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Background: There is no generalizable transcriptomics signature of pediatric acute
respiratory distress syndrome. Our goal was to identify a whole blood differential
gene expression signature for pediatric acute hypoxemic respiratory failure (AHRF)
using transcriptomic microarrays within twenty-four hours of diagnosis. We used
publicly available human whole-blood gene expression arrays of a Berlin-defined
pediatric acute respiratory distress syndrome (GSE147902) cohort and a sepsis-
triggered AHRF (GSE66099) cohort within twenty-four hours of diagnosis and
compared those children with a PaO2/FiO2 < 200 to those with a PaO2/FiO2≥ 200.
Results: We used stability selection, a bootstrapping method of 100 simulations
using logistic regression as a classifier, to select differentially expressed genes
associated with a PaO2/FiO2 < 200 vs. PaO2/FiO2≥ 200. The top-ranked genes that
contributed to the AHRF signature were selected in each dataset. Genes common
to both of the top 1,500 ranked gene lists were selected for pathway analysis.
Pathway and network analysis was performed using the Pathway Network Analysis
Visualizer (PANEV) and Reactome was used to perform an over-representation
gene network analysis of the top-ranked genes common to both cohorts.
Changes in metabolic pathways involved in energy balance, fundamental cellular
processes such as protein translation, mitochondrial function, oxidative stress,
immune signaling, and inflammation are differentially regulated early in pediatric
ARDS and sepsis-induced AHRF compared to both healthy controls and to milder
acute hypoxemia. Specifically, fundamental pathways related to the severity of
hypoxemia emerged and included (1) ribosomal and eukaryotic initiation of factor
2 (eIF2) regulation of protein translation and (2) the nutrient, oxygen, and energy
sensing pathway, mTOR, activated via PI3K/AKT signaling.
Conclusions: Cellular energetics and metabolic pathways are important
Abbreviations

AHRF, acute hypoxemic respiratory failure; ARDS, acute respiratory distress syndrome; AUPRC, area under
the precision recall curve; AUROC, area under the receive operating characteristic curve; eIF2, eukaryotic
initiation of factor 2; GEO, Gene Expression Omnibus; HDAC, histone deacetylase; IPA, Ingenuity Pathway
Analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; PANEV, Pathway Network Visualizer; PEEP,
positive end-expiratory pressure; PICU pediatric intensive care unit; TCA, tricarboxylic acid.
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mechanisms to consider to further our understanding of the heterogeneity and underlying
pathobiology of moderate and severe pediatric acute respiratory distress syndrome. Our
findings are hypothesis generating and support the study of metabolic pathways and
cellular energetics to understand heterogeneity and underlying pathobiology of moderate
and severe acute hypoxemic respiratory failure in children.
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pediatric, acute respiratory distress syndrome, mechanical ventilation, gene expression profiling,

machine learning, transcriptomics
1. Introduction

Clinical and biological heterogeneity are hallmark features of

acute respiratory distress syndrome (ARDS), and correlating

clinical phenotypes with biological endotypes using plasma

biomarkers and clinical variables using machine learning

methods has led to the discovery of a hyperinflammatory

(reactive) and hypoinflammatory (unreactive) ARDS endotype

with differential responses to high positive end-expiratory

pressure (PEEP), low tidal-volume and restrictive fluid therapies

(1–4). Systemic infections, such as sepsis, often caused by

pneumonia, are a common trigger of ARDS; however, trauma,

aspiration, near-drowning, burns, and blood transfusions are also

instigators of ARDS.

Statistical and machine learning approaches have been used to

perform a meta-analysis of publicly available whole-blood gene

expression data to predict mortality from sepsis in adults and

children (5). A multi-cohort analysis of adult and pediatric

whole-blood gene expression data did not find a generalizable

transcriptomics signature of ARDS (6), perhaps due to

differences in the analytical approach, the cohort selection, or in

the combination of children and adult data. Machine learning

random forest models applied to clinically available laboratory

and physiologic data within the first two days of intensive care

outperformed multivariable logistic regression at predicting

prolonged acute hypoxemic respiratory failure (AHRF) of a week

of more following influenza infection in a large multicenter

cohort of children enrolled in the PICFLU observational study

(7). We have used machine learning to explore differentially

expressed genes in the primary airway cells from tracheal aspirate

samples of mechanically ventilated children with ARDS (8). Since

publication of the ARDS transcriptomic meta-analysis

incorporating adult ARDS and pediatric sepsis-triggered AHRF

(6), pediatric ARDS-specific whole-blood microarray gene

expression cohort is now publicly available, thus providing an

opportunity to further explore the existence of pediatric ARDS-

specific transcriptomic signatures (9).

