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Purpose: Neutrophil gelatin lipase carrier protein (NGAL) has been used as an early
biomarker to predict acute kidney injury (AKI). However, the predictive value of
NGAL in urine and blood in children with acute kidney injury in different
backgrounds remains unclear. Therefore, we conducted this systematic review
and meta-analysis to explore the clinical value of NGAL in predicting AKI in
children.
Methods: Computerized databases were searched for relevant the studies
published through August 4th, 2022, which included PUBMED, EMBASE,
COCHRANE and Web of science. The risk of bias of the original included studies
was assessed by using the Quality Assessment of Studies for Diagnostic
Accuracy (QUADA-2). At the same time, subgroup analysis of these data was
carried out.
Results: Fifty-three studies were included in this meta-analysis, involving 5,049
patients, 1,861 of whom were AKI patients. The sensitivity and specificity of
blood NGAL for predicting AKI were 0.79 (95% CI: 0.69–0.86) and 0.85 (95% CI:
0.75–0.91), respectively, and SROC was 0.89 (95% CI: 0.86–0.91). The sensitivity
and specificity of urine NGAL for predicting AKI were 0.83 (95% CI: 0.78–0.87)
and 0.81 (95% CI: 0.77–0.85), respectively, and SROC was 0.89 (95% CI: 0.86–
0.91). Meanwhile, the sensitivity and specificity of overall NGAL (urine and blood
NGAL) for predicting AKI in children were 0.82 (95% CI: 0.77–0.86) and 0.82
(95% CI: 0.78–0.86), respectively, and SROC was 0.89 (95% CI: 0.86–0.91).
Conclusion: NGAL is a valuable predictor for AKI in children under different
backgrounds. There is no significant difference in the prediction accuracy
between urine NGAL and blood NGAL, and there is also no significant difference
in different measurement methods of NGAL. Hence, NGAL is a non-invasive
option in clinical practice. Based on the current evidence, the accuracy of NGAL
measurement is the best at 2 h after cardiopulmonary bypass (CPB) and 24 h
after birth in asphyxiated newborns.
Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier:
CRD42022360157.
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1. Background

At present, acute kidney injury is a great challenge for both

adults and children in clinical practice, which occur more

frequently in patients with cardiac surgery or in critically-ill

children (1, 2). AKI affects almost 20%–50% of children admitted

to the pediatric intensive care units (3, 4). However, there has

been no recognized unified tool for the early prediction of AKI up

to now, and many researchers have introduced machine learning

into the field (5–7). Machine learning and single-factor prediction

can complement each other. Efficient predictors are the key to

improving the accuracy of machine learning predictions. However,

for a single predictor, the accuracy of AKI diagnosis can be

combined with other factors by using machine learning. Thus,

improvement requires the combination of various effective

predictors. Several studies have explored various predictors of AKI,

including kidney injury molecule-1 (KIM-1) (8), liver lipase-

binding protein (L-FABP) (8, 9), NGAL (10, 11), tissue inhibitor

of metalloproteinase-2 (TIMP-2) and insulin-like growth factor

binding protein 7 (IGFBP7) (12–14), etc.

Recent studies have found that NGAL seems to have good

predictive ability for AKI, but its predictive ability for AKI in

children in different backgrounds is still unclear, and there is no

evidence-based evidence to explore whether it is derived from

blood or urine. To evaluate the accuracy of NGAL in predicting

AKI occurrence in different backgrounds, we conducted this

systematic review and meta-analysis and aimed to provide a

reference for the development or update of assessment tools for

AKI in children in clinical practice.
2. Methods

The systematic review was implemented strictly according to

PRISMA-2020 (Preferred Reporting Items for Systematic Reviews

and Meta-Analyses) and prospectively registered on PROSPER

(ID: CRD42022360157).
2.1. Literature search strategies

We systematically searched Pubmed, Cochrane, Embase, and

Web of Science databases for relevant studies published between

2005 and 2022. The age of participants ranged from 0 to 18. The

search strategy adopted the combination of subject headings and

free words. No restrictions were imposed on regions or

languages. The detailed searching strategies are shown in

Supplementary Table S1.
2.2. Inclusion and exclusion criteria

2.2.1. Inclusion criteria
1. Studies including pediatric patients with complete records

about NGAL;
Frontiers in Pediatrics 02
2. Studies including high levels of NGAL without limitation to the

obvious cutoff value;

3. Studies whose original types were RCTs, cohort studies, or

case-control studies.

