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Comparison of cardiac function
between single left ventricle and
tricuspid atresia: assessment using
echocardiography combined with
computational fluid dynamics
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Jiao Tong University, Shanghai, China, 2Institute of Pediatric Translational Medicine, Shanghai Children’s
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Ultrasound, Jiaxing University Affiliated Women and Children Hospital, Jiaxing, China

Patientswith single left ventricle (SLV)and tricuspidatresia (TA)have impairedsystolicand
diastolic function.However, there are fewcomparative studies amongpatientswith SLV,
TA and children without heart disease. The current study includes 15 children in each
group. The parameters measured by two-dimensional echocardiography, three-
dimensional speckle tracking echocardiography (3DSTE), and vortexes calculated by
computational fluid dynamics were compared among these three groups. Twist is
best correlated with ejection fraction measured by 3DSTE. Twist, torsion, apical
rotation, average radial strain, peak velocity of systolic wave in left lateral wall by tissue
Doppler imaging (sL), and myocardial performance index are better in the TA group
than those in the SLV group. sL by tissue Doppler imaging in the TA group are even
higher than those in the Control group. In patients with SLV, blood flow spreads out in
a fan-shaped manner and forms two small vortices. In the TA group, the main vortex
is similar to the one in a normal LV chamber, but smaller. The vortex rings during
diastolic phase are incomplete in the SLV and TA groups. In summary, patients with
SLV or TA have impaired systolic and diastolic function. Patients with SLV had poorer
cardiac function than those with TA due to less compensation and more disordered
streamline. Twist may be good indicator for LV function.
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Abbreviations

3DSTE, three-dimensional speckle tracking echocardiography; ASD, atrial septal defect; BSA, body surface
area; CFD, computational fluid dynamics; CMR, cardiac magnetic resonance; CSaverage, average
circumferential strain; DecT, deceleration time of mitral early filling wave; E, peak velocity of early filling
wave of mitral inflow; EDV, end diastolic volume; E/eL, ratio of E to eL; EF, ejection fraction; eL, peak
velocity of early filling wave in left lateral wall by tissue Doppler imaging; eR, peak velocity of early filing
wave in right lateral wall by tissue Doppler imaging; ESV, end systolic volume; FSLV, functional single left
ventricle; GCS, global circumstantial strain; GLS, global longitudinal strain; ICC, intraclass correlations; ICT,
isovolumetric contraction time; IRT, isovolumic relaxation time; LSaverage, average longitudinal strain;
MAPSE, mitral annular plane systolic excursion; MPI, myocardial performance index; PS, pulmonary
stenosis; PH, pulmonary hypertension; RotationA, apical rotation; RotationB, basal rotation; RSaverage,
average radial strain; S, strain; SI, sphericity index; sL, peak velocity of systolic wave in left lateral wall by
tissue Doppler imaging; sR, peak velocity of systolic wave in right lateral wall by tissue Doppler imaging;
TAPSE, tricuspid annular plane systolic excursion; TDI, tissue Doppler imaging; TGA, transposition of
great artery; TSaverage, average principal tangential strain; VSD, ventricular septal defect.
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Introduction

Single left ventricle (SLV) and tricuspid atresia (TA) are two

common subtypes of functional single left ventricle (FSLV), a

kind of complex cyanotic congenital heart disease with single or

systemic left ventricle (1). Cardiac dysfunction is common in

these patients during the midterm and long-term follow-up after

the Fontan procedure (2).

The impact of ventricular morphology on ventricular function

and clinical outcomes are controversial. Only limited studies were

focused on the characteristics of different subtypes of FSLV (3–6).

Altered ventricular geometry such as increased sphericity and

extension of the apex resulting from overload may consequently

increase ventricular function (7). Geometry, structure, and

systolic function affect its filling and even diastolic function, as

noted by Rösner et al. (8). Compared with SLV, TA appears to

have a more ellipsoid shape of the LV. Therefore, we propose

that TAs have better cardiac function than SLVs do.

Echocardiography is a reliable and convenient clinical

assessment tool for ventricular function measurement (9). It has

good correlations with cardiac magnetic resonance (CMR) (10)

and, therefore, can be applied in FSLV (11). Computational fluid

dynamics (CFD) is a new and useful method that can help

visualize the fluid field inside the cardiac chamber (12). This

study utilized echocardiography combined with the CFD method

to assess and compare the cardiac function in children with SLV

or TA, and establish good parameters for cardiac function analysis.
Methods

Subjects

Fifteen patients with SLV and 15 with TA who were diagnosed

using echocardiography and confirmed by surgery from August

2015 to May 2022 in Shanghai Children’s Medical Center were

recruited. Children with serious arrhythmia or other conditions

such as taking medicine which affects the ventricular function

were excluded. The exclusion criteria were poor image quality

that was inadequate for analysis. All the children had

conventional two-dimensional echocardiography, three-

dimensional speckle tracking echocardiography (3DSTE), and

CMR examination. In addition, 3DSTE examination was

performed on 15 age- and gender-matched children (Control
TABLE 1 Characteristics of subjects in this study.

