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Neonates with critical congenital heart defects undergoing open-heart surgery on
cardiopulmonary bypass circulation are at risk for white matter brain injury. This
article reports on pre- and postoperative plasma concentrations of brain injury
markers glial fibrillary acidic protein (GFAP), neurofilament light (NfL) and Tau,
and their respective associations with white matter lesions detected on
postoperatively performed brain MRI. Forty term newborns with isolated critical
congenital heart defects were included in a prospective observational study.
Brain injury marker plasma concentrations were determined prior to surgery and
at postoperative days 1, 2 and 3. Brain magnetic resonance imaging was
performed pre- and postoperatively. Concentrations of brain injury markers were
analysed using ultrasensitive single molecule array technology. Absolute pre-
and postoperative plasma biomarker concentrations, and postoperative
concentrations adjusted for preoperative concentrations were used for
subsequent analysis. Plasma concentrations of GFAP, NfL and Tau displayed a
well-defined temporal trajectory after neonatal cardiopulmonary bypass
circulation. GFAP and Tau reached peak concentrations at postoperative day 2
(median concentrations 170.5 and 67.2 pg/ml, respectively), whereas NfL
continued to increase throughout the study period (median concentration at
postoperative day 3 191.5 pg/ml). Adjusted Tau at postoperative day 2 was
significantly higher in infants presenting with white matter lesions on
postoperative MRI compared to infants without white matter injury.
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1. Introduction

Neonates with critical congenital heart defects requiring open-heart surgery

in infancy are at risk for white matter brain injury and impaired neurodevelopment

(1,2). A prognostic biomarker enabling identification of newborns at risk would be

beneficial, recognizing the often subtle clinical manifestations of white matter aberrations
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TABLE 1 Clinical characteristics of included study participants.

Clinical characteristics of the study cohort
Sex (male/female) (n) 25/15

Birthweight (g) (median (IQR)) 3357 (3234–3592)

Gestational age at birth (weeks) (median (min–max)) 39þ4 (37þ6–42þ1)

Preoperative balloon atrial septostomy (n) 13/40

Maximal preoperative lactate (mmol/L) (median (IQR)) 2.8 (2.2–4.0)

Preoperative white matter lesion (n) 1/24

Jungner et al. 10.3389/fped.2023.1186061
in infancy and the possible long-term consequences of neonatal

brain white matter injury (3,4).

Glial fibrillary acidic protein (GFAP), Neurofilament Light (NfL)

and Tau are recognized biomarkers for glial and axonal brain injury.

GFAP constitutes a key element in astrocyte structure and function

(5). Increased plasma concentrations of GFAP after pediatric

cardiopulmonary bypass circulation (CPB) have been associated

with nadir oxygen delivery (6) and nadir temperature (7) during

bypass circulation. Moreover, GFAP concentrations at bypass

separation in a neonatal cohort have been correlated to adverse

neurodevelopmental outcomes at 12 months of age (8). NfL is a

cytoskeletal protein predominantly found in myelinated axons (9).

The potential use of NfL as a biomarker for adverse

neurodevelopmental outcome has been evaluated in preterm

cohorts (10,11), but never in infants with critical congenital heart

defects. Tau is located mainly in axons and has emerged as a

promising predictor for brain injury as determined by magnetic

resonance imaging (MRI) and adverse neurocognitive outcome in

newborns with hypoxic-ischemic encephalopathy (HIE) (12,13). A

small-scale clinical trial suggested an association between

neurological injury and increased Tau concentrations in children

treated with extracorporeal membrane oxygenation (14), but

perioperative concentrations during neonatal open-heart surgery

have not yet been evaluated.

The primary aim of this study was to evaluate the temporal

trajectory of GFAP, NfL and Tau plasma concentrations before

and after neonatal open heart surgery. The secondary aims were

to evaluate the association between perioperative plasma brain

injury marker concentrations and structural postoperative white

matter injury, and to examine the potential correlations between

selected clinical variables and pre- and postoperative biomarker

concentrations.
Postnatal age at surgery (days) (median (IQR)) 5 (4–7)

RACHS–1 (median (range)) 4 (3–6)

Corrective procedure

ASO þ VSD closure (n) 11/40

ASO (n) 9/40

repair of hypoplastic arch þ VSD closure (n) 5/40

repair of truncus arteriosus (n) 2/40

ASO þ repair of hypoplastic arch þ VSD closure (n) 1/40

repair of hypoplastic arch (n) 1/40

repair of TAPVR with obstruction (n) 1/40

Yasui procedure (n) 1/40

aortic valvotomy (n) 1/40
2. Material and methods

2.1. Ethical considerations

The study was conducted according to the guidelines of the

World Medical Association Declaration of Helsinki and approved

by the Swedish Ethical Review Authority (protocol code 2014/

479). Study participants were included after written informed

consent from the neonates’ legal guardians.

