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Cytomegalovirus (CMV) is a ubiquitous virus which causes a mild illness in healthy
individuals. In immunocompromised individuals, such as children receiving
haematopoietic stem cell transplantation, CMV can reactivate, causing serious
disease and increasing the risk of death. CMV can be effectively treated with
antiviral drugs, but antiviral resistance is an increasingly common complication.
Available therapies are associated with adverse effects such as bone marrow
suppression and renal impairment, making the choice of appropriate treatment
challenging. New agents are emerging and require evaluation in children to
establish their role. This review will discuss established and emerging diagnostic
tools and treatment options for CMV, including antiviral resistant CMV, in
children undergoing haematopoietic stem cell transplant.
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1. Introduction

Cytomegalovirus (CMV) is a double stranded, linear DNA virus that is approximately

236 kilobase pairs (kbp) in length and belongs to the Herpesviridae family. The

Herpesviridae family is divided into three sub-families, based on their biological

properties: alpha herpesviruses (including the causative agents of “cold sores” and “genital

herpes”, Herpes Simplex virus), beta herpesviruses (including CMV) and gamma

herpesviruses (including Epstein Barr virus).

CMV is a ubiquitous herpesvirus that results in mild, self-limiting infections in healthy

individuals. The seroprevalence in Australia is estimated to be over 30% in infants, increasing

to over 50% by adulthood, and is higher in lower socio-economic areas (1, 2). As with other

herpesvirus infections, CMV remains latent after primary infection, for the life of the host.

This latent CMV can reactivate during periods of stress or when the host immune system

becomes compromised, such as during solid organ transplantation (SOT) or

haematopoietic stem cell transplantation (HSCT). In HSCT, CMV disease including

pneumonitis, hepatitis, colitis and retinitis occurs in approximately 50% of patients with

CMV reactivation, without antiviral intervention. Reactivation is associated with an
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approximately 3-fold increase in non-relapse mortality in HSCT

recipients (3–5). In this setting, CMV reactivation may require

prolonged antiviral treatment. This may select sub-populations of

virus with reduced antiviral susceptibility, leading to CMV

antiviral resistance and treatment failure (6). Current testing for

antiviral resistance in CMV is difficult to access, slow and

expensive, limiting its diagnostic value.
2. Cytomegalovirus in haematopoietic
stem cell transplantation

In HSCT, donor progenitors of the immune system are

transplanted into patients as definitive treatment for a range of

haematological, immune, metabolic, and other disorders. The

indications for HSCT in children have grown dramatically over

the last four decades (7). Immunosuppressive drugs, graft failure,

and Graft vs. Host Disease (GvHD) all result in significant

immune suppression and play a role in the increased risk of

morbidity and mortality in children receiving HSCT (8–10).

Paediatric HSCT recipients require extended CMV monitoring

after GvHD due to increased risk of developing CMV

reactivation long after transplantation (11, 12). Infectious

complications are common and the risk of infection increases

with the intensity and duration of immunosuppressive therapy

(9, 13).

Children undergoing HSCT may experience either primary

infection with CMV or reactivation of a latent infection. Recent

studies estimate that CMV reactivation occurs in approximately

20% of HSCT recipients (14, 15). It commonly presents

asymptomatically and occurs an average of 8-weeks post-

transplantation (8, 16, 17). The risk of CMV reactivation in

patients is associated with the serostatus of the patient (recipient)

and the transplant donor. Unlike in solid organ transplantation,

seropositive HSCT recipients are at highest risk of reactivation

owing to the prolonged absence of T-cell mediated immunity to

control CMV replication (10, 13, 18).
3. The diagnostic approach to CMV in
HSCT

Prevention of CMV disease may be achieved by a prophylactic

or pre-emptive approach. Antiviral prophylaxis in HSCT is

complicated by drug-drug interactions and toxicity, so it is

common practice to pursue a pre-emptive approach in which

regular surveillance of blood for CMV reactivation initiates pre-

emptive therapy. Pre-emptive therapy is the most-used approach

in Australasian paediatric HSCT recipients (19, 20). The 2017

European Conference on Infections in Leukaemia (ECIL7)