N SLV TA
A (m) 6.600 ± 4.014 7.000 ± 3.380 6.533 ± 4.0

H (cm) 64.867 ± 9.296 64.667 ± 6.789 63.333 ± 8.

W (kg) 6.473 ± 1.797 6.937 ± 1.642 6.260 ± 1.8

BSA (m2) 0.345 ± 0.072 0.357 ± 0.059 0.334 ± 0.0

HR (bpm) 106.533 ± 17.844 119.400 ± 28.053 116.200 ± 21

SBP (mmHg) 82.067 ± 6.595 77.867 ± 3.204 76.800 ± 4.

DBP (mmHg) 54.733 ± 5.535 49.867 ± 3.441 50.400 ± 4.

A, age; H, height; W, weight; HR, heart rate; BSA, body surface area; SLV, single left ve
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group), who had echocardiography examination for heart

murmur but no positive finding. Characteristics of the subjects

are shown in Table 1. Informed consent was obtained from

parents of these children. The study was implemented according

to the standards of the Declaration of Helsinki. The study was

approved by the local institutional review board (IRB) and

regional research ethics committee (REC) of the Shanghai

Children’s Medical Center Affiliated to Shanghai Jiao Tong

University School of Medicine.
Images acquisition and analysis of
echocardiography

Each of the children lay quietly, and oral chloral hydrate

(50 mg/kg) was administered if necessary. Children with

dextrocardia were scanned in the right decubitus position while

the remaining subjects were scanned in the left lateral decubitus

position, and the ECG was recorded simultaneously. The peak

velocity of the early filling wave (E wave), deceleration time of

the E wave (DecT) were measured by two-dimensional

echocardiography. The peak velocity of systolic wave (sL) and

early filling wave (eL) of left lateral wall, systolic wave (sR) and

early filling wave (eR) of right lateral wall, isovolumic relaxation

time (IRT), and isovolumetric contraction time (ICT) were

measured by tissue Doppler imaging (TDI). MAPSE was defined

as mitral annular plane systolic excursion or left lateral annular

plane systolic excursion. TAPSE was defined as tricuspid annular

plane systolic excursion or right lateral annular plane systolic

excursion. The myocardial performance index (MPI), also called

the Tei index, is widely used as a good parameter in the

assessment of cardiac function in LV as well as single ventricle.

This index is calculated by the ratio of total ICT and IRT

to ejection time (13); it can be calculated by (a-b)/b, while “a”

is the period starting from the end of mitral or atrioventricular

valve inflow to the start of next one, and “b” is the ejection

time of aortic valve. Corresponding parameters of the

atrioventricular valve in the SLV group were compared with

those of the mitral valve, while average values were used in single

left ventricle with two atrioventricular valves. The ratio of E/e

was calculated.

A Philips iE33 ultrasonic diagnostic apparatus (Philips,

Andover, MA, United States), equipped with matrix-array X5-1

transducer was applied to acquire full volume image loops (14).
p (N vs. SLV) p (N vs. TA) p (SLV vs. TA)
33 0.956 0.999 0.940

981 0.998 0.873 0.902

12 0.751 0.941 0.545

71 0.878 0.890 0.615

.805 0.285 0.487 0.923

784 0.033 0.030 0.517

290 0.013 0.025 0.850

ntricle; TA, tricuspid atresia; N: normal children.
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The 3D full volume images were acquired in the apical four-

chamber view with its temporal resolution over 20 frames per

second and four cardiac cycles per capture, while the 2D images

were acquired with its temporal resolution over 55 frames per

second. The image loops were stored in a hard drive for further

analysis. The clinical characteristics such as age, height, weight,

and heart rate (HR) were also collected, and sphericity index (SI)

were calculated as follows: SI =DLV/LLV, where DLV is the

diameter of the left ventricle and LLV is the length of the left

ventricle. TomTec 4D LV-Analysis 3 (Tomtec Imaging Systems

GMBH, Unterschleißheim, Germany) was applied for post-

processing analysis (15). Primary analysis were performed by

manual border tracking in three planes (two-chamber, three-

chamber, and four-chamber planes) (Figure 1) and then end

diastolic volume (EDV), end systolic volume (ESV), stroke

volume (SV), ejection fraction (EF), global longitudinal strain

(GLS), global circumstantial strain (GCS), twist, torsion, apical

rotation (RotationA), basal rotation (RotationB), average principal

tangential strain (TSaverage), average circumferential strain

(CSaverage), average longitudinal strain (LSaverage), and average

radial strain (RSaverage) were automatically calculated by the

software. Images that were not satisfied with automatic tracking

could be manually modified and analyzed again.
Image acquisition and analysis of CMR