Palliative procedure

Norwood procedure (n) 3/40

BT-shunt þ atrial septectomy þ pulmonary valvotomy (n) 2/40

BT-shunt þ atrial septectomy (n) 2/40

BT-shunt þ pulmonary arterioplasty (n) 1/40

Time on CPB (min) (median (IQR)) 182 (142–208)

Ultrafiltration (n) 23/40

Selective cerebral perfusion (n) 11/40

Maximal postoperative lactate (mmol/L) (median (IQR)) 3.1 (2.3–3.9)

Postoperative ECMO (n) 0/40

Postoperative white matter lesion (n) 16/30

RACHS, risk adjustment for congenital heart surgery, ASO, arterial switch

operation; VSD, ventricular septal defect; TAPVR, total anomalous pulmonary

venous return; BT-shunt, Blalock-Taussig shunt; CPB, cardiopulmonary bypass;

ECMO, extracorporeal membrane oxygenation.
2.2. Study cohort and execution

Forty term neonates with isolated critical congenital heart

defects requiring surgery on CPB circulation within 30 days of

life were included in a prospective observational study. In order

to avoid confounding, neonates with suspected or confirmed

syndrome diagnosis, hypoxic-ischemic encephalopathy grades 2–

3, or with the requirement for preoperative support on

extracorporeal membrane oxygenation were excluded.

Blood samples for determination of plasma brain injury

marker concentrations were obtained preoperatively at the day of
Frontiers in Pediatrics 02
surgery and at postoperative days 1, 2 and 3. Sampling was

discontinued when the arterial line was withdrawn. Blood

samples were collected in sodium citrate tubes and immediately

centrifuged. Plasma was separated, aliquoted into 200 μL portions

in cryo tubes and snap-frozen on dry ice. Samples were stored at

�80�C until analysis.

Preoperative brain magnetic resonance imaging (MRI) was

performed in as close proximity to surgery as possible.

Postoperative brain MRI was performed in hemodynamically

stable neonates following removal of myocardial electrodes.

Clinical characteristics of the study participants are reported in

Table 1.
2.3. Analysis of plasma brain injury markers

Plasma NfL, GFAP and Tau concentrations were measured by

single molecule array (Simoa) technology using the commercially

available Neuro 4-plex A kit on an HD-X instrument according

to instructions from the kit manufacturer (Quanterix, Billerica,

MA). The measurements were performed in one round of

experiments, using one batch of reagents by board-certified

laboratory technicians who were blinded to clinical data. Intra-
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assay coefficients of variation, monitored using internal quality

control samples (one high and one low sample in duplicates on

each plate), varied from 5.3–11%.
2.4. Magnetic resonance imaging

Brain MRI was performed on a 3T MR scanner (PRISMA,

Siemens Healtheneers, Erlangen, Germany) using a 20 channel

receive head coil (Siemens Healtheneers, Erlangen, Germany).

Imaging comprised: a coronal T2-weighted turbo spin echo

(TSE) sequence, a sagittal T1-weighted magnetization prepared

rapid gradient echo (MPRAGE) sequence with submillimeter

spatial resolution, an axial susceptibility weighted sequence

(SWI), a T1-weighted true inversion recovery (tIR) sequence and

a diffusion weighted (DWI) sequence. MR images were assessed

for image quality and scored for pathology to assign study

subjects into two groups 1) patients without postoperative

structural white matter injury and 2) patients with postoperative

structural white matter injury assessed as perioperatively

acquired. Reviewing and scoring of MRI were done by two

pediatric neuroradiologists blinded to biomarker data. Consensus

data are presented.
2.5. Statistics

Analyses were performed using absolute biomarker

concentration data for pre- and postoperative analyses, and

adjusted biomarker data at the respective timepoints for

postoperative analyses. For analyses using absolute brain injury

marker concentrations, biomarker concentrations were

log10-transformed prior to analysis due to the non-parametric

distribution of raw data. Adjusted biomarker data were defined

as (postoperative concentrations � preoperative concentrations)

4 preoperative concentrations expressed as percentage change

from baseline.

Comparisons between timepoints were done using repeated

measures ANOVA with post hoc Bonferroni correction. Adjusted

p�values � 0:05 were considered significant. The relationship

between absolute and adjusted postoperative biomarker

concentrations and presence of postoperative structural white

matter injury was evaluated in a subset of study participants with

assessable postoperative brain MRI (n ¼ 30). Wilcoxon rank sum

test was used for comparisons between the group with

postoperative white matter injury and the group without

postoperative white matter injury. Results were corrected for

multiple comparisons using Bonferroni correction. Adjusted

p�values � 0:05 were considered significant.