recommend weekly sampling until at least 100 days post-

transplant; however, sampling frequency and duration may be

increased in patients deemed to be at high risk of infection (21,

22). In some cases, CMV reactivation or primary infections may

occur more than 10 years post transplantation. These late
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reactivations typically have worse outcomes, likely due to delayed

diagnosis (23–25).
3.1. Polymerase chain reaction

PCR is the most common method used in diagnostic

laboratories for CMV detection and can be qualitative or

quantitative (qPCR). PCR assays target and amplify conserved

sections of the CMV genome with the inclusion of fluorescent

dyes or probes used to assess the presence of the target within a

patient’s sample. qPCR has superseded testing for CMV

antigenemia, and may be performed on various specimen types,

including blood, urine, bronchoalveolar lavage and organ tissues

(26). Surveillance as part of a pre-emptive treatment approach is

performed on blood.

Interpretation of qPCR results are complicated by a lack of

standardised diagnostic methods, variable specimen types, and

differences in collection schedules and reference standards. In

2010, the World Health Organisation (WHO) established an

international standard to be used for qPCR to ensure the

reproducibility of results and to reduce variation in reporting

between laboratories (27, 28). Nonetheless, there is no

consensus for the viral copy number at which treatment should

be initiated (21).

The monitoring of CMV viral loads can help to infer the

emergence of antiviral resistance. Consensus recommendations

define refractory infection when the viral load increases by more

than 1 log10 after at least 2 weeks of appropriate antiviral

therapy. In the absence of cell-mediated immunity following

HSCT, viral loads may take several weeks to reduce despite

effective treatment. However, it would be reasonable in this

setting to initiate testing for antiviral resistance (21).
4. Antiviral resistance in CMV

Antiviral resistance in CMV occurs due to single nucleotide

mutations in genes targeted by CMV antiviral drugs, such as DNA

polymerase (UL54), terminase subunit (UL56, UL51 & UL89) and

viral protein kinase (UL97). The genes and specific single

nucleotide polymorphisms (SNPs) associated with CMV antiviral

resistance are summarised in Table 1. Mutations in the viral

protein kinase (UL97) are the most common mutations reported

and reduce the phosphorylation of Ganciclovir, preventing

Ganciclovir from being added to the growing DNA chain and

causing it to be ineffective (29). Mutations in UL97 may also

prevent its binding of Maribavir, causing Maribavir to become

ineffective (30). Mutations in the viral DNA polymerase (UL54)

can cause resistance to Ganciclovir, Cidofovir and Foscarnet. Some

mutations cause increased exonuclease activity of the viral DNA

polymerase, which allows the cleavage of areas containing

Ganciclovir or Cidofovir thereby reducing their effectiveness (31).

Structural changes in the viral DNA polymerase prevent its

binding to Foscarnet, causing Foscarnet to become ineffective (32).

Mutations in any of the genes that make up the viral terminase
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TABLE 1 List of mutations and deletions causing CMV antiviral resistance,
ganciclovir [(GCV) including valganciclovir], cidofovir (CDV), foscarnet
(FOS) and maribavir (MBV) (32, 33, 49, 85, 115–124).

Drug Gene Mutations/
deletions

Drugs Gene Mutations/
deletions

MBV UL27 L337M*, V353A*,
L397R*, T409M,
H411Y/L*/N, H411N

GCV &
MBV

UL97 F342Y/S*, V356G*,
D456N*, V466G,
C480F/R*, V466G,
P521L, Y617del*UL97 L348V

GCV UL97 F342Y, K359E/Q/N,
E362D, L405P,
M460V/I/T/L,
V466G, A505T,
C518Y, H520Q,
P521L, A591V,
C592G, A594V/T/E/
G/P/S, 591–594del,
591–607del, 595–
603del, 595del,
600del, 601–603del,
601del, I610T,
A613V, L595S/F/W,
E596G/Y, G598S,
K599T, C603W/R/S,
C607Y/F, I610T

GCV &
CDV

UL54 D301N, E303D*/G*,
N408D/K/S, N410K,
F412C/l/S/V*,
D413E/A/N/Y*,
K488R*, K500N,
L501I/F, T503I,
A505V, K513E/N/R/
T, D515Y, L516P/
W/R*, I521T,
P522A/S, C524del,
V526L, C539G/R*,
A543P*, L545S/W,
I726T/V, V823A,
A987G