CMR studies were performed on a 1.5-T Intera Achieva

scanner18 (Philips Medical Systems, Best, The Netherlands) on
FIGURE 1

Primary analysis performed by manual border tracking in three planes (two-c
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all the patients. Retrospectively, EKG-gated balanced steady-state

free precession (SSFP) cine movies were used. Slice thickness was

4–8 mm, while the interslice gap was set to zero. The temporal

resolution was over 30 frames per cardiac cycle. Then images

acquired were analyzed using commercial software (Philips View

Forum, Andover, MA, United States).
Reconstruction and computation

Four-dimensional ECHO images were imported into medical

imaging software (Materialise®-Mimics 19.0, Plymouth, MI,

United States); then, we used the “Thresholding” tool to

determine the appropriate gray value range to include all the

left ventricle information. Then, we entered the “Edit masks”

module, used the “Region growing” and “Calculate 3D from

mask” tool to generate the mask and 3D model. At last, the

edge was smoothed by the “Smooth mask” tool and smoothed

papillary muscles and valves out. After that, the anatomy was

represented by five body-fitted prism layers using the

commercial software ANSYS ® -ICEM 14.5; velocity obtained

by two-dimensional Doppler was used as boundaries for

numerical solutions of the Navier–Stokes flow equations. The

distance from the first layer to the model surface was

0.02 mm, with 1,000,000 to 3,000,000 tetrahedral mesh

elements filling the remaining of the calculated domain, with a

tetrahedral mesh filling the remainder of the calculated

domain. The blood in the LV is assumed to be an

incompressible Newtonian fluid with a constant viscosity of
hamber, three-chamber, and four-chamber).
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0.004 kg/ms and density of 1,060 kg/m3. The second-order

upwind scheme was employed to complete the steady-

state numerical simulation by ANSYS®-ICEM 17.0 software.

The standard k – ϵ model was employed to solve the

motion of intraventricular blood flow inside the ventricle. The

results were analyzed and processed by ANSYS CFD-Post 14.5

software.
Statistical analysis

Statistical Package for Social Sciences (SPSS 17.0, SPSS Inc.,

Chicago, IL, United States) was applied for statistical analysis.

Quantitative variables were presented as mean ± SD and

compared with t-test and Mann–Whitney test between groups. A

two-sided p-value <0.05 was considered statistically significant.

The intraclass correlations (ICCs) (16) of intraobserver and

interobserver variability were used to test the reproducibility of

3DSTE. Bland–Altman analysis was used to access the bias and

95% limits of agreement for EDV, ESV, SV, and EF between

3DSTE and CMR. Pearson’s correlation coefficient was used to
TABLE 2 Concomitant malformation in the SLV and TA groups.

VSD ASD/PFO PS PH TGA PDA PA Dex
SLV1 + + +

SLV2 + + +

SLV3 + + +

SLV4 + + +

SLV5 + + + +

SLV6 + + +

SLV7 + + + +

SLV8 + + + +

SLV9 + + + +

SLV10 + + + +

SLV11 + +

SLV12 + + + +

SLV13 + + + + +

SLV14 + + + + +

SLV15 + + +

TA1 + + +

TA2 + + + +

TA3 + + +

TA4 + + +

TA5 + + +

TA6 + + +

TA7 + + +

TA8 + + +

TA9 + +

TA10 + + +

TA11 + + +

TA12 + + +

TA13 + +

TA14 + + + +

TA15 + + + +

ASD, atrial septal defect; AVSD, atrioventricular septal defect; IAA, interruption of aorti

ovale; PS, pulmonary stenosis; PH, pulmonary hypertension; RVOTO, right ventricular

atresia; TAPVD, total anomalous pulmonary venous drainage; TGA, transposition of gr
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access the correlation between 3DSTE parameters and EF derived

from 3DSTE.
Results

Fifteen patients with SLV (SLV group) and 15 patients with TA

(TA group) underwent echocardiography examination. There were

no missing data during the study. In addition, 3DSTE examination

was performed on 15 age- and gender-matched children (Control

group). Then, statistical analysis was performed between patients

and controls. Concomitant malformation in SLV group and TA

group data is shown in Table 2. Fifteen patients with SLV

(100%) and 15 with TA (100%) have ventricular septum defect

(VSD). Seven with SLV (46.7%) and 14 with TA (93.3%) have

atrial septal defect (ASD), while the one who did not have ASD

had single atrium. Five with SLV (33.3%) and five with TA

(33.3%) have pulmonary stenosis (PS). Five with SLV (33.3%)

and three with TA (20%) have pulmonary hypertension (PH).