2.2.2. Exclusion criteria
1. When it was not possible to distinguish whetherNGALwas present

in children or adults in a study, we considered excluding the study;

2. If a study had a large number of missing values about NGAL,

and the missing values were not effectively processed, the study

was excluded;

3. One of the following outcome indicators cannot be extracted

directly or indirectly: sensitivity, specificity, diagnostic four-

table, OR value.

2.3. Study selection and data extraction

Theretrieved studieswere imported intoEndNote, and the titles and

abstracts were screened to include the initial studies that met the

inclusion criteria. After downloading and reviewing the full text of all

potentially eligible studies, we included the eligible studies against the

same eligibility criteria in our systematic review. We developed a

standard data extraction spreadsheet before data extraction. Extraction

content included the title, the first author’s name, publication year,

study type, NGAL source and measurement methods, AKI occurrence

backgrounds and time, NGAL optimal cut-off threshold, the number

of patients with AKI and the total number of study cases, sensitivity

and specificity. The above literature screening and data extraction

were independently carried out by two investigators (ZZ and CB) and

cross-checked after completion. Any disagreements would be resolved

by a third investigator (X-DQ).
2.4. Quality assessment

The quality and risks of bias of the initially included studies

were assessed by two researchers independently (ZZ and CB)

with the help of the Quality Assessment of Diagnostic Accuracy

Studies (QUADAS-2) tool (15). This tool consists of four key

domains: patient selection, index test, reference standard, flow

and timing. The risks of bias in all studies were assessed

according to these four domains and the applicability concerns

were evaluated according to the former three: these areas were

marked as the following responses: “Yes”, “No” or “Unclear”. For

the evaluation of the risk of bias, if all of the questions in a

domain were marked with “Yes” responses, the domain would be

ranked as a low risk of bias. Any questions in a domain marked

with “No” responses suggested a high risk of bias.
2.5. Statistical analysis

We conducted a meta-analysis in which a bivariate mixed

effects model in the “Midas” command of Stata 15.0 (StataCorp
frontiersin.org
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LLC, College Station, TX) was used to assess sensitivity (SEN),

specificity (SEP), positive likelihood ratio (PLR), negative

likelihood ratio (NLR), and diagnostic odds ratio (DOR). We

calculated the point estimates with 95% confidence intervals

(95% CI). A summary receiver operating characteristic curve

(SROC) was drawn and the area under the curve (AUC) at 95%

CI was calculated. Deek’s funnel plot was used to evaluate the

publication bias, and the Q statistic and I2 statistic were used to

test for heterogeneity. P < 0.05 was considered statistically

significant.
3. Results

3.1. Literature screening results

Overall, 1,298 relevant studies were retrieved from the

database, of which 556 duplicates were excluded. After screening
FIGURE 1

Flow chart of literature screening. AKI acute kidney injury, area under the AUC
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the titles and abstracts of the remaining 742 studies, 665 studies

were excluded. After screening the full text, 24 studies were

excluded and 53 met the eligibility criteria (10, 11, 16–65). The

flowchart of the literature screening method is shown in Figure 1.
3.2. Study characteristics

Of the 53 included studies published between 2005 and 2022,

which included 5,048 patients, 1,861 patients had AKI, with an

incidence rate of 36.8%. Among them, 34 studies (10, 11, 16–18,

20–22, 24, 27–29, 31–34, 39, 42–45, 47, 48, 52, 53, 55–58, 61–65)

measured urine NGAL, 14 studies (24, 26, 30, 36–38, 41, 46, 49–

51, 54, 59, 60) measured blood NGAL, and 5 studies (19, 25, 35,

40, 42) measured blood and urine simultaneously. The included

studies were conducted in 20 countries worldwide, including 11

studies in European countries (19, 20, 30, 33–36, 38, 54, 58, 65),

12 studies in the United States (10, 11, 32, 40, 42, 45, 49, 50, 53,
curve, NGAL neutrophil gelatin release-associated lipoprotein.
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61, 62, 66), 20 studies in Asian countries (16, 18, 22, 24, 25, 27–29,