The PaO2/FiO2 ratio is the ratio of arterial oxygen partial pressure

(PaO2 in mmHg) to fractional inspired oxygen (FiO2 expressed as a

fraction, not a percentage). The primary objective of this study was

to determine a gene expression signature of mild (PaO2/FiO2≥ 200)

compared with moderate/severe (PaO2/FiO2 < 200) AHRF from two

publicly available whole blood gene expression microarray datasets.

Secondary objectives were to explore the common gene networks

of moderate/severe vs. mild AHRF.
02
2. Methods

2.1. Ethics approval and consent to
participate

Only deidentified clinical data was used in this study. The parent

study protocols for collection and use of biological specimens and

clinical data were approved by the Institutional Review Board

(IRB) at the Children’s Hospital of Philadelphia (CHOP IRB 13-

010578, “Biomarkers of pediatric ARDS”, Approved 7/2/2014;

GSE147902) and by the IRBs of each of the 18 participating

institutions for the sepsis AHRF cohort [Cincinnati Children’s

Hospital Medical Center parent protocol approved by Emory IRB

00079159, “Genomic Analysis of Pediatric Systemic Inflammatory

Response Syndrome (SIRS)”, Approved 02/21/2015; GSE66099].

Written informed consent was obtained from legal caregivers prior

to enrollment in the parent studies (10–14). Procedures were

followed in accordance with the ethical standards of the

responsible committee on human experimentation (institutional or

regional) and with the Helsinki Declaration of 1975.
2.2. Data collection

The pediatric sepsis dataset, GSE66099, and the pediatric

ARDS dataset, GSE147902 were downloaded from the NCBI

Gene Expression Omnibus (GEO) repository (9, 15) (https://

www.ncbi.nlm.nih.gov/geo/). Gene expression data was

deidentified and publicly available from the aforementioned two

independent observational cohort studies. Both datasets contain

gene expression profiles obtained from peripheral whole blood

samples of patients who were admitted to the pediatric intensive

care unit (PICU) within 24 h of a diagnosis of sepsis or ARDS

using the Berlin definition, respectively. Children in GSE66099

were stratified by having a PaO2/FiO2 < 200 (vs. ≥200) and

defined as having acute hypoxemic respiratory failure as chest

radiograph findings were not available to ensure that all ARDS

criteria were satisfied. In addition, some children in the

GSE66099 cohort did not meet the hypoxemia threshold used in

the Berlin definition of ARDS (PaO2/FiO2 < 300). By definition,

children enrolled in the GSE147902 had to meet al.l Berlin

criteria for ARDS (16). For this present analysis, AHRF was

defined in both cohorts as a PaO2/FiO2 < 200. Pediatric-specific

consensus criteria for septic shock and non-pulmonary organ

failures were used to determine eligibility for study enrollment (17).
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2.3. Normalization and background
correction

The Affy package from R was used to remove technical

variations in the gene expression data (18). Background noise

correction and normalizations were performed using the R

package gcrma (19). Surrogate Variable Analysis using the R

package sva was used to correct for batch effects variation

between datasets (20).
2.4. Probe to gene mapping

The GSE66099 and GSE147902 microarray dataset Affymetrix

probes were matched to gene symbols using Affymetrix Human

Genome U133 Plus 2.0 (hgu133plus2.db) and Human Gene 2.1

ST Array (hugene21sttranscriptcluster.db), respectively. Genes

with multiple probes were matched to the same gene and the

expressions were averaged (5).
2.5. Variable selection, classification
models, and validation

Graphical modeling or cluster analysis of high-dimensional

data [features (p) >> number of samples (n)]. Stability selection is

a “wrapper” algorithm which combines a variety of distinct

feature selection algorithms (LASSO, Decision Tree, Recurrent

Feature Elimination, etc.) from the Python scikit-learn package to

address the nature of this high-dimension data reduction

problem (21). This approach is similar to popular “Baruta” R

package (22). Stability selection can be seen as the python

alternative, which uses subsampling (bootstrap sampling) of the

data in combination with a feature selection algorithm such as

LASSO to find the most important features in every sampled

version of the data. The aggregate results from bootstrap

sampling are used to calculate a stability score for each feature in

the data. Features were then selected by choosing an appropriate

threshold for the stability scores (importance coefficient). We

selected candidate markers using stability selection by

bootstrapping 100 simulations from all of the data to select stable

gene markers using logistic regression as a classifier, with 0.6 as

the threshold for selection to ensure enough genes were available

for the primary analysis (21). The top-ranked genes that

contributed to the AHRF signature were selected in each dataset.