Twelve of the SLVs have transposition of great artery (TGA)

(80%). More detail can be seen in Table 2.
trocardia Others

Moderate atrioventricular regurgitation, Bilateral superior vena cava

Atrioventricular valve stenosis

IAA

Atrioventricular valve stenosis

+

+ Cor triatriatum sinister

Bilateral superior vena cava

AVSD, moderate atrioventricular regurgitation

Right aortic arch

SA, TAPVD

RVOTO, persistent left superior vena cava

Persistent left superior vena cava

SA, aorta originates from the right ventricle

Right aortic arch

c arch; PA, pulmonary atresia; PDA, patent ductus arteriosus; PFO, patent foramen

outflow tract obstruction; SA, single atrium; SLV, single left ventricle; TA, tricuspid

eat artery; VSD, ventricular septal defect.
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There are no significant differences in age, height, weight, body

surface area (BSA), and HR among the three groups (Table 1).

Diastolic blood pressure (DBP) and systolic blood pressure (SBP)

are lower in both SLV and TA groups than those in the Control

group (p < 0.05), but they are all within the normal range. The

Bland–Altman plot revealed almost no bias between EDV, ESV,

SV, and EF measured by 3DSTE and CMR (Figure 2).
2D echocardiography

As is shown in Table 3, there are no significant differences in E,

sL, eL, E/eL, eR, ICT, and MAPSE between the SLV and the Control

groups. While sR and TAPSE are poorer in the SLV group (p < 0.05

for sR, p < 0.01 for TAPSE), IRT, DecT, and MPI are larger in the

SLV than in the Control group (p < 0.01). There are no significant

differences in E, eL, E/eL, sR, ICT, DecT, and MAPSE between the

TA group and the Control group. eR and TAPSE are smaller in

the TA group than those in the Control group (p < 0.05 for eRv, p

< 0.01 for TAPSE). sL, IRT, and MPI are larger in the TA group

than in the Control group (p < 0.01 for sL, p < 0.05 for IRT and

MPI). There are no significant differences in E, eL, E/eL, sR, eR,
FIGURE 2

Bland–Altman analysis for EDV, ESV, SV, and EF between 3DSTE and CMR (A, B
Altman analysis of SV; D, Bland–Altman analysis of EF). EDV, end diastolic vo
3DSTE, three-dimensional speckle tracking echocardiography; CMR, cardiac m
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IRT, ICT, DecT, TAPSE, and MAPSE between the SLV and the

TA groups, while MPI is larger in the SLV group (p < 0.05) and sL

is larger in the TA Group (p < 0.05).
3DSTE

The ICCs of 3DSTE in 45 children are shown in Table 4. The

intraobserver and interobserver variability are good. Intraobserver

and interobserver variations are within the clinically acceptable

ranges, confirming the repeatability of 3DSTE. Our results show

a good consistency between 3DSTE and CMR (Figure 2), and

the intraclass correlation of EDV, ESV, SV, and EF between

3DSTE and CMR are 0.995, 0.989, 0.992, and 0.879, respectively.

The correlation between EF derived from 3DSTE and other

parameters are shown in Figure 3. The r value of GLS, GCS,

twist, torsion, RotationA, RotationB, TSaverage, CSaverage,

LSaverage, and RSaverage are −0.579, −0.540, 0.746, 0.594, 0.432,
−0.675, −0.363, −0.538, −0.316, and 0.479, respectively. Twist is

best correlated with EF measured by 3DSTE.

As shown in Table 3, SI, EDV, ESV, and SV are larger, and EF,

GLS, GCS, twist, torsion, RotationA, RotationB, TSaverage,
land–Altman analysis of EDV; B, Bland–Altman analysis of ESV; C, Bland–
lume; ESV, end systolic volume; SV, stroke volume; EF, ejection fraction;
agnetic resonance.
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TABLE 3 Parameters of left ventricular function in patients and controls.

N SLV TA p (N vs. SLV) p (N vs. TA) p (SLV vs. TA)
SI 0.667 ± 0.031 0.960 ± 0.169 0.871 ± 0.122 0.000 0.000 0.074