31, 33, 39, 41, 43, 44, 48, 51, 52, 55, 56, 59), 9 studies in African

countries (24, 37, 46, 47, 49, 57, 60, 63, 64), and 1 study from

Canada (17). Two studies were multi-centered (26, 33), and the

remaining studies were single-centered. The included studies

covered various backgrounds of AKI. Among them, 15 studies

reported AKI occurred after CPB surgery (11, 19, 21, 24, 33, 36,

40, 42, 46, 50, 53, 56, 58, 65, 66), 12 studies reported AKI

occurred in asphyxiated neonates (22, 28, 30, 31, 35, 37–39, 47,

51, 54, 57), and the remaining 26 studies reported AKI occurred

in children hospitalized for a variety of diseases, including sepsis,

burns, solid tumors, post-liver transplantation, nephrotoxic drug

use, imaging, and preterm, neonatal congenital heart disease,

neonatal Hyperbilirubinemia, neonatal general surgery, etc. The

diagnostic criteria for AKI used in the original studies varied and

were mainly divided into the following three: pediatric risk,

injury, failure, loss, final and end stage (PRIFLE) (67), Acute

Kidney Injury Network (AKIN) (68) and Kidney Disease:

Improving Global Outcomes (KDIGO) (69). The most frequently

used measurement method for blood or urine NGAL in the

included studies was enzyme-linked immunosorbent assay

(ELISA), and 7 studies used immunoturbidimetry (17, 19, 22, 51,

54, 58, 61), 2 studies used chemiluminescence microparticle

immunoassay (CMIA) (20, 33), and 1 study used Fluorescence-

based immunoassay (IFA) (36). The main characteristics and

details of all included study are shown in Table 1, and the

quality assessment of the 53 included studies is shown in Table 1.
3.3. Quality assessment

Of all included studies, 19 studies used case-control studies (11,

16, 19, 22, 24, 29, 31, 34–36, 38, 39, 43, 48, 49, 52, 57, 61, 64), and

the remaining 34 used cohort studies; 7 studies did not report

whether the interpretation of the gold standard results was blinded

(26, 29, 38, 43, 45, 48, 57); 4 studies did not report whether there

was an appropriate time interval between the trial under review

and the gold standard (10, 32, 49, 64), and 3 studies had an

inappropriate time interval between the trial under review and the

gold standard (19, 31, 65); patients in 2 studies received two or

more different gold standards (42, 56); in the matching of the

included patients’ backgrounds and evaluation questions, 3 studies

had a high risk of bias because of the special NGAL measurement

methods (20, 33, 36)and 1 study had a high risk of bias because

the overall ages of the patients were too old (62). Two studies

have a high risk of bias in the evaluation of the applicability of the

gold standard (31, 56). The specific evaluation results are shown

in Figure 2 and Supplementary Figure S1.
3.4. Meta-analysis

3.4.1. Predictive accuracy of overall NGAL for
AKI in children

Of these 53 studies, 9 studies were multiarm predictive

diagnostic studies (17, 19, 25, 31, 35, 38, 40, 42, 46), thus
Frontiers in Pediatrics 04
equaling 64 for the total number of meta-analyses. A bivariate

effect model was used to perform a meta-analysis of NGALto

predict AKI in children, with a sensitivity of 0.82 (95% CI: 0.77–

0.86), specificity of 0.82 (95% CI: 0.78–0.86), and an SROC of

0.89 (95% CI: 0.86–0.91), DOR 21 (95% CI: 14–31), PLR

(Positive likelihood ratio) 4.6 (95% CI: 3.6–5.8), NLR (Negative

likelihood ratio) 0.22 (95% CI: 0.17–0.29). The results of the

subgroup analysis can be seen in Table 2.