Genes common to both of the top 1,500 ranked gene lists were

selected for pathway analysis. Leave-one-out cross-validation was

used to validate the primary model. Area under the receiver

operating characteristic (AUROC) and precision-recall curves

were generated using the Python package scikit-learn 1.1.2 (23).
2.6. Pathway analysis

The most common pathways were explored using the 185 top-

ranked genes common to both datasets using the Kyoto
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Encyclopedia of Genes and Genomes (KEGG) (24, 25). The

identified KEGG pathways are user defined first-level pathways

that were fed into the R package Pathway Network Visualizer

(PANEV) to identify and map the second- and third-level

pathway networks associated with AHRF (26). The Python

Reactome package was used to perform an over-representation

gene network analysis using the 185 top-ranked genes common

to both datasets (27, 28). We also explored canonical pathway

enrichment, upstream regulator, causal network analysis, and

molecular and cellular functions with the 185 top-ranked genes

common to both datasets using the Ingenuity Pathway Analysis

software (IPA, Qiagen, Redwood City, CA). The data analysis

workflow using machine learning methods for common dataset

gene selection and pathway analysis is shown in Figure 1.
2.7. Protein-protein interaction network
analysis

We visualized the protein-protein interaction network using

the software package Cytoscape 3.2.0 (29). Nodes represent

proteins and edges represent interactions between two proteins.

Hub genes in the protein-protein interaction network were

defined at those with at least a degree of connectivity greater

than or equal to ten. These analyses are available in the github

repository at https://github.com/ghiasirad/pahrf.git as PPIN.pdf

(Supplementary File 5), PPIN.sif (Supplementary File 6), and

PPIN.csv (Supplementary File 7) files.
3. Results

3.1. Cohort description

There were forty-seven healthy control children, sixty-five

children without (i.e., PaO2/FiO2≥ 200) and ninety-six children

with (PaO2/FiO2 < 200) sepsis-related AHRF from GSE66099

(sepsis dataset). There were twenty-six children without (PaO2/

FiO2 201–300) and seventy children with (PaO2/FiO2 < 200)

AHRF in GSE147902 (pediatric ARDS dataset). The available

demographics and clinical characteristics of the participants

stratified by PaO2/FiO2 ratio are summarized in Table 1.
3.2. Selection of common genes of an AHRF
signature

Clinically, we were most interested in determining the

underlying gene transcripts and molecular pathways that

distinguish the most severely hypoxemic and critically ill children

with PaO2/FiO2 < 200 mmHg from those with milder hypoxemia

(PaO2/FiO2≥ 200 mmHg). We first determined whether the

differential gene expression pattern discovered by comparing

PaO2/FiO2 200–300 with PaO2/FiO2 < 200 from GSE147902 could

be applied to a cohort of children with AHRF secondary to

sepsis. There was no overlap in differentially expressed genes for
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FIGURE 1

Machine learning feature selection pipeline.
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children with a PaO2/FiO2 < 200 vs. a PaO2/FiO2≥ 200 using the

Benjamini-Hochberg false discovery rate for multiple-hypothesis

corrections (30). We therefore used a machine learning stability

selection approach to perform this comparison (21, 31).

We independently ranked the differentially expressed genes

by PaO2/FiO2 < 200 vs. PaO2/FiO2 ≥ 200 using the machine

learning stability select algorithm (21, 31). From the top-ranked

1,500 genes in each data set, genes common to both ranked

gene sets were selected in ten gene increments as depicted in

Figure 2A. The optimal number of common genes was

determined by plotting the area under the receiver operative

curve (ROC) characteristic for each incremental addition of ten

genes to the AHRF model as shown in Figure 2B. The red line

in Figure 2B shows the change in the ROC with the addition

of common genes for the pediatric ARDS dataset (GSE147902).