EDV (ml) 12.951 ± 2.384 27.609 ± 12.456 21.089 ± 10.350 0.000 0.000 0.130

ESV (ml) 4.506 ± 1.027 12.280 ± 5.525 8.911 ± 4.479 0.000 0.000 0.065

SV (ml) 8.444 ± 1.487 15.329 ± 7.144 12.178 ± 5.913 0.000 0.005 0.206

EF (%) 65.389 ± 3.119 55.626 ± 3.696 57.887 ± 2.112 0.000 0.000 0.117

GLS (%) −28.349 ± 2.625 −22.950 ± 3.527 −25.081 ± 3.311 0.000 0.020 0.170

GCS (%) −29.537 ± 3.934 −23.030 ± 4.154 −25.304 ± 3.876 0.000 0.016 0.274

Twist (°) 12.615 ± 1.569 5.269 ± 2.342 7.603 ± 1.930 0.000 0.000 0.006

Torsion (°/cm) 3.273 ± 0.374 1.437 ± 0.712 2.016 ± 0.557 0.000 0.000 0.020

RotationA (°) 5.470 ± 1.583 1.740 ± 2.139 3.547 ± 1.864 0.000 0.020 0.031

RotationB (°) −7.145 ± 1.052 −3.529 ± 1.821 −4.055 ± 1.564 0.000 0.000 0.061

TSaverage (%) −38.270 ± 2.237 −30.701 ± 4.326 −31.913 ± 5.276 0.000 0.000 0.431

CSaverage (%) −29.441 ± 4.133 −22.857 ± 2.847 −25.240 ± 2.923 0.000 0.004 0.139

LSaverage (%) −27.153 ± 2.051 −23.113 ± 2.843 −24.818 ± 2.449 0.000 0.034 0.154

RSaverage (%) 46.758 ± 2.891 39.362 ± 3.887 40.545 ± 3.647 0.000 0.000 0.627

E 97.713±9.332 89.907±29.144 93.520±24.022 0.332 0.534 0.714

sL 6.115 ± 0.798 6.293 ± 1.729 7.463 ± 2.113 0.678 0.165 0.038

eL 10.161 ± 2.081 10.200 ± 5.251 11.548 ± 4.794 0.604 0.612 0.384

E/eL 9.670 ± 2.045 12.055 ± 6.373 9.553 ± 3.860 0.633 0.627 0.395

sR 10.658 ± 1.962 8.141 ± 4.016 9.225 ± 1.995 0.049 0.356 0.550

eR 14.080 ± 2.154 11.605 ± 5.846 10.233 ± 4.825 0.011 0.008 0.575

IRT 68.200 ± 12.318 81.667 ± 12.726 79.067 ± 9.035 0.007 0.234 0.810

ICT 68.600 ± 14.613 66.533 ± 18.063 66.800 ± 13.154 0.929 0.945 0.999

AduT 95.867 ± 18.267 121.111 ± 20.811 115.444 ± 19.882 0.012 0.059 0.811

DecT 77.867 ± 17.824 101.333 ± 20.486 93.867 ± 27.790 0.017 0.137 0.636

TAPSE 16.433 ± 4.370 10.981 ± 2.766 10.743 ± 2.660 0.000 0.000 0.979

MAPSE 10.239 ± 1.556 9.386 ± 2.394 9.846 ± 2.434 0.287 0.622 0.564

MPI 0.309 ± 0.048 0.477 ± 0.108 0.390 ± 0.105 0.000 0.051 0.034

SI, sphericity index; EDV, end diastolic volume; ESV, end systolic volume; EF, ejection fraction; GLS, global longitudinal strain; GCS, global circumstantial strain; RotationA,

apical rotation; MPI, myocardial performance index; RotationB, basal rotation; TSaverage, average principal tangential strain; CSaverage, average circumferential strain;

LSaverage, average longitudinal strain; RSaverage, average radial strain; SV, stroke volume; IRT, isovolumic relaxation time; DecT, deceleration time of mitral early filling

wave; TAPSE, tricuspid annular plane systolic excursion; MAPSE, mitral annular plane systolic excursion; E: peak velocity of early filling wave of mitral inflow; sL: peak

velocity of systolic wave in left lateral wall by tissue doppler imaging, eL: peak velocity of early filling wave in left lateral wall by tissue doppler imaging; sR: peak

velocity of systolic wave in right lateral wall by tissue doppler imaging; eR: peak velocity of early filing wave in right lateral wall by tissue doppler imaging; ICT:

isovolumic contraction time, AduT: duration time of A wave.

TABLE 4 Intraobserver and interobserver variations of 3DSTE.