We found that AKI occurred in 35% of these included patients,

and we used its incidence as the prior probability. With a PLR of 5

(95% CI: 3.6–5.8), the probability of being diagnosed with AKI by a

diagnostic test was 0.71 and the probability of being diagnosed with

non-AKI was 0.11, and we found that there was no significant

publication bias. (See Figure 3 for details).

3.4.2. Prediction of AKI in children by NGAL
in blood

After summing up all studies that measured blood NGAL, 22

studies on blood NGAL for predicting AKI were found. A

bivariate effect model was used for the analysis, and the results

are shown in Supplementary Table S2. The sensitivity was 0.79

(95% CI: 0.69–0.86), the specificity was 0.85 (95% CI: 0.75–0.91),

and the SROC was 0.89 (95% CI: 0.89). 0.86–0.91), DOR 21

(95% CI: 9–48), PLR 5.1 (95% CI: 3.0–8.6), and NLR 0.25 (95%

CI: 0.16–0.39).

Because the overall incidence of AKI of the patients we

included was 35%, we still used the incidence of 35% as the prior

probability. When the PLR was 5.1 (95% CI: 3.0–8.6), the

probability of being diagnosed with AKI was 0.73 based on

diagnostic tests and the probability of non-AKI was 0.12. See

Figure 4 for details.

3.4.3. Prediction of AKI in children by NGAL in
urine

After summing all studies that measured urine NGAL, a total

of 42 studies on urine NGAL for predicting AKI were found.

The bivariate effect model was also used for analysis. The results

are shown in Supplementary Table S3. The sensitivity was 0.83

(95% CI: 0.78–0.87), the specificity was 0.81 (95% CI: 0.77–0.85),

and the SROC was 0.89 (95% CI: 0.86–0.91), DOR 21 (95% CI:

13–33), PLR 4.4 (95% CI: 3.5–5.6), and NLR 0.21 (95% CI: 0.16–

0.28).

We still adopted the 35% incidence of AKI as the prior

probability. When the PLR was 4.4 (95% CI: 3.0–8.6), the

probability of being diagnosed with AKI by diagnostic tests was

0.70, and the probability of being diagnosed as non-AKI was

0.10. See Figure 5.

3.4.4. Measurement time
In the included studies, the urine or blood used to measure

NGAL was collected at different times in different AKI

backgrounds. For children after CPB surgery, the measurement

time of NGAL was mainly in 2 h after surgery. The meta-

analysis of the diagnostic accuracy reported a sensitivity of 0.90

(95% CI: 0.80–0.95), a specificity of 0.90 (95% CI: 0.83–0.94),

SROC of 0.96 (95% CI: 0.93–0.97). For asphyxiated neonates, the
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FIGURE 2

Risk of bias graph.

TABLE 2 Meta-analysis (sensitivity analysis) of prediction of AKI by overall NGAL.

Subgroup Levels Number Sensitivity
(95% CI)

Specificity
(95% CI)

SROC
(95% CI)

DOR
(95% CI)

PLR
(95% CI)

NLR
(95% CI)

Study Design cohort study 22 0.80[0.70,0.87] 0.80[0.72,0.85] 0.87[0.83–0.89] 16[9,29] 3.9[2.8,5.4] 0.25[0.16,0.38]

case-control study 42 0.82[0.77,0.87] 0.83[0.78,0.87] 0.90[0.87–0.92] 23[13,40] 4.9[3.6,6.7] 0.21[0.16,0.29]

Determination method ELISA 54 0.83[0.78,0.87] 0.83[0.78,0.86] 0.90[0.87–0.92] 23[15,36] 4.8[3.8,6.1] 0.21[0.16,0.27]

IFA 1 0.81 0.74 NA NA NA NA

CMIA 2 0.75–0.89 0.73–0.95 NA NA NA NA

Immunoturbidimetry 7 0.82[0.73,0.88] 0.79[0.61,0.90] 0.86[0.82–0.88] 16[5,53] 3.8[1.8,7.9] 0.23[0.14,0.39]