The black line in Figure 2B shows the change in the ROC with

the addition of common genes for the sepsis dataset

(GSE66099). The ROC plateaus around 25–30 genes for each

data set. The area under the receiver operating curves

(AUROC) and area under the precision recall curves (AUPRC)

for GSE147902 (Figures 3A,B) and for GSE66099

(Supplementary Figures S1A,B) are shown for the optimal
Frontiers in Pediatrics 04
common genes for each incremental addition of ten genes to

the model. For both datasets the AUROC was maximized at 21

genes with a value of 0.82 (95% CI: 0.72–0.89) for GSE147902

and 0.76 (95% CI: 0.69–0.82) for GSE66099 (genes listed in

Supplementary Data).

Due to the imbalance in the proportion of cases with and

without AHRF in the two cohorts, we report the area under the

precision recall curve (AUPRC) for the model of PaO2/FiO2 < 200

vs. PaO2/FiO2 201–300. The AUPRC measures the ability of the

models to correctly distinguish PaO2/FiO2≥ 200 from PaO2/FiO2

< 200 in both GSE66099 and GSE147902. The pediatric ARDS

GSE147902 dataset consists of 27% of children with a PaO2/

FiO2≥ 200 while the sepsis GSE66099 dataset consists of 40% of

children with a PaO2/FiO2≥ 200. The AUPRC was maximized at

92-genes with a value of 0.90 (95% CI: 0.75–0.91) for GSE147902

and 0.66 (95% CI: 0.5–0.76) for GSE66099.
3.3. Network analysis

The 185 genes selected using stability selection method were

ranked by normalized importance coefficient for each dataset.
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TABLE 1 Demographic and clinical characteristics of cohort participants.

Characteristics, n (%)
or median (Q1, Q3)

GSE66099
PaO2/FiO2

GSE147902
PaO2/FiO2

≥200
n = 99

<200
n = 65

200–
299

n = 26

<200
n = 70

Age (year) 2.4 (1.15,
5.75)

2.4 (0.8,
5.9)

6.7 (0.8,
14.1)

9.4 (2.9,
14.5)

Sex

Female 39 (39.4) 29 (44.6) 7 (27) 31 (44)

Male 60 (60.6) 36 (55.4) 19 (73) 39 (56)

Race/Ethnicity

Black –a –a 4 (15) 26 (37)*

White –a –a 15 (58) 24 (34)*

Hispanic –a –a 6 (23) 8 (11)*

Asian/Pacific Islander –a –a 0 (0) 3 (4.3)*

Other –a –a 1 (3.8) 9 (13)*

Severity of illness

Pediatric Risk of Mortality III 13.0 (9, 19) 16.0 (11,
22)

10 (7, 17) 11 (6, 20)

Non-pulmonary organ
failures, n (min, max)

2 (1, 6)* 1 (1, 6) 1 (1, 2.75) 1 (1, 2)

Comorbidities

Any comorbidity 43 (44.3) 21 (32.3) 21 (81) 44 (63)

Malignancy 6 (6.2) 3 (4.6) 6 (29) 14 (32)

Immunocompromised 9 (9.3) 7 (10.8) 8 (31) 22 (31)

Bone Marrow or Stem Cell
Transplant

4 (4.1) 2 (3.1) 5 (19) 10 (14)

Clinical Trigger

Infectious pneumonia 14 (14.1) 17 (26.2) 13 (50) 43 (61)

Non-pulmonary sepsis 85 (85.9) 73 (73.8) 9 (35) 10 (14)

Aspiration pneumonia NA NA 1 (3.8) 9 (12.9)

Trauma NA NA 0 (0) 3 (4.3)

Other NA NA 3 (11.5) 5 (7.1)

Outcomes

PICU mortality 9 (9.1) 13 (20.0)* 8 (31) 12 (17)

Complicated course 16 (16.7) 29 (44.6)* 9 (35) 19 (27)

28-day ventilator-free days –a –a 20 (0, 23) 18 (1, 22)

aData is not available for reporting.

*Wilcoxon rank sum test; Fisher’s exact test; Pearson’s χ2 test, p < 0.05.

FIGURE 2

The receiver operative curve (ROC) characteristics for different number
of genes (12, 21, 48, 69, 92, 185) selected to model moderate/severe
pediatric acute respiratory distress syndrome (ARDS; PaO2/FiO2 < 200)
vs. mild pediatric ARDS (PaO2/FiO2 = 200–300). (A) The top 1,500
genes were ordered in a rank-list from GSE66099 and GSE147902.
The lists were compared and common genes were added sequentially
in the model in groups of 10 genes per iteration. (B) The ROC
characteristics were calculated for each addition of ten genes in the
model up to 185 genes total. The lines show the ROC value for
GSE66099 (black) and GSE147902 (red), respectively. The faint red
and black lines are the 95% confidence intervals for the ROC for each
iteration of the model. The ROC plateaus between 25 and 30 genes
for each dataset.
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The genes retained in the primary model all had importance

coefficient scores greater than 0.9. The selected genes, ranked by

the number of genes involved in the KEGG pathway, are shown

in Figure 4. The top 3 KEGG pathways included metabolic,

ribosomal, and coronavirus/COVID-19 disease pathways.