UL54 524del, P829S*,
L957F

GCV &
FOS

UL54 S290R*, Q578L,
D588N, L776M,
V781I, V787A/L,
L802M, A809V,
T821I, M844V*,
E951D*, E989D

FOS UL54 N495K, T552N*,
L565V, S585A*,
D588E, F595I*,
T700A, V715A/M,
E756D/Q/G,Q783R*,
V798A*, T813S,
T838A, M844T*,
V946l*, A987V

GCV &
FOS &
CDV

UL54 K493N, Q578H,
D588N, Q589H,
H600L, E756K,
L773V, V787E,
V812l, T813S,
A834P, G841A/S,
A928T, 981–982del

CDV UL54 P497S, D542E*,
A543V, K805Q

Letermovir
Gene UL56 UL51 UL89

Mutations/
Deletions

M3I/V*, C25F, L26P*, F41L*,
I48M*, L51M, A103V*,
E141STOP*, N148D*, E157G*,
Q182K*, Q213R*, S229F,
V231A/L, N232Y, Q234R,
V236A/L/M, E237D/G, V236M,
L241P, L243P, T244K/R, L254F,
S255L*, L257F/I, K258E,
F261C/l/S, S262C, S269G*,
E276G*, I313V*, Y321C,
C325F/Y/R/W, L328V/I,
M329T, H335Y, E339G, K350R,
V363I, A365S, N368D/I,
R369G/S/T/M/S/K, S378N*,
T399I, S445N, S445-S447deL*,
E485G*, I535V*, E542deL*,
Y575C*, M641T*, L658S*,
Y667H*, S705F*, V706A*,
L750P*, Y757H*, Y775I*,
R816W*, P846l*

P91S,
V113L

K41E*, N74S*,
S102F*, F124L*,
T132A*, V146I*,
P176S*, H243R*,
H246R*, D309G*,
N320H, L323P*,
T331A*, D344E,
T350M, M359I,
S373G*, M406V*,
N426D*, L458P*,
S521G*, L522P*,
A532T*, I572V*,
Q625STOP*,
T637A*, V656A*

*Suspected resistance.
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subunit (UL56, UL51 and UL89) can prevent its binding to

Letermovir, allowing it to continue cleaving the concatemers and

hence causing Letermovir to become ineffective (33).
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Mutations in the CMV genome may arise under selective

pressure, such as prolonged or subtherapeutic antiviral therapy

(10, 34). Mixed infections in which different variants of CMV,

exhibiting different susceptibility profiles occur. These are of

particular concern in HSCT recipients who may experience

prolonged periods of CMV reactivation despite prolonged

antiviral therapy (26, 35–37).

The prevalence of Ganciclovir resistant CMV infections in

HSCT recipients has been reported up to 9.4% (25, 38–42). Due

to the limitations of resistance testing these rates may be under-

estimated (40, 41, 43). Antiviral resistance is often associated

with multiple resistance mutations. An Australian study found

rates of infections in solid organ transplant (SOT) recipients

harbouring both UL54 and UL97 mutations had increased over a

six-year period (26). There is little information regarding

mortality in antiviral resistant CMV infections. One study

reported mortality to be 11% higher in SOT recipients with

Ganciclovir resistant CMV infections, while two other studies

reported mortality of 25% and 69% respectively (6, 39, 44).

Although Letermovir is a relatively new drug, there are reports

of CMV resistance to Letermovir developing rapidly (45, 46).

Maribavir may be useful in treating Ganciclovir resistant CMV

infections (47, 48). Cross resistance to Maribavir and Ganciclovir

arises rarely despite their dissimilar mechanisms of action (49).

Mutations in UL27 gene have been associated with reduced

effectiveness of Maribavir, however, this could be a result of

counteractivity for the loss of the viral protein kinase, rather than

causing Maribavir resistance (49).
5. CMV antiviral resistance testing

Sanger sequencing is the most commonly used method to

identify mutations in UL97 and UL54 known to be associated

with resistance to ganciclovir and foscarnet (26, 34, 37, 50).

Sanger sequencing requires viral loads of at least 1,000 IU/ml for

successful characterisation, and is unable to differentiate variants

that make up less than 20%–30% of the overall viral population.

