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Introduction:Whitematter injury (WMI) is now themajordisease that seriouslyaffects
the quality of life of preterm infants and causes cerebral palsy of children, which also
causes periventricular leuko-malacia (PVL) in severe cases. The study aimed to
develop a method based on cranial ultrasound images to evaluate the risk of WMI.
Methods: This study proposed an ultrasound radiomics diagnostic system to predict
the WMI risk. A multi-task deep learning model was used to segment white matter
and predict the WMI risk simultaneously. In total, 158 preterm infants with 807
cranial ultrasound images were enrolled. WMI occurred in 32 preterm infants
(20.3%, 32/158).
Results:Ultrasound radiomics diagnostic system implemented agreat resultwithAUC
of 0.845 in the testing set. Meanwhile, multi-task deep learning model preformed a
promising result both in segmentation of white matter with a Dice coefficient of
0.78 and prediction of WMI risk with AUC of 0.863 in the testing cohort.
Discussion: In this study, we presented a data-driven diagnostic system for white
matter injury in preterm infants. The system combined multi-task deep learning and
traditional radiomics features to achieve automatic detection of white matter
regions on the one hand, and design a fusion strategy of deep learning features and
manual radiomics features on the other hand to obtain stable and efficient
diagnostic performance.
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1. Introduction

White matter injury (WMI) is a common brain injury disorder in preterm infants,

mostly occurring in preterm infants at 24–35 weeks of gestational age. WMI often leads

to various degrees of neurodevelopmental delay, cognitive impairment, and even cerebral

palsy in preterm infants. Part of preterm infants with severe WMI only show delayed

reaction or visual abnormalities in appearance. WMI in severe cases will cause

periventricular leukomalacia (PVL), which is characterized by lesions of deep white

matter around the lateral ventricle. PVL is now the major disease that seriously affects the

quality of life of preterm infants and causes cerebral palsy of children (1).

Related studies (2) have shown that the incidence of WMI in preterm infants is

increasing year by year. It has become one of the most critical diseases in preterm

infants, which can lead to long-term neurological sequelae and even death in severe cases.

At present, there is no definite and effective treatment plan for this disease, and the
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clinical goal is mainly focused on early diagnosis and intervention.

Imaging is the only diagnostic tool for cerebral white matter

injury (3).

At present, imaging is often used to assess the brain injury in

preterm infants. Magnetic resonance imaging (MRI), computed

tomography (CT), ambulatory eleroencephalography (aEEG), and

cranial ultrasound (US) are four main methods for detecting

WMI in preterm infants. Among them, MRI is the preferred

method. Diffusion weighted imaging (DWI) is a major

breakthrough in MRI technology in recent years, which is

important in the diagnosis of brain injury in preterm infants

(4, 5). However, it is costly, inflexible, and cannot be performed

bedside. Some studies have shown that aEEG monitoring is of

great value for the early diagnosis of WMI in preterm infants

and can effectively assess the status of neurological development

in preterm infants (6). Cranial ultrasound has the advantage of

being a bedside tool that allows safe, reliable serial imaging. It

enables assessment of the evolution of injury over time, as well

as brain growth and maturation (7–9).

For PVL in preterm infants, it is recommended that cranial US

should be the first choice, and cranial CT should only be used as an

adjunctive test due to its radiation properties (9, 10). He Xuehua

and Guan Buyun et al. studied quantitative analysis of

ultrasonographic gray value in premature infants with PVL (11).

They performed threshold segmentation of ultrasound images of

PVL in preterm infants, edge extraction of specific region of

interest (ROI), quantitative analysis of white matter contained in

ROI, and calculation of its average gray value as a quantitative

index for evaluation of white matter density in preterm infants.

Their study showed that Snake model, a medical image analysis

software can provide important information in the early

diagnosis and in evaluating the prognosis of PVL. The

quantitative analysis of ultrasound gray value is important for the

early diagnosis of PVL in preterm infants, which not only

improves the accuracy of diagnosis and reduces the operator’s

subjective judgment error, but also has certain guiding

significance for early clinical intervention and reduction of

disability.