Intraobserver
variability

Interobserver
variability

ICC p ICC p
EDV 0.988 (0.977–0.993) 0.000 0.962 (0.932–0.979) 0.000

ESV 0.982 (0.968–0.990) 0.000 0.960 (0.928–0.978) 0.000

SV 0.977 (0.959–0.987) 0.000 0.956 (0.921–0.976) 0.000

EF 0.771 (0.618–0.867) 0.000 0.824 (0.702–0.900) 0.000

GLS 0.828 (0.708–0.902) 0.000 0.767 (0.613–0.865) 0.017

GCS 0.808 (0.677–0.890) 0.000 0.808 (0.643–0.901) 0.000

Twist 0.884 (0.799–0.935) 0.000 0.871 (0.778–0.927) 0.000

Torsion 0.800 (0.663–0.885) 0.000 0.827 (0.706–0.901) 0.000

RotationA 0.984 (0.967–0.992) 0.000 0.862 (0.762–0.921) 0.000

RotationB 0.798 (0.661–0.884) 0.000 0.716 (0.537–0.833) 0.000

TSaverage 0.783 (0.638–0.875) 0.000 0.784 (0.639–0.875) 0.000

CSaverage 0.835 (0.719–0.906) 0.000 0.799 (0.662–0.884) 0.000

LSaverage 0.757 (0.597–0.859) 0.000 0.814 (0.686–0.893) 0.000

RSaverage 0.850 (0.743–0.915) 0.000 0.785 (0.641–0.876) 0.000

3DSTE, three-dimensional speckle tracking echocardiography; EDV, end diastolic

volume; ESV, end systolic volume; EF, ejection fraction; GLS, global longitudinal

strain; GCS, global circumstantial strain; RotationA, apical rotation; RotationB,

basal rotation; TSaverage, average principal tangential strain; CSaverage, average

circumferential strain; LSaverage, average longitudinal strain; RSaverage, average

radial strain; ICC, intraclass correlation coefficient.
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CSaverage, LSaverage, and RSaverage are poorer in the SLV group

(p < 0.01) than those in the Control group. SI, EDV, ESV, and SV

are larger, and EF, GLS, GCS, Twist, Torsion, RotationA,

RotationB, TSaverage, CSaverage, LSaverage, and RSaverage are

poorer in the TA group than those in the Control group (p <

0.05 for GLS, GCS, RotationA, and LSaverage, p < 0.01 for

others). The differences in SI, EDV, ESV, SV, EF, GLS, GCS,

TSaverage, LSaverage, and RSaverage are not significant between

the SLV group and the TA group. However, twist, torsion, and

RotationA are poorer in SLV Group (p < 0.01 for Twist, p < 0.05

for Torsion and RotationA).
CFD

As shown in Figures 4, 5, vortexes differ a lot among the three

groups. In normal left ventricle, during diastolic period, blood

flows through the mitral valve and goes forward until reaching

the apex, and then it swirls and goes backward, forming a major

vortex in the middle of the left ventricle, with a counterclockwise

rotation. After that, a vortex ring is formed in the base region of

LV, and then, blood goes to the outflow tract region and forms a
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FIGURE 3

Linear regression analyses of 3DSTE parameters and EF by 3DSTE (A, GLS vs. EF; B, GCS vs. EF; C, Twist vs. EF; D, Torsion vs. EF; E, RotationA vs. EF; F,
RotationB vs. EF; G, TSaverage vs. EF; H, CSaverage vs. EF, I, LSaverage vs. EF; J, RSaverage vs. EF). 3DSTE, three-dimensional speckle tracking
echocardiography; EF, ejection fraction; GLS, global longitudinal strain; GCS, global circumstantial strain; RotationA, apical rotation; RotationB, basal
rotation; TSaverage, average principal tangential strain; CSaverage, average circumferential strain; LSaverage, average longitudinal strain; RSaverage,
average radial strain.

FIGURE 4

Blood streamlines in ventricular chamber in normal heart (A), patient with SLV (B), and patient with TA (C).

FIGURE 5

Vortex rings in LV in normal heart (A), SLV (B) and TA (C).
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small clockwise rotation vortex. This is a consecutive and

interactive process. In patients with SLV, blood flows straight

ahead to the apex, and it spreads out in a fan-shaped manner

and form two small vortexes. When viewed from the front, it is

clockwise on the left and counterclockwise on the right in the

base region of the LV. The vortex ring during the diastolic phase

is incomplete. In the TA group, the main vortex is similar to the

one in the normal LV chamber, but smaller, and its center is

closer to the apex and the lateral side. The vortex ring during

diastolic phase is incomplete.
Discussion

In patients with SLV and TA, abnormal systolic and diastolic

function are common, but they are usually evaluated separately.

A previous study had implied that impaired relaxation may result

from decreased systolic motion (17). In reality, systolic function

and diastolic function are closely interrelated, while contractility

is impaired; elastic recoil in early diastole may be also impaired

too. Systolic function contributes to diastolic function through

restoring forces or diastolic recoil of the myocardium from tension

produced in systole. Energy stores during systolic twisting and

releases during diastolic untwisting; therefore, ventricular

relaxation and early diastolic filling are finished. On the other

hand, since ejection depends a lot on enough filling during

diastole through the Frank–Starling mechanism, diastolic function

also affects contraction. Actually, both systolic and diastolic

function are impaired before surgery in patients with FSLV.
Similarities between the SLV group and the
TA group

2D echocardiography
There are no significant difference in E/eL ratios among these

three groups, similar to the study by Hershenson et al. (18),

indicating that end diastolic pressures are not increased in SLVs

or TAs; some other studies also show weak correlation between

E/e and filling pressures (19). Although the E/eL ratio is a

common parameter to evaluate diastolic function in adults, it

may be less valuable in children as it reflects elevated filling

pressures, which may be less common in children (20). In our

study, relatively younger age and relatively normal left lateral wall

motion, resulting to relatively normal MAPSE.