As a consequence this method may fail to identify mixed

infections, or low-levels of resistance in a predominantly

susceptible population (35, 51). Patients should be tested for

antiviral resistance whenever resistance is suspected, even after

mutations have been identified, as additional resistance mutations

can develop (26). The requirement of high viral loads, alongside

the extended turnaround times can hinder the desirability of

sequencing for antiviral resistance testing. Next generation

sequencing (NGS) technologies are a higher resolution tool

capable of detecting minority variants down to as little as 1%,

and may be performed in samples with a lower viral load (52–

54). Currently, due to the cost per sample, lack of availability of

NGS within all pathology laboratories, specialised skills required

for analysis, and scarcity of databases which summarise the

clinically relevant antiviral resistance mutations for use in a

bioinformatics pipeline, NGS assays are not widely used for

detection of CMV antiviral resistance.
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6. Novel diagnostic approaches

6.1. Interferon gamma release assay for
CMV (IGRA-CMV)

A recently commercialised diagnostic assay is the IGRA-CMV

which measures interferon-γ that is released by the patients’ T-

lymphocytes when exposed to CMV antigens ex vivo (55, 56).

These assays indicate immunity to CMV and correlate with the

subsequent risk of progression to CMV reactivation or disease.

The IGRA-CMV has been evaluated in HSCT recipients and has

demonstrated the potential to assist clinicians when to start and

stop antiviral treatments (55–57). The ECIL7 supports the use of

IGRA in addition to qPCR to support risk stratification and

guide the treatment of HSCT recipients with CMV infections,

but there are currently no clinically validated thresholds for

intervention (21).
6.2. Digital PCR

Digital PCR offers advantages over conventional PCR methods

by quantifying viral loads without the need for a calibration curve.

It exhibits improved precision without a loss of sensitivity (58). It is

also possible to quantify CMV antiviral resistant mutations,

however this method requires unique assays for every mutation,

in addition to specialised instrumentation (59). The role of

digital PCR for CMV monitoring is currently limited by the

workflow advantages of conventional PCR methods.
6.3. Viable and non-viable CMV

The COVID-19 pandemic has sparked discussions around

viable and non-viable virus in patients with detectable SARS-

CoV-2 long after clinical symptoms have ceased (60, 61).

Persistent viraemia despite appropriate treatment complicates

treatment decisions. Differentiating between viable and non-

viable CMV could allow for early detection of drug failure and

may also provide a means of assessing drug resistance without

relying on detection of specific resistance mutations. To date no

such commercial systems exist for CMV.
7. Established therapies

7.1. Ganciclovir

Ganciclovir is a first-line antiviral drug used for treating CMV

(21). It acts as a guanosine analogue that is initially phosphorylated

by viral protein kinase (UL97) (62–64). The phosphorylated form

competes with guanosine triphosphate by incorporating itself

into the growing DNA chain, stalling the DNA polymerase

(UL54) and preventing further transcription of the viral DNA

(64). Due to the requirement of CMV viral protein kinase
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activity for initial phosphorylation, Ganciclovir may have reduced

efficacy at low CMV viral loads (65).

Importantly, Ganciclovir can also disrupt transcription of

human cellular DNA, hence it can be toxic to the patient (66,

67). Ganciclovir is given intravenously, requiring patients to

attend hospitals to receive treatment and often requiring central

venous lines. Twenty years after the development of Ganciclovir,

its prodrug, Valganciclovir was approved for use in 2001.

Valganciclovir has the same mode of action and efficacy as

Ganciclovir (68), however it can be taken orally and has a

favourable toxicity profile (8). Ganciclovir may still be required

in severe CMV infections and where oral absorption cannot be

assumed (26). Effective ganciclovir exposures may be assessed by

therapeutic drug monitoring (TDM), though this remains

uncommon (69).