The diagnosis of WMI by cranial ultrasound imaging is still

influenced by interobserver differences. Medical image processing

and computer aided diagnosis are being developed to achieve

objectivity (9). A semi-automatic ultrasound texture analysis

method has been developed to improve the early detection of

WMI in newborns (12, 13). The quantitative analysis of

ultrasound gray value is important for the early diagnosis

of WMI in preterm infants, which not only improves the

accuracy of diagnosis and reduces the operator’s subjective

judgment error, but also has certain guiding significance for early

clinical intervention and reduction of disability. But texture

analysis method only used little information contained in the

cranial ultrasound images.

For ultrasound images, the vast majority of the current clinical

practice relies on experienced clinicians’ diagnosis. The

information of the injury area is extracted according to the

intensity and boundary of the echoes. However, different doctors

with different clinical experience will have different conclusions
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from the same cranial US images. Therefore, the standardized

evaluation of WMI based on cranial US images has clinical

application value. Our study aims to provide a more accurate

and comprehensive method based on cranial US images for the

early diagnosis and treatment of WMI in preterm infants, in

order to reduce the subjectivity of analysis errors caused by

human factors. Therefore, we tried to present a diagnostic system

for white matter injury in preterm infants. The system combines

multi-task deep learning and traditional radiomics features to

achieve automatic detection of white matter regions and obtain

stable and efficient diagnostic performance of WMI.
2. Materials and methods

2.1. Patients

The data used in this study was obtained from the International

Peace Maternity & Child Health Hospital. Ethical approval was

waived because it was a retrospective study. In this study, 158

preterm infants with cranial US images were obtained using

Philips ultrasonic instrument (EPIQ5 or CX50) with convex

array probe (C8-5; 5–8 MHz). The inclusion criteria were: (1)

gestational age < 37 weeks, age≤ 7 days, (2) preterm infants

underwent cranial ultrasound diagnosis and had clear

B-mode ultrasound images (B-US), (3) birth mother had

obstetric complications, (4) preterm infants had a clear

expression of intrauterine distress or a clear history of asphyxia

during labor, (5) shortly after birth, preterm infants presented

with persistent increased anterior fontanelle tone and

neurological symptoms.

The study population consisted of 158 preterm infants with 807

cranial US images. 126 cases in the data set were normal preterm

infants and 32 cases were preterm infants with WMI. We split

the data set into training cohort (110 preterm infants with 566

cranial US images) and testing cohort (48 preterm infants with

241 cranial US images) at a ratio of 7:3. Figure 1 presents an

overview of the patients of the study. The training cohort

consists of 88 normal preterm infants (435 cranial US images)

and 22 preterm infants with WMI (131 cranial US images). The

testing cohort consists of 38 normal preterm infants (196 cranial

US images) and 10 preterm infants with WMI (45 cranial US

images).
2.2. Cranial ultrasound images

Ultrasonography is a technique that uses specific sound

waves to measure the data of morphology and physiology of

tissue structures to understand the structure and pathological

processes in the human body. B-mode ultrasound (B-US) is a

two-dimensional image that is displayed on the screen in

grayscale in real-time. With the clinical application of ultrasonic

diagnosis technology, the technology began to be used in the

diagnosis of neonatal intracranial diseases in the late 1970s. Since

the fontanelle is not yet closed at birth, it provides unique
frontiersin.org
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FIGURE 1

Overview of the patients of the study.
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diagnostic conditions for clinical ultrasound detection of

intracranial lesions (14). The newborn’s cranial ultrasound

technology is a unique diagnostic tool. The development of

neonatal cranial ultrasound technology has opened up a new way

for clinicians to understand intracranial lesions in vivo. Cranial

ultrasound is non-invasive, painless, inexpensive, simple, easy to

perform and intuitive, and has become an indispensable routine

method for the diagnosis of intracranial diseases in high-risk

infants.