Patients in both SLV and TA groups have prolonged IRT than

those in the Control group. Prolongation of isovolumic time is

likely to be affected by the slow rate of ventricular relaxation

resulting from decline in the change rate of ventricular pressure

or decrease in ventricular compliance. Such changes are likely

correlated to abnormal myocardial untwisting. As presented by

Appleton et al. (21), longer IRT is associated with impaired

relaxation and normal filling pressures, and is the earliest and

commonest change seen with diastolic abnormality.

Patients with FSLV have higher MPI and lower TAPSE values

than those in the Control group, similar to previous studies (22,
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23). MPI depends on events during isovolumetric contraction,

ejection, and isovolumetric relaxation, and its increase reflects

impaired systolic and/or diastolic function. The decrease of

TAPSE reflects impaired myocardial motion of the right lateral

wall.

3DSTE
Patients in the SLV and TA groups had enlarged EDV, ESV,

and SV, which are consistent with previously reports (10). SLV

and TA have shared characteristics: the domination of left

ventricle and hypoplastic right ventricle. A previous study on

angiography reported that LV dysfunction was a consequence of

longstanding LV volume overload (24). LVs in both TA and SLV

are overloaded because of the hypogenesis of RV; therefore, the

left ventricles have to bear much more work than they usually

do. The ventricular volume increases as a response aiming to

maintain the normal cardiac output. Initially, though patients

with SLV and TA have abnormal relaxation and impaired

systolic function, EF is preserved. Subsequently, these adaptive

mechanisms become insufficient, and the ventricle gradually

evolves into decompensation, and at last, evident global pump

dysfunction.

An experimental study (25) showed the volume overload could

increase the collagen deposition in the pressure-overloaded

ventricle, causing myocardial stiffness. On histologic examination,

the gross pathologic change of increased LV volume is

considered to be driven by the cardiomyocyte hypertrophy and

apoptosis as well as the increased interstitial collagen (26).

Not surprisingly, strain values in FSLV children are

significantly poorer than those in the Control group, which are

consistent with previous reports (27). In normal ventricle, the

myofibers are oriented in three broad layers: the superficial fibers

are oriented obliquely, the middle fiber circumferentially, and the

deep layer runs longitudinally (28). Myocardium contracts and

relaxes with the fiber shortening and extension parallel to its

orientation. While in the case of FSLV, fibers are “irregular” (29),

the irregular orientation of subepicardial fibers may lead to lower

circumferential strain and radial strain (30). The lower value of

strain in FSLV patients can indicate nonischemic fibrosis, which

is validated by late gadolinium enhancement and histologic

findings (31, 32).

Myocardial fibrosis in FSLV is also an underlying reason for its

impaired cardiac function, which is confirmed by cardiac magnetic

resonance imaging (33). Myocardial fibrosis is intrinsically linked

to LV stiffness and chamber modification (34) and is a common

final pathway in chronic myocardial disease and is the structural

correlate of heart failure (35). At the histological level, the

myocardium of SLV has been shown to be more fibrotic than

normal (36). This may explain, at least partially, the clinical

observation of the abnormal performance at an early age of FSLV.

Our study also showed poorer twist, torsion, apical, and basal

rotation in children with FSLV when compared with controls, as

previous reported (11, 37), and may be reflective of their

different fiber orientations. Rotation, torsion, and twist play an

important role in both systolic and diastolic function; they

distribute stress and energy across the ventricle and enhance
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ventricular filling by restoring potential energy and diastolic elastic

recoil during ejection. Twist is the net difference in rotation of the

LV apex and base and plays an important role in LV mechanics

(38). Untwist, the subsequent recoil of twist, can release the

restored forces, impacting LV diastolic relaxation and early

diastolic filling; these may be early signs of cardiac dysfunction

before clinical symptom.

CFD
In a normal left ventricle, myocardial relaxation and

contraction push flood flow with gyratory motion. The geometry

and myofiber orientation of a normal left ventricle are optimized

to eject blood in the systole with least energy dissipation and

stored potential energy for untwisting; by untwisting, blood is

effectively sucked into the ventricle. Recoiling during diastole

allows the myocardium to relax and suck blood from left atrium

into left ventricle, with vortexes and vortex rings formed in LV,

which can redirect the flow and preserve energy. It can provide

dynamic energy sources for blood to flow forward, forming

vortexes, which can convert vortex kinetic energy into the

rotational kinetic energy, and avert convective deceleration.

Natural asymmetric geometry of the heart could minimize

dissipative interaction of flow convection to arrange the flow for

ejection.

