

drugs directly target the programmed death of IECs and the

associated severe IEB damage caused by inflammation.
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TABLE 1 Therapies and drugs targeting different IECs death pathway.

Cell
Death

Model Treatments Key molecular mechanism

Apoptosis In vitro IEC-6 cells Human breast milk-derived
exosomes

Target and inactivate the apoptosis-inducer p53 through delivering microRNA-125b;

Reduce oxidative stress-related injury (33)

In vivo mice NEC model Mesenchymal stem cells
(MSCs)

AF-MSCs antagonize the ER stress by activating Bip and upregulating CHOP, inhibiting the
expression of Bax, and stimulating the expression of Bcl-2 (38)

Necroptosis In vivo mice NEC model Human breast milk, or 2
fucosyl lactose

Inhibit downstream of RIPK1;

Inhibit synergetic necroptosis–apoptosis cross-talk (22)

In vitro LPS-treated Caco-2
cells

MiR-141-3p Suppress RIPK1-mediated inflammation and necroptosis (48)

Pyroptosis In vivo the rat NEC model Curcumin Activate SIRT1/NRF2;

Inhibit the TLR4 signaling pathway (55)

In vivo the rat NEC model Emodin Inhibit NLRP3-IL-1β signaling pathway (56)

In vivo neonatal mouse
model of NEC

Knockdown of PHLDA1 Activate Nrf2 signaling pathway;

Inhibit NLRP3 activation (57)

In vivo neonatal rat model; Bacteroides fragilis strain ZY-
312

Inhibit caspase-1 and reduce IL-1β levels;

In vitro Caco-2 cell lines Decrease expression of caspase-3, Bax and increase expression of Bcl-2 (Reverse the apoptosis)
(58)

Ferroptosis Human intestinal tissue
samples;

Absence ACSL4 may induce ferroptosis and immune cell activation through NEC related signaling
pathway (69)

In vivo mice NEC model;

In vitro Caco-2 cell lines

Autophagy In vitro IEC-6 and Caco2
enterocytes;

Human β-defensin-3 Inhibit migration;

CXCR4 signaling pathway (did not provide direct evidence) (73)
In vivo rat model of NEC

In vitro IEC-6 cells; Erythropoietin (Epo) from
breast milk

Reduce apoptosis through the MAPK/ERK pathway;

In vivo rat NEC
experimental model

Decreased autophagy via the Akt/mTOR signaling pathway (74)

In vitro IEC-6 cells; Epidermal growth factor
(EGF)

Reduce the expression of autophagy-related proteins (Beclin1, LC3 and p62) (75)

In vivo the rat NEC model

In vitro IEC-6 cells β-Carotene Attenuate apoptosis and autophagy via PI3K/AKT/mTOR signaling pathway (76)
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