Sex, birthweight, postnatal age at surgery (days), highest

preoperative lactate (mmol/L), preoperative balloon atrial

septostomy (y/n) and presence of preoperative white matter

lesion (y/n) were assessed for possible associations with

preoperative biomarker absolute concentrations using univariable

and multivariable linear regression models. Preoperative white

matter lesion was a rare event in the study cohort (1/24) and
Frontiers in Pediatrics 03
thus excluded from analysis. RACHS-1 score, corrective or

palliative procedure, time on bypass circulation (minutes),

selective cerebral perfusion (y/n), ultrafiltration when on bypass

(y/n) and highest postoperative lactate (mmol/L) were assessed

for possible correlations with postoperative day 2 absolute

concentrations with univariable and multivariable linear

regression models. Postoperative day 2 samples were chosen

recognizing the significant increase in GFAP and Tau at

postoperative day 2 compared to preoperative concentrations,

and to obtain the maximal number of data points. No

adjustment for multiple comparisons were made due to the

exploratory nature of the study. Unadjusted p�values � 0:05

were considered significant.

All statistical analyses were performed using R version

4.2.0 (15).
3. Results

3.1. Perioperative plasma brain injury marker
concentrations

Preoperative, and postoperative day 1 and 2 blood samples

were obtained in 40 subjects. Postoperative day 3 samples were

obtained in 27 participants. Plasma concentrations of all

measured brain injury markers in all acquired samples were

above the lower limit of detection.

Postoperative day 1–3 plasma brain injury marker

concentrations displayed a temporally well-defined trajectory.

GFAP median concentrations increased significantly at

postoperative day 2 compared to preoperative and postoperative

day 1 concentrations, and remained at comparable levels at

postoperative day 3. Postoperative concentrations of GFAP

adjusted for preoperative concentrations were not significantly

different between timepoints, Figures 1A,B. Median absolute

concentrations of NfL increased twofold from preoperative

concentrations at postoperative day 1, and continued to rise each

postoperative day corresponding to a seven-fold increase at

postoperative day 3, Figures 1C,D. Median concentrations of

Tau reached peak concentrations at postoperative day 2, equaling

a three-fold increase compared to preoperative concentrations.

Tau concentrations at postoperative day 3 were significantly

decreased in comparison with postoperative day 2

concentrations, Figures 1E,F. Absolute and adjusted plasma

brain injury marker concentrations and distributions are

presented in Table 2.
3.2. Magnetic resonance imaging

Preoperative and postoperative MRI scans were obtained in 24

and 33 study subjects, respectively. Three postoperative scans were

excluded due to insufficient quality generating a total of 54 scored

examinations. Pre- and postoperative imaging were available in 20

study participants. Four subjects had preoperative imaging only, and

ten study participants had postoperative imaging only. The
frontiersin.org
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FIGURE 1

Temporal trajectory of absolute (A, C, E) and adjusted (B, D, F) plasma concentrations of glial fibrillary acidic protein (GFAP), neurofilament light (NfL) and
Tau before and after neonatal open-heart surgery. Note that the y-axis in panel A, C and E is presented on a log10-scale. Baseline in panel B, D and F is set
to preoperative concentrations. GFAP, glial fibrillary acidic protein; NfL, neurofilament light; PRE, preoperative; POD 1–3, postoperative day 1–3.

Jungner et al. 10.3389/fped.2023.1186061
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TABLE 2 Absolute and adjusted plasma concentrations for brain injury
markers Glial fibrillary acidic protein, Neurofilament Light and Tau.

Brain injury
marker

Concentration
(pg/ml)

Change from
preoperative

concentrations (%)

(median (IQR)) (median (IQR))

Glial fibrillary acidic protein
preoperative 122.3 (98.2–169.0)

postoperative day 1 128.4 (79.2–175.0) 3 (�37–28)

postoperative day 2 170.5 (127.7–266.0) 24 (�1–94)

postoperative day 3 169.0 (130.2–236.7) 42 (�4–80)

Neurofilament Light
preoperative 28.6 (18.2–52.2)

postoperative day 1 63.1 (55.1–103.6) 154 (73–199)

postoperative day 2 108.9 (84.2–159.3) 275 (164–449)

postoperative day 3 191.5 (155.2–227.4) 701 (238–897)

Tau
preoperative 21.9 (16.5–30.3)

postoperative day 1 35.1 (23.2–64.6) 54 (�15–156)

postoperative day 2 67.2 (42.5–126.3) 219 (103–359)

postoperative day 3 46.8 (30.3–78.1) 122 (45–336)
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preoperative MRI examination was obtained at a median of 1 day

(IQR 1–3) before surgery. The postoperative MRI examination was

performed at a median of 8 days (IQR 6–10) post surgery.