While in patients with FSLV vortexes in ventricular chambers

are smaller and rounder, and even disappear, the vortex ring during

the diastolic phase is incomplete. The enlarged dominated

chamber, hypoplastic residual cavity and the symmetric geometry

make the structure of FSLV significantly different from normal

LV; therefore, the streamline inside the ventricle is disordered

and flows without enough swirling, resulting in smaller vortex

and incomplete vortex ring. Thus, more energy dissipates, and

more performance is needed to maintain proper stroke volume.

Therefore, the abnormal orientation of the myofiber, fibrosis of

myocardium, special geometry, and disordered flow fields, along

with the overload of the LV, may cause weakness of contractility

in systole as well as diastole, deteriorating the ventricular

performance.
Differences between the SLV group and the
TA group

2D echocardiography
It is notable that sL is larger in the TA group compared with

the SLV group, and even the Control Group, indicating that the

left lateral wall in the TA group contributes more to cardiac

function, which may reflect adaptation and compensation; it may

also explain the better performance in the TA group than in the

SLV group. Patients in the TA group also had higher sR value

than those in the SLV group, indicating that cardiac motion in

the right lateral wall in the TA group are better than the SLV

group, similar to a previous study (30).

Compared with the Control group, patients in the SLV group

have more prolonged DecT; the difference is significant, while

the difference between the TA group and the Control group is
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not significant, reflecting decreased ventricular compliance in

early diastolic period in SLV than in TA. As stated by Thomas

and Weyman (39), impairment of LV relaxation results in the

prolongation of IRT, DecT, and lower E.

Though without significant difference, there is a trend toward

lower values of E in the SLV group than the TA and Control

groups. Lower E is suggestive of volume overload and increased

atrial reliance during diastolic in TA for ventricular filling,

similar to the study by Khoo et al. (40). This increased

contribution on atrial active function is a compensatory of

ventricular diastolic dysfunction. Different from a normal atrium,

atrial contractility plays an important role in these patients and

acts as a contributor to more passive conduit properties. One

possibility for this may be an indicator of the abnormal diastolic

properties as previously mentioned (41) and the compensatory

function of the atrium. This has been clearly demonstrated in

adult studies where atrial properties are affected by ventricular

diastolic abnormalities (42).
3DSTE
Compared with the TA group, patients in the SLV group have

poorer twist, torsion, and rotation. The orientation of myofibers is

more longitudinal in TA, with interstitial fibrous deposition greater

than normal heart in all sites analyzed (43); this was found in the

first weeks of life and increases with age, as found in a previous

study (44), while the superficial fibers are circumferentially

oriented in SLV (45). Though similar in volume overload and

more spherical shape than normal children, LVs in TA and SLV

have different characteristics; though not significant, SI in the

SLV group is larger than the TA group. As shown in Table 3

and Figure 3, twist is well correlated with EF and can help

distinguish TA group from SLV group sensitively; therefore, twist

may be a good measure for the assessment of ventricular

performance.
CFD
The shape of the ventricle may affect a lot in the turning of

streamlines and the formation of the vortices. Compared with

the TA group, LV in the SLV group has rounder apex and more

symmetrical structure, while it is more ellipsoidal and

asymmetrical in TA. In patients with SLV, blood flows straight

ahead to the apex without enough swirling; when the blood flow

reaches the enlarged part in the middle of the main cardiac

cavity, it spreads out in a fan-shaped manner and forms two

small vortices. When viewed from the front, it is clockwise on

the left and counterclockwise on the right in the base region of

LV. More energy dissipates during this period. The unnatural

asymmetry flow could reduce the efficiency of the heart pump by

more than 10% (46). In the TA group, the main vortex is similar

to the one in a normal LV chamber, but smaller, and its center

is closer to the apex and the lateral side. We cautiously speculate

that the obtuse apex as well as the more symmetric structure of

the dominant chamber in SLV may affect the blood streamline in

LV.
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Limitations

Since the A wave fused into the E wave in many children in the

study, we did not discuss these parameters in our article. Not only

the impairment of cardiac function but also the preload, volume,

and atrial and ventricular stiffness influence the results, but it is

difficult to distinguish them completely. The shape of the

ventricle and anatomic structures such as valve and papillary

muscle may affect the turning of streamlines and the formation

of the vortices, while in our study, valves and papillary muscles

were smoothed out to optimize CFD modeling. Our sample size

of this study was relatively small. Furthermore, more patients

and long-term follow-up are needed for further study.
Conclusion

Both SLV and TA have impaired systolic and diastolic function.

Patients with SLV have poorer cardiac function than those with TA

due to less compensation and more disordered streamline. Our

study demonstrates that twist is a good indicator for measuring

ventricular performance, which may predate more noticeable

echocardiographic signs of deterioration.
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