The anterior fontanelle of coronal plane set as the

standard plane of measurement. This plane clearly shows the

bilateral lateral fissure, corpus callosum, and anterior horn of the

lateral ventricle. In each preterm infant, 3–6 ultrasound images

were obtained in this plane. In total, we obtained 807 ultrasound

image samples from 158 preterm infants. All ultrasound

examinations were performed by the 3 radiologists with at least

10 years of experience. And all data had the golden standard of

manual segmentation by same radiologist.
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2.3. Ultrasound radiomics diagnostic system

We used computer-aided diagnostic system based on B-US for

the prediction of WMI in preterm infant. There are mainly four

steps: ultrasound image segmentation, feature extraction, feature

selection, and classification. The overview of our ultrasound

radiomics diagnostic system is presented in Figure 2.

We used the golden standard segmented manually by

radiologists as the input ROIs. Features were extracted from each

ROI. Then, we transferred B-US ROIs to Wavelet_A, Wavelet_V,

Wavelet_D, and Wavelet_H modes (15). In each mode, 70

features were extracted from each ROI. Finally, we obtained a

total of 350 features in each B-US ROI, including 70 basis

features and 280 wavelet features. Among them, the 70 basis

features are as follows: 16 histogram features, 23 grey-level co-

occurrence matrix (GLCM) based features, 13 gray-level run

length matrix (GLRLM) based features, 13 gray-level size zone

matrix (GLSZM) based features, and 5 neighboring gray tone
frontiersin.org
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FIGURE 2

Overview of our ultrasound radiomics diagnostic system.
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difference matrix (NGTDM) based features. The details are shown

in Table 1.

We used sparse representation-based classifier (SRC) for

feature selection, which was proposed by Li (16). The main idea

of SRC is to identify the most relevant features based on the

importance index generated in each bootstrap iteration (17). The

SRC is based on the assumption that all signals can be

represented by a linear combination of atoms in the dictionary.

The atoms used to represent the signals are equivalent to the

significant features. And the features interact with each other

during the representation of the signals. The coefficients of the

representation correspond to the importance of the features. All
TABLE 1 350 features extracted from B-US.

Feature Type Feature Nam

Basic Features Total number of base features

Histogram 1) Energy 2) Total Energy 3) Entropy 4) Minimum 5) Maximum 6
Deviation 10) Mean Absolute Deviation 11) Range 12) Root Mean
Skewness

GLCM 17) Autocorrelation 18) Joint Average 19) Cluster Prominence 20)
23) Difference Average 24) Correlation 25) Difference Entropy 26)
29) Dissimilarity 30) Joint Energy 31) Informational Measure of C
2 33) Inverse Difference Moment 34) Joint Entropy 35) Maximal
Inverse Variance 38) Maximum Probability 39) Difference Varian

GLRLM 40) Short Run Emphasis 41) Long Run Emphasis 42) Gray Level N
Run Percentage 45) Low Gray Level Run Emphasis 46) High Gra
Emphasis 48) Short Run High Gray Level Emphasis 49) Long Run
Level Emphasis 51) Gray-Level Variance 52) Run-Length Varianc

GLSZM 53) Small Area Emphasis 54) Large Area Emphasis 55) Gray Leve
Zone Percentage 58) Gray Level Variance 59) Zone Variance 60)
Zone Emphasis 62) Small Area Low Gray Level Emphasis 63) Sma
Gray Level Emphasis 65) Large Area High Gray Level Emphasis

NGTDM 66) Coarseness 67) Contrast 68) Busyness 69) Complexity 70) Str

Wavelet
Characteristics

Wavelet transform was performed on the original B-US image to ob
modes, and then the basic features in the transformed modes we

Total number of features extracted from cranial US images
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features can be ranked according to their coefficients. So, the top

20% of the atoms with a prominent role are retained as

significant features.