There is controversy surrounding appropriate dosing of

Ganciclovir in paediatric patients. Institutional guidelines vary in

their use of weight or body surface area-based dosing and there

are few data to support a pharmacodynamic target. Ganciclovir is

known to cause bone marrow suppression, and may cause higher

rates of hepatotoxicity in children compared with adults, making

appropriate dosing a priority (70). Though weight-based dosing

achieved lower ganciclovir exposures than body-surface area

based dosing in paediatric SOT recipients, these exposures

achieved a virological clearance (71).
7.2. Foscarnet

Foscarnet binds to the viral DNA polymerase (UL54),

occupying the position where phosphates of incoming

deoxynucleotide triphosphates (dNTPs) would sit, hence

preventing normal pyrophosphate release and halting the viral

DNA polymerase (72). Foscarnet must be given intravenously,

and is associated with significant renal toxicity (34). It has fewer

effects on the bone marrow and as such, may be used as first-

line therapy in the immediate post-transplant period. It is

otherwise used as a second-line therapy when there are adverse

events associated with ganciclovir or there is identified or

suspected resistance to Ganciclovir (21, 34). Renal dysfunction

caused by Foscarnet can persist in patients for up to 6 months

after the discontinuation of the drug (34). Paediatric patients

experience higher rates of Foscarnet related thrombocytopenia

compared with adults (70). One study used a combination of

Ganciclovir and Foscarnet to treat high-risk paediatric HSCT

recipients and found alternating drugs daily was very effective in

preventing the development of CMV disease, however 30% of

patients discontinued treatment due to toxicity (73).
7.3. Cidofovir

Cidofovir is a cytosine analogue that is phosphorylated by

cellular enzymes and incorporated into DNA to slow elongation

(74). Cidofovir has a long intracellular half-life, which is

advantageous as it is not orally available and must be
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administered intravenously (75). An orally available lipid prodrug

of Cidofovir (Brincidofovir) failed to reduce CMV infection in a

randomised controlled-trial of prophylaxis in adults undergoing

HSCT, and caused significant gastro-intestinal toxicity which

limited its use (76).

The half-life of Cidofovir is longer in paediatric patients,

however it is similarly tolerated to adults (75). Cidofovir has

limited effectiveness in treating Ganciclovir-resistant infections

and is associated with significant ocular and renal toxicity in

paediatric patients (77).
8. Emerging therapies

8.1. Letermovir

Letermovir was approved by the FDA in 2017 for prophylaxis

in adult HSCT recipients at high risk of CMV reactivation (78).

The CMV genome is circularised during replication, allowing it

to replicate rapidly in both directions, the product of which is a

very long strand of DNA of multiple sets of CMV genomes

linked end to end, known as concatemers (79). These

concatemers are normally cleaved and packaged into individual

virions by the viral terminase subunit (UL51, UL56 & UL89);

however, Letermovir binds to the viral terminase subunit,

preventing this mechanism and leaving the long viral DNA

incapacitated (80, 81).

Letermovir specifically targets CMV and has no effect on other

herpesviruses (82), and can be administered both intravenously and

orally, with side-effects reported to be uncommon (83). Patients

receiving cyclosporin or tacrolimus (used for immunosuppression

in transplant recipients) in addition to Letermovir must be

monitored closely, as drug-drug interactions can lead to increased

absorption of cyclosporin (84). As with the other drugs, there is

evidence of resistance developing after treatment (85).

Letermovir significantly reduced the number of CMV

infections compared to placebo in a Phase 3 randomised

controlled trial of prophylaxis in adults, and was well tolerated

(86). It has become the drug of choice for prophylaxis in centres

in Germany, Italy, Japan, and the USA (87–90). Data are

emerging to support the use of letermovir to prevent CMV in

children following HSCT (91, 92), while it has also been used

successfully as pre-emptive therapy (93, 94). A Phase 2 study of

Letermovir prophylaxis in children undergoing HSCT is ongoing

(ClinicalTrials.gov identifier NCT03940586) (95).
8.2. Maribavir

Maribavir is orally available and functions by competing with

adenosine triphosphate (ATP) to bind to the viral protein kinase

(48). When bound to Maribavir, the viral protein kinase is

unable to phosphorylate nucleotides, resulting in halted

transcription of the viral DNA (48). Maribavir was approved by

the FDA in 2021 for treating CMV infections that were not

responding to conventional therapies (96). Considering Maribavir
Frontiers in Pediatrics 05
prevents the viral protein kinase from phosphorylating

nucleotides, it also prevents phosphorylation of Ganciclovir,

causing it to become ineffective, hence Maribavir and Ganciclovir

cannot be administered together (97). Maribavir is ineffective at

preventing CMV when used as a prophylactic treatment, which

may be explained by the non-essential nature of the viral protein

kinase (CMV can recruit host cell kinases to continue viral

replication) (98). Resistance may also develop rapidly, with one

study reporting resistance developing at an average of 16 weeks

after starting Maribavir therapy (52). To the extent of our

knowledge, there have been no studies examining the tolerability

of Maribavir in paediatric patients.
8.3. CMV-specific cytotoxic T cells
(CMV-CTLs)