Metabolic pathways involve the intricate networks of glycolysis,

the tricarboxylic acid (TCA) cycle, the pentose phosphate

pathway, gluconeogenesis, fatty acid oxidation and lipid

metabolism, one-carbon metabolism, amino acid and cofactor

metabolism, and nucleic acid metabolism for the production of

energy and substrates for fundamental biological reactions. The

coronavirus/COVID-19 disease pathway consists of anti-viral

detection via the toll-like receptor (TLR) and retinoic acid-

inducible gene I (RIG-I) pattern recognition receptor pathways,

activation of the NLRP3 inflammasome, and signaling through

the pro-inflammatory cytokines IL-6, JAK/STAT, PI3K, and

MAPK signaling cascades, and activation of the transcription
Frontiers in Pediatrics 05
factor NF-KB. We supported the KEGG pathway analysis using

Ingenuity Pathway Analysis (IPA) software, and the top

canonical IPA pathways included: the Coronavirus pathogenesis

pathway (p-value 3.70e-07), Eukaryotic Initiation Factor 2 (eIF2)

signaling (p-value 4.62e-05), mitochondrial dysfunction (p-value

2.95e-04), mammalian target of rapamycin (mTOR) signaling (p-

value 5.16e-03), and cell cycle control of chromosomal

replications (p-value 8.6e-03) (Supplementary Table S1).

Upstream regulators included La Ribonucleoprotein 1 (LARP1, p-

value 3.95e-07), Mitogen-Activated Protein Kinase Kinase Kinase

Kinase 4 (MAP4K4, p-value 4.92e-06), Rapamycin-insensitive

companion of mammalian target of rapamycin (RICTOR, p-value

9.91e-05), carbohydrate-responsive element-binding protein

(ChREBP) also known as MLX-interacting protein-like (MLXIPL,

p-value 2.60e-05), and Brain cytoplasmic 200 long-noncoding

RNA (BC200 lncRNA or BCYRN1, p-value 1.76e-04). The

main molecular and cellular functions included protein synthesis
frontiersin.org

https://doi.org/10.3389/fped.2023.1159473
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


FIGURE 3

Area under the receiver operative curve (AUROC) (A) and area under the
precision recall curve (AUPRC) (B) for different number of genes (12, 21,
48, 69, 92, 185) selected to model moderate/severe pediatric acute
respiratory distress syndrome (ARDS; PaO2/FiO2 < 200) vs. mild
pediatric ARDS (PaO2/FiO2 = 200–300) from GSE147902.

FIGURE 4

KEGG pathway analysis bar chart with number of genes for the
overlapping 185 stability selected ranked genes from GSE147902 and
GSE66099 comparing children with a PaO2/FiO2 < 200 with a PaO2/
FiO2 =≥200.

Grunwell et al. 10.3389/fped.2023.1159473
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(p-value range: 1.49e-02–7.08e-13), RNA Damage and

Repair (p-value range: 1.48e-06–1.48e-06), Cell Death and

Survival (p-value range: 2.97e-02–6.06e-05), Cell Morphology

(p-value range: 2.97e-02–6.06e-05), and Cellular Function and

Maintenance (p-value range: 2.97e-02–6.06e-05). The top

networks were RNA Damage and Repair, Protein Synthesis, RNA

Post-Transcriptional Modification (Score 47), Cell Death and

Survival, Protein Synthesis, Cancer (Score 44), Protein Synthesis,

Cancer, Hematological Disease (Score 20), Skeletal and Muscular

System Development and Function, Tissue Morphology, Cell

Death and Survival (Score 18), and Cancer, Endocrine System

Disorders, Organismal Injury and Abnormalities (Score 16).

We next visualized networks of pathways involved in the

moderate/severe AHRF gene expression signature by imputing

the list of 185 common genes (Supplementary File 1) into the

PANEV package in R. The first-, second-, and third-level

pathways with the corresponding genes contributing to each

pathway are shown in Supplementary Files 2–5 (Supplementary

Files can be found at: https://github.com/ghiasirad/pahrf.git).