In this study, support vector machine (SVM) based cost-

support vector classifier (C-SVC) was used to predict the WMI

risk by selected features. SVM is a binary classification model

and also a linear classifier defined on a certain feature space. By

using kernel functions, SVM can be transformed into a nonlinear

classifier (17). The purpose of SVM is to split the sample by

finding a hyperplane. C-SVC using kernel functions has been

widely used in machine learning for high-dimensional complex

feature spaces especially when the samples are not balanced. In
e Number of
characteristics

70

) Mean 7) Median 8) Interquartile Range 9) Standard
Squared 13) Uniformity 14) Variance 15) Kurtosis 16)

16

Cluster Shade 21) Cluster Tendency 22) Sum Variance
Homogeneity 1 27) Homogeneity 2 28) Sum Average
orrelation 1 32) Informational Measure of Correlation
Correlation Coefficient 36) Inverse Difference 37)
ce

23

on-Uniformity 43) Run Length Non-Uniformity 44)
y Level Run Emphasis 47) Short Run Low Gray Level
Low Gray Level Emphasis 50) Long Run High Gray
e

13

l Non-Uniformity 56) Size-Zone Non-Uniformity 57)
Low Gray Level Zone Emphasis 61) High Gray Level
ll Area High Gray Level Emphasis 64) Large Area Low

13

ength 5

tain wavelet_A, wavelet_H, wavelet_V and wavelet_D
re extracted.

280

350
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the process of searching the optimal hyperplane in high-

dimensional space, C-SVC has good discriminative power and

stability (18).
2.4. Deep learning modeling

Deep learning models have been widely used in clinical

medicine, and it is witnessing increasing innovations in the fields

of AI-aided image analysis, AI-aided lesion determination, AI-

assisted healthcare management, and so on (19, 20). In this

study, we used two deep learning models to implement

segmentation of white matter and prediction of WMI risk of

preterm infants.

2.4.1. Segmentation deep learning model
In order to find the most suitable segmentation deep learning

network (SDL-Net), we compared FCN (21), U-Net (22),

TransUNet (23) and Swin-Unet (24) for white matter

segmentations. Based on the result of this ablation experiment

(detailed in Supplementary Material), we used U-Net as our

SDL-Net. U-Net is an improved segmentation network based on

FCN (21) that uses only a small amount of data to train an end-

to-end (image in, image out) network and works well for

medical images. U-Net network includes a down-sampling path

for capturing semantic information, an up-sampling path for

accurate segmentation localization, and a transverse connected

path. The structure is shown in Figure 3. The down-sampling

path is used to extract features of the image at different scales.

The up-sampling path is symmetric to the down-sampling path,
FIGURE 3

Structure of SDL-Net.
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and they form a U-shaped structure. The transverse connected

path allows the network to propagate information of the original

image directly to the higher level of high-resolution layer. This

structure makes the output layers of the whole network with no

missing context information comparing with the original images,

and allows U-Net to be used for segmentation of small datasets

and reduce the memory limitation of the graphics processing

unit (GPU).

2.4.2. Multi-task deep learning model
In order to find the most suitable multi-task deep learning

network (MTDL-Net), we compared Fast R-CNN (25), Faster R-

CNN (26), Mask R-CNN (27) and RS-Net (28) for white matter

segmentations and WMI status prediction. Based on the result of

this ablation experiment (detailed in Supplementary Material),

we used Mask R-CNN as our MTDL-Net. Mask R-CNN is an

improved convolutional neural network proposed based on

Faster R-CNN (25). It can accomplish target detection and

semantic segmentation simultaneously. The structure of our

multi-task deep learning model is divided into three main parts,

which is shown in Figure 4. The first part is feature pyramid

networks (FPN) (29), which is used for feature map extraction

from the whole image. The second part is region proposal

network (RPN) (26), which is used for ROI proposal generation.