There has been substantial interest in the adoptive transfer of

donor-derived CMV-CTLs to treat refractory CMV infections

following HSCT since its first demonstration (99). The use of

CMV-CTLs appears to accelerate CMV-specific immune

reconstitution and reduce viral load (100), and is particularly

attractive in the context of refractory or resistant infection (101).

The techniques required to obtain CMV-CTLs are time-

consuming and costly, so far limiting their widespread evaluation,

and adoption into clinical practice. Despite this, their promise is

reflected by inclusion in international guidelines such as ECIL7

which support their use for pre-emptive therapy in high-risk

patients, and for the treatment of antiviral resistant infections (21).

Posoleucel is a third-party multi-virus T cell therapy which has

been evaluated in children and adults undergoing HSCT. In an

open-label Phase 2 study of 58 patients (including 18 children)

there was a complete response in 11/24 patients and partial

improvement in 12/24 patients with CMV infections suspected to

be antiviral resistant. Posoleucel was effective in 10/12 patients

with two or more viral infections. It was well tolerated with no

evidence of an increased risk of GvHD (102). Larger studies are

required to prove efficacy of this therapy and demonstrate the

risk of GvHD, in addition to how the drug is tolerated in

paediatric HSCT recipients.
8.4. CMV vaccines

There is presently no licensed vaccine to prevent CMV despite

numerous candidates being evaluated in clinical trials (103). An

mRNA vaccine candidate supported by Moderna TX, Inc (104).

is currently undergoing a phase 3 trial in women of childbearing

age, with the aim of preventing congenital CMV. It is expected

to complete in 2025 (ClinicalTrials.gov identifier NCT05085366)

(105). Also under development is a CMV bivalent subunit

vaccine, which has demonstrated promising immune responses in

mice, with the hopes to begin human trials in the coming years

(106). The availability of a vaccine may not improve care for

immunocompromised patients due to their inability to mount a

suitable immune response.
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9. Off label treatment options

9.1. Leflunomide

Leflunomide is an immunosuppressant used in rheumatoid

arthritis. It has shown effectiveness as an off-label treatment for

CMV infections by interfering with virion assembly (107).

Successful treatment of Ganciclovir resistant infections has been

reported with a combination of Foscarnet and Leflunomide

(108). However, Leflunomide has displayed reduced effectiveness

in the presence of higher CMV loads (109, 110). Despite

Leflunomide being well tolerated for treating rheumatoid

arthritis, higher doses are required to treat CMV, causing side-

effects, such as diarrhoea, anaemia, and increased liver function

tests (109). ECIL7 recommends Leflunomide is only used to treat

antiviral resistant CMV infections and should be used in

conjunction with antiviral therapy (21, 22).
9.2. Artesunate

Artesunate is an antimalarial drug that has been used off-label

for the treatment of CMV infections (111, 112). Artesunate binds

to a human cellular protein called vimentin; vimentin is

normally cleaved during CMV infection, suggesting it has a role

in controlling CMV. Artesunate binding prevents the cleavage of

vimentin, in turn inhibiting CMV infection (113). Effectiveness

of Artesunate in combination with conventional drugs has been

demonstrated in cell culture (114). Clinical studies have reported

mixed efficacy in controlling CMV infection in HSCT recipients

(112), and its use is only recommended when resistance has

developed to conventional drugs (21, 22).
10. Summary

CMV is effectively treated using conventional (Ganciclovir

and Valganciclovir, Foscarnet and Cidofovir) and emerging

antiviral drugs (Maribavir and Letermovir). There is also an

immunological approach to treatment (CMV-CTLs) and off-label
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drugs that have shown some effectiveness in treating refractory

CMV infections (Leflunomide and Artesunate). Antiviral

resistance in CMV is a growing problem in children undergoing

HSCT and there remain significant limitations in our diagnostic

approach to resistance. NGS may guide a more nuanced

approach to the treatment of mixed infections.
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