Finally, we used the curated Reactome database to perform a

pathway over-representation analysis using the 185 common

genes defining the moderate/severe AHRF gene expression

signature. There were nineteen significantly enriched pathways

shown in Table 2 with cytosolic and mitochondrial protein

translation, selenoamino acid metabolism, selenocysteine

synthesis, and nonsense codon mediated decay of messenger

RNA. In addition of gene network analysis, we performed a

protein-protein interaction network analysis using 185 top-

ranked genes common to both datasets. The protein-protein

interaction network analysis showed seventeen proteins

with connections to ten or more other proteins (Supplementary

Fi1es 6–8).

We also examined the differential gene expression of pediatric

ARDS severity from the pediatric ARDS-specific dataset

GSE147902 compared to healthy controls from the GSE66099

dataset. Volcano plots of the mild PARDS vs. healthy controls

and moderate/severe PARDS vs. healthy controls are shown in

Supplementary Figure S2A,B, respectively. Bar graphs of the

number of genes in each KEGG pathway for mild (PaO2/FiO2

200–300 from GSE147902) vs. healthy controls from GSE66099

(Supplementary Figure S3A) and for moderate/severe (PaO2/

FiO2 < 200 from GSE147902) vs. healthy controls from GSE66099

(Supplementary Figure S3B) are shown. Furthermore, we

compared the differential gene expression of moderate/severe

(PaO2/FiO2 < 200) compared to mild (PaO2/FiO2 200–300)

pediatric ARDS in GSE147902 summarized as a bar graph with

the number of genes represented in each KEGG pathway

(Supplementary Figure S4). The Reactome pathways sorted by

p-value for the top 200 overlapping stability selected ranked

genes from GSE147902 comparing children with a PaO2/FiO2 <

200 with a PaO2/FiO2≥ 200–300 are shown in Supplementary

Table S2. These analyses are presented and the findings

discussed in the online Supplementary Materials (https://github.

com/ghiasirad/pahrf.git).
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TABLE 2 Reactome pathways sorted by p-value for the top 185
overlapping stability selected ranked genes from GSE147902 and
GSE66099 comparing children with a PaO2/FiO2 < 200 with a PaO2/
FiO2≥ 200–300.

Pathway name Entities Reactions

Found Ratio FDRa Found Ratio
Peptide chain elongation 12/134 0.006 8.99e-

04
5/5 3.70e-

04

Selenoamino acid metabolism 12/198 0.009 0.003 5/33 0.002

Formation of a pool of free 40S
subunits

9/111 0.005 0.003 2/2 1.48e-
04

Eukaryotic Translation
Termination

9/113 0.005 0.003 3/5 3.70e-
04

Selenocysteine synthesis 9/115 0.005 0.003 2/7 5.18e-
04

SRP-dependent cotranslational
protein targeting to membrane

9/119 0.005 0.003 5/5 3.70e-
04

Nonsense mediated Decay
independent of the Exon
Junction Complex

9/121 0.006 0.003 1/1 7.40E-
05

Eukaryotic Translational
Elongation

12/187 0.009 0.003 8/9 6.66e-
04

L13a-mediated translational
silencing of Ceruloplasmin
expression

9/124 0.006 0.003 2/3 2.22e-
04

Viral mRNA Translation 10/135 0.006 0.005 2/2 1.48e-
04

Translation 24/755 0.035 0.011 52/99 0.007

GTP hydrolysis and joining of
the 60S ribosomal subunit

9/166 0.008 0.018 3/3 2.22e-
04

Ribosomal scanning and start
codon recognition

6/70 0.003 0.019 2/2 1.48e-
04

Mitochondrial translation
elongation

8/135 0.006 0.02 5/8 5.92e-
04

Mitochondrial translation
termination

8/137 0.006 0.02 5/5 3.70e-
04

Mitochondrial translation
initiation

9/181 0.008 0.025 3/4 2.96e-
04

Formation of the ternary
complex, and subsequently, the
43S complex

6/86 0.004 0.039 1/3 2.22e-
04

Nonsense-Mediated Decay 11/197 0.009 0.039 5/6 4.44e-
04

Nonsense Mediated Decay
enhanced by the Exon Junction
Complex

11/197 0.009 0.039 4/5 3.70e-
04

aFalse Discovery Rate.
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4. Discussion