The third part is output layer for classification, bounding box (B-

Box) detection, and ROI mask segmentation. There is an ROI

Align layer between the second and third parts for obtaining the

feature maps corresponding to each ROI. Our multi-task deep

learning model has three final outputs: classification labels, B-

Box, and semantic segmentation ROIs.
frontiersin.org
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FIGURE 4

Structure of our multi-task deep learning model.
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2.5. Statistical analysis

The AUC was used as an index for the evaluation of the

diagnostic performance. The sensitivity (SENS), specificity

(SPEC), accuracy (ACC), and positive and negative diagnostic

likelihood ratios (LR+, LR−) were calculated. We adopted Dice

coefficient (Dice) and Intersection over Union (IoU) to evaluate

the performance of segmentation. The definitions of these

indexes are detailed in Supplementary Material.

The statistical analyses were performed using MedCalc

software (version 20.027; MedCalc Software bvba, Mariakerke,

Belgium), SPSS software (v. 22.0; IBM Corp., Armonk, NY,

USA), Python 3.7, and Matlab R2020b.
2.6. Implementation details

While training, we implemented an asymmetric cyclic

sampling strategy to optimize the unbalanced dataset and

augment the training dataset. In order to improve the

generalization ability considering the limited medical data, we

applied oversampling strategy to augment the data which belong

to preterm infants with WMI during training. Additionally, the

training set was artificially augmented by random translation,

rotation and flipping from the original images to prevent

overfitting of the networks due to the limited training dataset.

More details about data augmentation techniques are described

in Supplementary Material.

In SDL-Net, the max training epoch is set to 100 with a batch

size of 4 empirically. The model parameters are updated via the

Adam optimizer with a learning rate of 1 � e�3. In MTDL-Net,
Frontiers in Pediatrics 06
the max training epoch is set to 100 with a batch size of 4

empirically. The model parameters are updated via the Adam

optimizer with a learning rate of 2 � e�4.

Our network was implemented in the PyTorch platform, and

MATLAB was used to realize data pre-processing. The entire

training process was performed on a computer equipped with an

Intel Xeon 4210 CPU with 128 GB RAM, and a Nvidia GeForce

RTX 2080 Ti.
3. Results

3.1. WMI prediction based on ultrasound
radiomics diagnostic system

In this part, the golden standard ROIs segmented by

radiologists were used in feature extraction.

While training, each cranial US ROI was extracted 350 features

based on grayscale, Wavelet_A, Wavelet_V, Wavelet_D, and

Wavelet_H modes. Then 350 features were ranked by the index

of SRC. Finally, SVM based C-SVC was introduced to predict

WMI according to a different number of features. After the

examination, we find that while using 52 features, the model

performed the best with an AUC of 0.885. The change of AUC

with the number of features is shown in the Figure 5.

While testing, consistent with the training section, 350 features

were extracted from cranial ultrasound ROIs based on 5 wavelet

transformed modes and were ranked by the index of SRC. We

used the top 52 features in SVM classifier. As a result, the AUC

of SVM based C-SVC reached 0.845 in the testing cohort. The

result is listed in Table 2. Figure 6 illustrated the ROC curves of

SVM based C-SVC in the training and testing cohort.
frontiersin.org
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FIGURE 6

ROC curves of SVM based C-SVC for WMI status prediction in the
training and testing set.

FIGURE 5

The change of AUC with the number of features.

FIGURE 7

White matter ROIs segmented by SDL-Net.

TABLE 2 The corresponding quantitative indexes for WMI status
prediction in the training and testing cohort.

Dataset AUC ACC SENS SPEC LR+ LR−
Training cohort 0.885 78.27 82.44 77.24 3.62 0.23

Testing cohort 0.845 87.88 75.56 96.43 21.16 0.25

TABLE 3 The corresponding quantitative indexes for WMI status
prediction based on different ROIs in the testing cohort.