Postoperative MRI did not show any structural white matter

lesion in 14 study participants. White matter injury was detected

in 16 subjects, Table 1. One of these subjects presented with a

single punctate lesion in the preoperative MRI. The same subject

had a substantial aggravation of white matter lesions in the

postoperative MRI and was thus included in the subgroup with

postoperative white matter injury in subsequent analysis. In

study participants with postoperative white matter injury and

lacking preoperative MRI (n ¼ 7), white matter lesions were

scored as perioperatively acquired if not assessed as related to

birth trauma or preexisting comorbidity. Identified white matter

injury comprised multiple punctate lesions in 14 subjects with

restricted diffusion in six study participants and SWI-verified

hemorrhage in one subject, and SWI-verified white matter

microbleeds in two study subjects.
3.3. Predictive ability of brain injury marker
concentrations for postoperative structural
white matter injury

The relative increase in plasma Tau from preoperative

concentrations until postoperative day 2 was significantly higher

in infants presenting with white matter injury at the

postoperative brain MRI compared to that in infants without

white matter lesions. No statistically significant differences in the

absolute concentrations of Tau were observed when stratified for

presence or absence of postoperative white matter injury,

Figures 2A,B. Postoperative day 2 concentrations of Tau were

significantly increased in infants undergoing a palliative
Frontiers in Pediatrics 05
procedure as compared to neonates subjected to a corrective

procedure, see below. A posthoc subgroup analysis restricted to

neonates subjected to a corrective procedure (n ¼ 22) was made,

demonstrated a persisting significant correlation between

increased adjusted Tau at postoperative day 2 and subsequent

white matter injury, p ¼ 0:04.

Absolute or adjusted plasma concentrations of GFAP and NfL

respectively were not associated with postoperative white matter

injury at any timepoint, data not shown.
3.4. Associations between clinical variables
and perioperative biomarker concentrations

Preoperative NfL concentrations were increased in infants

subjected to balloon atrial septostomy (BAS), Figure 3. The

association between preoperative BAS and increased plasma

concentrations of NfL remained significant at postoperative day 1

and 2, but not at postoperative day 3, Figure 3. The relationship

between previous BAS and increased perioperative concentrations

of NfL persisted after adjustment for pre- and postoperative

maximal lactate concentrations and RACHS-1 group,

respectively. Neonates undergoing a palliative procedure

presented with increased Tau median concentrations at

postoperative day 2 compared to neonates undergoing corrective

surgery (127 pg/ml for palliative procedure vs 55 pg/ml for

corrective surgery, p ¼ 0:01). Beta estimates and confidence

intervals for significant correlations at postoperative day 2 are

presented in Table 3.

Sex, birthweight and postnatal age at surgery were not associated

with preoperative plasma brain injury marker concentrations as

determined by univariable linear regression analysis. Brain injury

marker concentrations at postoperative day 2 were not correlated

to selective cerebral perfusion or ultrafiltration.
4. Discussion

This study reports on the perioperative trajectory of plasma

brain injury markers GFAP, NfL and Tau, and their respective

association with postoperative white matter lesions following

neonatal open-heart surgery on cardiopulmonary bypass

circulation. We observed a characteristic response over time for

the respective brain injury markers from preoperative

concentrations through the first postoperative days. Neonates

presenting with postoperative structural white matter injury had

a more pronounced relative increase in Tau at postoperative

day 2 compared to infants without postoperative white matter

injury. The difference in absolute plasma Tau concentrations

between the groups was however not significant. Neither GFAP

nor NfL were able to discriminate between infants with or

without white matter injury at any timepoint.

The finding of a pronounced relative increase in Tau

concentrations in infants with postoperative white matter lesions

deserves some consideration. First, the high prevalence of

postoperative white matter lesions in our study supports
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FIGURE 2

Absolute (A) and adjusted (B) Tau concentrations stratified according to presence (yellow) or absence (blue) of white matter injury at the postoperative
brain MRI scan. Note that the y-axis in panel A is presented on a log10-scale. Baseline is set to preoperative concentrations in panel B. GFAP, glial fibrillary
acidic protein; NfL, neurofilament light; PRE, preoperative; POD 1–3, postoperative day 1–3.