We used publicly available microarray gene expression data

sets and machine learning methods to determine metabolic and

immune pathways involved in the systemic response of children

within 24 h of an ARDS diagnosis. We evaluated the overlap

amongst genes differentiating children with a PaO2/FiO2 < 200 vs.

a PaO2/FiO2≥ 200 using a pediatric ARDS-specific cohort and a

pediatric sepsis cohort with AHRF. Although the sample

collection for these pediatric cohorts predated the COVID-19

pandemic, the Coronavirus pathogenesis pathway was prominent

and reflects the systemic inflammatory changes that occur with

severe ARDS. Novel pathways including ribosomal and
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eukaryotic initiation of factor 2 (eIF2) regulation of protein

translation and the nutrient, oxygen, and energy sensing

pathway, mTOR, which is activated via PI3K/AKT signaling,

emerged in the KEGG and IPA analysis. We also identified gene

networks involved in distinguishing children with mild or

moderate/severe pediatric ARDS from healthy controls. Finally,

we identified gene networks involved in differentiating children

with mild from moderate/severe pediatric ARDS using data from

the pediatric ARDS-specific cohort. Our results support further

investigation of gene networks and signaling pathways involved

in differentiating pediatric ARDS severity and understanding

pediatric ARDS heterogeneity by underlying biological processes.

An attempt at finding a generalizable diagnostic gene

expression signature for ARDS using publicly available human

whole blood gene expression arrays in adults and children failed

to find an ARDS-specific signature after adjusting for clinical

severity (6). Since this publication, a pediatric-specific ARDS

transcriptomics dataset from whole blood was used to identify

three ARDS sub-phenotypes with divergent clinical characteristics

and outcomes using k-means clustering (9). A limitation of the

transcriptomic pediatric ARDS phenotyping study was the lack of

a non-ARDS mechanically ventilated cohort as a control group

(9). Using the definition of a PaO2/FiO2 < 200 for moderate/

severe AHRF from GSE66099 and ARDS from GSE147902, we

were able to find an overlapping pattern of gene pathways of

importance to pediatric ARDS using stability selection modeling

and determine the discriminatory ability of the model to predict

moderate/severe acute hypoxemia using the intersection of the

top 1,500 ranked genes in the pediatric ARDS-specific and

pediatric sepsis AHRF cohorts.

Metabolic pathways were the top KEGG pathway in each

analysis. Several recent studies have investigated metabolic

changes in ARDS (32). The mechanism by which metabolic

derangements, such as mitochondrial dysfunction, decreased

oxidative phosphorylation, and oxidative stress, lead to

bioenergetic failure in ARDS and metabolic reprogramming of

the immune system are active areas of investigation.

Metabolomics studies of the plasma and airway fluid of patients

with ARDS have shown that changes in tricarboxylic acid (TCA)

cycle intermediates, such as glucose, alanine and glutamine, are

markers of energetic stress on lung epithelial cells (32–38).

Microarray analysis of whole-blood gene expression in adults

with sepsis-triggered ARDS revealed that the “reactive” or

hyperinflammatory subgroup is enriched for genes associated

with oxidative phosphorylation, and that this subgroup is also

associated with high plasma lactate levels indicative of

mitochondrial dysfunction (39).

By contrast, the mitogen-activated protein kinase (MAPK)

pathways that control cell proliferation, differentiation, motility,

and survival were enriched in the comparatively “uninflamed”

subgroup (39). The MAPK pathway is a first-level or second-

level pathway found in all of the analyses distinguishing pediatric

ARDS from healthy controls and moderate/severe from mild

pediatric ARDS. It was recently shown that children with ARDS

exhibit similar “reactive/ hyperinflammed” and “uninflamed”

phenotypes as shown in adults with ARDS (40); however, this
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phenotypic classification was not available at the time of accrual of

the publicly available gene expression dataset used in this analysis.

Therefore, we cannot speculate on the pathobiology underlying

class differences (3, 4, 39, 41). The three Children’s Hospital of

Philadelphia ARDS transcriptomic subtypes (CATS) described by

clustering GSE147902 do not conform to the previously

described adult phenotypes and are not yet externally validated (9).