ROI used AUC ACC SENS SPEC LR+ LR−
ROIs segmented by radiologists 0.845 87.88 75.56 96.43 21.16 0.25

ROIs segmented by SDL-Net 0.819 84.85 64.44 95.92 15.79 0.37

Zhu et al. 10.3389/fped.2023.1144952
3.2 White matter segmentation based on
SDL-Net

In clinical trials, manual segmentation of ultrasound images by

radiologists will consume a lot of time. In this part, in order to

reduce the labor cost of radiologists and avoid labeling manually,

we tried to use SDL-Net to implement the white matter

segmentations autonomous by computer.

We used training cohort to train the parameters in SDL-Net,

and then used testing cohort to evaluate the segmented results.

As shown in Figure 7, we can see that the segmented result by
Frontiers in Pediatrics 07
SDL-Net is slightly different from the golden standard ROIs

segmented by radiologists. The result is listed in Table 4. It can

be observed that our method on testing cohort has an overall

Dice of 0.73, an accuracy of 0.80, and an IoU of 0.72.

Then we used our segmented result in ultrasound radiomics

diagnostic system. The result is listed in Table 3. As shown,

AUC of SVM based C-SVC reached 0.819 in the testing cohort.

The ROC curves of SVM based C-SVC in testing cohort is

shown in Figure 8.
3.3. Multi-task learning based on MTDL-Net

Multi-task learning (MTL) spontaneously learns multiple

related tasks, utilizing both generic information shared across
frontiersin.org
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FIGURE 8

ROC curves for WMI status prediction based on different ROIs in the
testing cohort.
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tasks and information specific to each task (30). In this part,

MTDL-Net achieved automatic segmentation of infant cranial

ultrasound images and used the segmented information to

achieve prediction of WMI.

We used training cohort to train the parameters in MTDL-Net,

and then used testing cohort to evaluate the segmented results and

prediction results. Part of the segmented results shows in Figure 9.

As shown, the segmented result by MTDL-Net achieved better

performance than SDL-Net. Table 4 shows the results of our

methods. It can be observed that segmented result on testing

cohort has an overall Dice of 0.78, an accuracy of 0.81, and an

IoU of 0.82.

In the WMI prediction task, we sent segmented result by

MTDL-Net into ultrasound radiomics diagnostic system to

predict WMI as a comparison. The result is listed in Table 5. As

shown, AUC of our method reached 0.863 in the testing cohort,

while AUC of SVM based C-SVC was 0.829. The ROC curves of

our method and SVM based C-SVC in testing cohort is shown

in Figure 10.

Meanwhile, in order to evaluate the MTDL-Net for multi-task

learning, we also implemented the 5-folds cross validation in our

data-driven diagnostic strategy. The details of this experiment are

described in Supplementary Material. The average DICE

coefficient of white matter segmentation in 5-folds cross

validation is 0.76. The average AUC of WMI status prediction in

5-folds cross validation is 0.843. 5-fold cross-validation reduced

the variance in the estimate of model performance. The result of

5-fold cross-validation demonstrated that MTDL-Net for multi-

task learning showed great promising both in white matter

segmentation and WMI status prediction in our data-driven

diagnostic strategy.
Frontiers in Pediatrics 08
4. Discussion

White matter injury is a common brain injury disorder in

preterm infants, with severe cases it will lead to periventricular

leukomalacia. At present, there is no definite and effective

treatment for this disease, and the clinical goal is mainly focused

on early diagnosis and intervention. Imaging is the only

diagnostic tool for cerebral white matter injury.

The development of cranial ultrasound technology in

newborns has opened up a new way for clinicians to understand

intracranial lesions in vivo. Non-invasive, painless, inexpensive,

easy-to-perform, and intuitive, cranial ultrasound testing

technology has so far become an indispensable routine

method for the diagnosis of intracranial diseases in high-risk

infants, and is widely used in the examination process of infant

cerebral WMI. The need for a non-destructive and efficient

method to predict WMI in infants through ultrasound images is

urgent because the area of WMI is too blurred and poorly

characterized.