Jungner et al. 10.3389/fped.2023.1186061
numerous previous reports on the vulnerability of the immature

white matter in the neonate born with a critical congenital heart

defect (2,16). The majority of the postoperative white matter

lesions detected by MRI in our cohort were not identifiable by

any clinically overt neurological symptomatology, advocating the

call for a prognostic biomarker. Second, our finding of increased

adjusted Tau in children with subsequent white matter injury is

in line with previous studies evaluating Tau in pediatric brain

injury from other causes, e.g. traumatic brain injury, cerebral

malaria and anoxic brain injury (17–19). In those studies,

increased circulating concentrations of Tau have been associated

with worse clinical presentation or adverse neurocognitive

outcome. Third, the dichotomization of postoperative white

matter injury into a yes/no-variable prevented a more granular

analysis of the association between adjusted Tau concentrations

and postoperative white matter injury.

It is debatable whether the evaluation of associations between

intraoperative events and postoperative brain injury marker

concentrations requires adjustment for the respective

preoperative concentrations. Neonatal open-heart surgery on

cardiopulmonary bypass circulation results in an extensive

dilution of the native circulating blood volume which

hypothetically minimizes the effect of preoperative protein

concentrations on the postoperative concentrations. Although the
Frontiers in Pediatrics 06
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this study, the fresh frozen plasma transfusion requirements after

bypass separation were significantly different between study

subjects (0–116 ml/kg). Moreover, it is plausible that uncorrected

critical congenital heart defects with aberrant hemodynamics

have a significant effect on preoperative plasma brain injury

marker concentrations. This was clearly demonstrated by the

correlation between previously performed BAS and increased

circulating concentrations of NfL. While acknowledging these

limitations, we chose to present adjusted and absolute

concentrations in this study recognizing the added information

of adjusted values.

Previous studies reporting on GFAP concentrations in infants

subjected to neonatal cardiac surgery have shown significant

increases in biomarker concentrations immediately after bypass

separation (6,8). None of the cited studies evaluated GFAP

concentrations beyond the day of surgery, making comparisons

difficult. When contrasting our biomarker concentrations with

results obtained at comparable timepoints in adult cardiac

surgery (20,21), maximal NfL and Tau concentrations were ten-

fold higher in neonates compared to those observed in adults.

One of the studies identified a substantial increase in plasma Tau

concentrations two hours after cardiopulmonary bypass

circulation (21). Evaluation of plasma biomarker concentrations
frontiersin.org
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FIGURE 3

Perioperative NfL concentrations stratified according to previous balloon atrial septostomy yes/no. Note that the y-axis is presented on a log10-scale. NfL,
neurofilament light; PRE, preoperative; POD 1–3, postoperative day 1–3; BAS, balloon atrial septostomy.

TABLE 3 Univariable and multivariable regression analysis of postoperative day 2 brain injury marker concentrations. Bold face indicate statistical
significance defined as p � 0:05.

Variable Univariable model Multivariable model

b [95% CI] b [95% CI]
Neurofilament light

BAS = yes 0.22 [0.09, 0.35]

max lactate (mmol/L) 0.08 [0.007 , 0.14] 0.04 [�0.03 , 0.11]

þ BAS = yes 0.19 [0.05 , 0.32]

RACHS-1 = 4 �0.17 [�0.30, �0.03] �0.06 [�0.19 , 0.08]

þ BAS = yes 0.23 [0.09 , 0.37]

Tau

corr proc = yes �0.28 [�0.48 , �0.07]

BAS, balloon atrial septostomy; RACHS-1, risk adjustment for congenital heart surgery.
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at bypass separation or at PICU admission was unfortunately

lacking in our material but should be included in upcoming

studies.

Our study is limited by the small cohort, the single-centre

design and the lack of a control group. Moreover, assessment of

the prognostic ability of a biomarker for subsequent white matter

injury would preferably incorporate objective measures of white

matter function and maturation, e.g., diffusion tensor imaging

data enabling a sensitive evaluation of white matter

microstructure (22,23). The lack of quantified white matter

integrity apart from structural injury is a limitation of the

present study, as is the lack of long term neurodevelopmental

outcome data.

We present novel perioperative data on GFAP, NfL and Tau

plasma concentrations in neonates subjected to open heart
Frontiers in Pediatrics 07
surgery and propose that a pronounced increase in Tau at

postoperative day 2 may serve as a prognostic biomarker for

postoperative white matter injury. These data will be of value

in the design of larger trials with the objective of identifying

and validating the prognostic ability of circulating brain

injury markers for subsequent white matter injury and

neurodevelopmental impairment.
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