Diagnostic criteria pRIFLE 33 0.83[0.75,0.88] 0.85[0.79,0.89] 0.91[0.88–0.93] 27[14,52] 5.4[3.8,7.8] 0.20[0.14,0.30]

AKIN 6 0.85[0.78,0.90] 0.88[0.82,0.92] 0.93[0.91–0.95] 43[22,85] 7.2[4.7,11.1] 0.17[0.11,0.25]

KDIGO 25 0.79[0.72,0.84] 0.76[0.69,0.81] 0.84[0.81–0.87] 12[7,19] 3.3[2.5,4.2] 0.28[0.21,0.38]

Pathogenesis background CPB 21 0.85[0.74,0.92] 0.88[0.83,0.92] 0.93[0.90–0.95] 41[17,97] 7.1[4.8,10.4] 0.17[0.10,0.30]

Asphyxiated Neonates 15 0.83[0.77,0.88] 0.80[0.70,0.87] 0.88[0.85–0.91] 20[9,43] 4.1[2.6,6.6] 0.21[0.15,0.30]

Critically ill children 17 0.72[0.63,0.80] 0.74[0.63,0.82] 0.79[0.75–0.82] 7[4,14] 2.7[1.9,4.1] 0.37[0.27,0.53]

Critically-ill Neonates 11 0.83[0.74,0.90] 0.81[0.73,0.88] 0.89[0.86–0.92] 22[12,40] 4.5[3.1,6.5] 0.20[0.13,0.32]

Hospital departments Admission 20 0.83[0.75,0.89] 0.84[0.77,0.90] 0.91[0.88–0.93] 27[11,62] 5.3[3.4,8.4] 0.20[0.13,0.32]

NICU 27 0.83[0.79,0.87] 0.80[0.74,0.85] 0.89[0.86–0.91] 21[13,32] 4.3[3.2,5.7] 0.21[0.16,0.27]

PICU 17 0.75[0.61,0.85] 0.82[0.71,0.89] 0.86[0.82–0.88] 13[6,31] 4.1[2.5,6.6] 0.31[0.19,0.50]

Age stage Neonates 28 0.85[0.80,0.90] 0.82[0.76,0.87] 0.91[0.88–0.93] 27[15,49] 4.9[3.5,6.7] 0.18[0.13,0.25]

children 36 0.78[0.71,0.84] 0.82[0.76,0.87] 0.87[0.84–0.90] 17[9,29] 4.4[3.1,6.1] 0.26[0.19,0.36]

Overall 64a 0.82[0.77,0.86] 0.82[0.78,0.86] 0.89[0.86–0.91] 21[14,31] 4.6[3.6,5.8] 0.22[0.17,0.29]

aSince several included studies were multi-armed diagnostic tests, they also met our exclusion criteria. For each arm, it also met our inclusion criteria, so its overall number

would outnumber the number of studies.

Zou et al. 10.3389/fped.2023.1147033
measurement time of NGAL was mainly within 24 h after birth.

The meta-analysis of the diagnostic tests reported a sensitivity of

0.88 (95% CI: 0.82–0.92), a specificity of 0.81 (95% CI: 0.71–

0.90), SROC of 0.90 (95% CI: 0.87–0.92). After meta-analyzing

all studies on the measurement time of NGAL after CPB and

asphyxiated neonates, we found that the overall measurement

accuracy was not as high as 2 h after CPB and 24 h after birth in

asphyxiated neonates. The latter seemed to have a more ideal

DOR, so we suggested that these time points were the reasonable

sampling for AKI in both cases. See Table 3.
4. Discussion

We found NGAL had a high predictive value for AKI in

children. There were no significant differences between blood
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and urine NGAL. At the same time, we also found that the

measurement time of NGAL was mainly 2 h after CPB, and the

main measurement time for asphyxiated neonates was 24 h after

birth.