Respiratory viral infections are a common trigger of ARDS in

children. Pathogenic influenza and coronaviruses use host

epigenetic reprogramming to evade the host immune response

(42, 43). In the current analysis, histone deacetylases (HDACs)

were found to be a top pathway associated moderate/severe

ARDS. HDACs regulate chromatin structure and thereby

influence gene expression. For example, HDACs repress the

production of proinflammatory cytokines in alveolar

macrophages in chronic inflammatory lung conditions such as

chronic obstructive pulmonary disease (44, 45). HDAC class I

and chromatin modifying enzymes were identified as top

pathways associated with ARDS mortality in a study using a

multi-omics approach with multiple publicly available datasets

(46). DNA methylation is another epigenetic modification that

emerged in the Reactome analysis that distinguished moderate/

severe from mild pediatric ARDS. Alterations in DNA

methylation sites in ARDS are related to an imbalance in

inflammation, immunity, endothelial and epithelial function, and

coagulation (47).

Although children in these cohorts predated the COVID-19

pandemic, we found that gene networks in the KEGG database

labeled coronavirus/COVID-19 (hsa05171) were a prominent

pathway. This finding is similar to our previous study profiling

differentially expressed genes from primary airway cells obtained

from tracheal aspirate samples from intubated children with

PARDS (8). The COVID-19 pathway includes proinflammatory

cytokines such as interleukin (IL)–6, tumor necrosis factor

(TNF)–α, nuclear factor kappa-light-chain-enhancer of activated

B cells (NF-kB), IL-1β, IL-8, and IL-12 signaling through the

Janus kinase (JAK)/signal transducer and activator of

transcription (STAT) pathway. Viral pathogen recognition

pathways such as Toll-like receptor signaling through MyD88,

retinoic acid-inducible gene I (RIG-1)/melanoma differentiation-

associated protein 5 pathways, and the antiviral type I interferon

(IFN α/β) response and the complement cascade are also

highlighted in the COVID-19 gene signaling network.

Machine learning-based analysis of data with class imbalances

can be plagued by a number of issues, stemming from the inherent

mathematical assumption of equal case to control distributions

among many learning algorithms. As a result, these models,

when applied in a single train-test instance, may produce

random effects that are poorly generalized in external datasets.

The traditional AUROC metric poorly characterizes class-based

performances, thus necessitating alternative metrics to evaluate

the robustness of models. One of the methods to investigate the

effects of class imbalance is by the use of metrics such as

AUPRC, F1 (harmonic mean of the precision and recall), and

bootstrap with replacement. In this work, we use AUPRC and

stability selection using bootstrap with replacement to identify a
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coherent set of “stable” genes that indicate robust predictive

performance consistently across 100 bootstrap iterations. We

illustrate the AUPRC plot to show strong performance even in

the minority class, thus emphasizing the robustness of the

learned model.

Our study is limited by the post hoc analysis focused on finding

a systemic transcriptomic signature of children with moderate/

severe ARDS. Only one single-center study of pediatric ARDS

exists without a non-hypoxemic respiratory failure control group.

We attempted to validate our findings using a multi-center

pediatric sepsis-triggered AHRF cohort using the same

definitions as in the pediatric ARDS gene array cohort without

the bilateral infiltrate radiographic findings and the more

stringent requirement of two arterial blood gases at least four

hours apart with a PaO2/FiO2 < 200. These cohorts capture gene

expression differences early in the course of AHRF. The use of a

single time point without serial sampling or clinical trajectory

information precludes our assessment of temporal changes in

gene expression and is a study limitation. As remarked on prior

attempts to discover an ARDS transcriptomic signature, whole-

blood derived gene expression was used that may be different

from the airway-specific transcriptomic response. Concomitant

changes in metabolites are not readily available for analysis in

these cohorts. Validation of these findings as part of a

prospective, multi-center, observational trial enrolling children

with PALICC-defined PARDS will be necessary to generalize our

results.
5. Conclusions

In summary, our analysis demonstrated that changes in gene

expression patterns corresponding to metabolic pathways

involved in energy balance, fundamental cellular processes such

as protein translation, mitochondrial function, oxidative stress,

immune signaling, and inflammation are differentially regulated

early in pediatric ARDS and sepsis-induced AHRF compared to

both healthy controls and to milder, acute hypoxemia. Our

findings support the hypothesis that differential regulation of

metabolic pathway genes involved in cellular energetics and

metabolic pathways are important mechanisms to consider to

further our understanding of the heterogeneity and underlying

pathobiology of moderate and severe pediatric acute respiratory

distress syndrome. Future work should validate the findings from

this secondary analysis of publicly available gene expression data

using plasma biomarkers in a prospective observational study

seeking to associate underlying pathobiology with outcomes in

children with ARDS.
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