L. Taddeo et al. (70) conducted a systematic review in 2017 to

evaluate the accuracy of NGAL which was taken as the biomarker

of AKI in children. It analyzed a total of 13 studies including 1,629

children, and its combined sensitivity for urine NGAL was 0.76

(95% CI: 0.62–0.85), the combined specificity was 0.93 (95% CI:

0.88–0.96). When the number of included studies increased to 53

and the number of cases increased to 5,048 patients, the results

of this study consist with those of previous studies.

We also found reports on other AKI predictors in recent

years. H. M. Jia et al. (71) conducted a systematic review

evaluating the effects of urinary tissue inhibitor of

metalloproteinase-2 [TIMP-2] and insulin-like growth factor-
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FIGURE 3

(A) forest plot of overall sensitivity and specificity; (B) boxplot of overall heterogeneity; (C) overall SROC curve; (D) overall deeks funnel chart;
(E) nomogram of overall clinical utility.
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binding protein 7 [IGFBP7] on the early diagnostic value of acute

kidney injury, which included 9 eligible published studies with

1,886 cases. The combined sensitivity was 0.83 (95% CI: 0.79–

0.87), and the specificity was 0.55 (95% CI: 0.52–0.57). We

noticed that these two predictors had high predictive accuracy

for the occurrence of AKI, however, its accuracy for the people

without AKI was not enough. Compared with these two factors,

NGAL had significantly improved sensitivity and specificity in

predicting AKI. M. Fazel et al. (72) conducted a systematic

review to assess the accuracy of Kidney Injury Molecule-1 (Kim-1)

in predicting AKI in children within 12 h after admission,

including 13 articles, which showed that the final AUC of urinary

Kim-1 in predicting AKI was 0.69 (95% CI: 0.62–0.77), and its

conclusion also suggested that Kim-1 seemed to have a moderate

value in predicting AKI in children. P. Susantitaphong et al. (9)

conducted a meta-analysis on 7 cohort studies. For urinary

L-FABP, the sensitivity of for the diagnosis of AKI was 74.5%

(95% CI: 60.4%–84.8%), and the specificity was 77.6% (95% CI:

61.5%–88.2%). In general, the current predictors of AKI in

children include TIMP-2, IGFBP7, Kim-1, L-FABP, etc. Our study

shows that NGAL seems to have a better predictive effect.
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occurrence backgrounds. A. Haase-Fielitz et al. (73) conducted a

systematic review that included 2,527 adults and 1,342 children

who had undergone cardiac surgery. The results showed that

urine NGAL could be used for the early prediction of AKI after

cardiac surgery, but it did not carry out a meta-analysis, nor did

it delve into the occurrence time of AKI and the measurement

time of NGAL after cardiac surgery. F. F. Zhou et al. (74)

researched on the diagnostic accuracy of NGAL within 12 h after

cardiac surgery-associated acute kidney injury (CSA-AKI),

including 24 studies (with 33 datasets of 4,066 patients).

The overall sensitivity was 0.68 (95% CI: 0.65–0.70), and the

specificity was 0.79 (95% CI: 0.77–0.80). After we expanded the

number of included studies and the number of patients, we

found that NGAL measurement performed 2 h after CPB had

the best diagnostic performance for AKI.

Bellos et al. (75) conducted a systematic review of the accuracy

of serum and urine NGAL in detecting AKI in neonates with

perinatal asphyxia. A total of 11 studies were included, with a

total of 652 cases. The sensitivity of serum NGAL in this study

was 0.818 (95% CI: 0.668–0.909), and the specificity was 0.870
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FIGURE 4

(A) sensitivity-specificity forest plot of blood NGAL; (B) heterogeneity—polygonal boxplot of blood NGAL; (C) SROC curve of blood NGAL; (D) deeks
funnel diagram of blood NGAL; (E) clinical utility nomogram of blood NGAL.
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(95% CI: 0.754–0.936). The results of it are consistent with our

results in the subgroup analysis of AKI associated with

asphyxiated neonates, but this study did not conduct an analysis

or draw conclusions on the best time for NGA1 measurement in

asphyxiated neonates, so our study filled this gap.

This systematic review has the following advantages: (1) On

the basis of previous studies, it comprehensively explored the

predictive value of NGAL for children with AKI based on the

results of many studies in recent years. (2) Among the newly

discovered predictors of AKI in children in recent years, no

matter it is from blood or urine, NGAL is a valuable predictor,

which can provide a basis for the future clinical measurement of

AKI, so that predictor samples can be collected through a non-

invasively way and reduce patients’ pain. (3) It is even found that

there is no significant difference in various measurement

methods, which can reduce the waste of medical resources

caused by different measurement methods in clinical practice. (4)

In addition, this study can also provide a reasonable choice of

sampling or measurement time for predicting certain diseases

leading to AKI. Effective predictors are essential for improving

the predictive accuracy of risk models. Our research shows that

NGAL has a good predictive value and can be included into the
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their predictive accuracy.

However, we noticed some limitations. First, there was huge

discrepancy between the number of studies which measure blood,

urinary or both NGAL. Second, in the analyzed studies, there is

various time gap between trial and gold standard analysis, and

the AKI definition is also variable. Third, for the measurement

time of some AKI backgrounds (such as sepsis, burns, solid

tumors, use of nephrotoxic drugs, angiography-related, neonatal

general surgery, etc.), due to the limited number of relevant

reports, it may still be cautious to conclude in this regard.
5. Conclusion

NGAL is a valuable predictor for AKI in children with

different backgrounds, and there is no significant difference in

the predictive value of NGAL in urine and blood, which can

provide a non-invasive choice for clinical practice. According to

the current evidence, the accuracy of NGAL measurement is the

best at 2 h after CPB and 24 h after birth in asphyxiated

newborns. At the same time, we also noticed that there is no
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FIGURE 5

(A) sensitivity-specificity forest plot of urine NGAL; (B) heterogeneity—polygonal boxplot of urine NGAL; (C) SROC curve of urine NGAL; (D) deeks funnel
diagram of urine NGAL; (E) clinical utility nomogram of urine NGAL.

TABLE 3 Meta-analysis (sensitivity analysis) of NGAL in predicting AKI after CPB.

Subgroup Number Sensitivity
(95% CI)

Specificity
(95% CI)

SROC
(95% CI)

DOR
(95% CI)

PLR
(95% CI)

NLR
(95% CI)

After CPB (hours) / / / / / / /

1 1 0.82 0.76 NA NA NA NA

2 11 0.90[0.80,0.95] 0.90[0.83,0.94] 0.96[0.93–0.97] 80[24,269] 9.0[5.0,16.1] 0.11[0.05,0.23]

4 3 0.63–0.87 0.68–0.89 NA NA NA NA

6 2 0.45–0.95 0.85–0.95 NA NA NA NA

12 2 0.8–0.89 0.73–1 NA NA NA NA

24 2 0.13–0.91 0.88–0.91 NA NA NA NA

Overall 21 0.85[0.74,0.92] 0.88[0.83,0.92] 0.93[0.90–0.95] 41[17,97] 7.1[4.8,10.4] 0.17[0.10,0.30]

Asphyxiated Neonates
(after birth, hours)

/ / / / / / /

0 1 0.8 0.895 NA NA NA NA

2 1 0.69 0.657 NA NA NA NA

4 1 0.719 0.743 NA NA NA NA

6 4 0.8 0.895 NA NA NA NA

24 7 0.88[0.82,0.92] 0.82[0.71,0.90] 0.90[0.87–0.92] 34[16,72] 4.9[2.9,8.5] 0.15[0.10,0.22]

48 1 0.875 0.843 NA NA NA NA

Overall 15 0.83[0.77,0.88] 0.80[0.70,0.87] 0.88[0.85–0.91] 20[9,43] 4.1[2.6,6.6] 0.21[0.15,0.30]
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significant difference in different measurement methods of

NGAL, which can provide guidance for the development and

verification of assessment tools for the risk of AKI in children
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in the future. This variable can also be introduced into the

machine learning method, and in the future, it is expected to

develop a popular and clinically practical simple prediction
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system for the prediction of AKI in children based on the

machine learning method.
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