The major novelty of this paper is that we established a data-

driven diagnostic strategy to evaluate the risk of WMI based on

cranial ultrasound images. In short, if we already have golden

standard white matter ROIs, we can only use radiomics method

to evaluate the risk of WMI. But if we don’t have golden

standard white matter ROIs, we can use MTDL-Net to achieve

automatic segmentation of infant cranial ultrasound images and

use the segmented information to evaluate the risk of WMI

simultaneously. The overview of our data-driven diagnostic

strategy is presented in Figure 11. More details are described in

Supplementary Material.

In order to implement our data-driven diagnostic strategy, this

study attempted a set of methods for preterm infants WMI

prediction, starting from the traditional ultrasound radiomics

diagnostic system to predict WMI, and finally investigating deep

learning methods for automatic segmentation and multi-task

learning. The main findings as follows:
4.1. WMI prediction

This study implemented the prediction of WMI in preterm

infants through B-mode ultrasound images based on an

ultrasound radiomics diagnostic system. To utilize the

information contained in B-mode ultrasound images, we

attempted a high-throughput feature description system for

infant cranial ultrasound images, extracting a total of 350 high-

throughput features including histogram, GLCM, GLRLM,

GLSZM and NGTDM from the original grayscale ultrasound

image and four wavelet transformed modes respectively. The

feature selection is then performed using SRC combined with

100 times bootstrap technique (31). Finally, the classification

model was built using a SVM based C-SVC classifier.

The ultrasound radiomics diagnostic system built with

52 features after feature selection performed the best, with an

AUC of 0.845, ACC of 0.8788, SENS of 0.7556, and SPEC of
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FIGURE 9

White matter ROIs segmented by MTDL-Net.

TABLE 4 The corresponding quantitative indexes for white matter
segmentation based on different models in the testing cohort.

Model DICE ACC IoU
SDL-Net 0.73 0.80 0.72

MTDL-Net 0.78 0.81 0.82

TABLE 5 The corresponding quantitative indexes for WMI status
prediction based on different classifiers in the testing cohort.

Classifier AUC ACC SENS SPEC LR+ LR−
SVM based C-SVC 0.829 80.30 80.00 85.20 5.41 0.23

MTDL-Net 0.863 87.88 68.89 96.94 22.50 0.32
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Frontiers in Pediatrics 09 frontiersin.org

https://doi.org/10.3389/fped.2023.1144952
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


FIGURE 10

ROC curves for WMI status prediction based on different classifier in the
testing cohort.

Zhu et al. 10.3389/fped.2023.1144952
0.9643 in the testing cohort. The experiments demonstrated that

ultrasound radiomics diagnostic system for cranial WMI in

preterm infants is effective and has sufficient clinical application

value.
FIGURE 11

Overview of our data-driven diagnostic strategy.
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4.2. White matter segmentation

In clinical trials, manual segmentation of ultrasound images by

radiologists will consume a lot of time. And different radiologists

with different experience may produce quite different ROIs in

the same ultrasound images (32). There is an urgent need for a

consistent, nondestructive and efficient method for white matter

segmentation in preterm infants and guiding the clinical

diagnosis and treatment process.

U-Net was proved of great performance in many clinical

scenarios such as segmentation of brain vessel status(33).

TransUNet and Swin-Unet are Transformer-based network,

which need much more training data rather than CNN-based

network. Comparing to other state-of-the-art methods, U-Net

adopted in this paper obtains the best segmentation performance

under the premise of amount of our data. Models based on the

Transformer framework may have better performance after

expanding the sample size. Therefore, U-Net based SDL-Net was

applied to achieve automatic segmentation of infant cranial brain

white matter ROIs based on ultrasound images. Dice coefficient

of white matter segmentation reached 0.73 and the accuracy

reached 0.80 in the testing set.

In order to evaluate the performance of the segmented ROIs by

SDL-Net, we utilized the segmented results as the input of

ultrasound radiomics diagnostic system to predict the WMI of

preterm infants. As we can see, the AUC of the classifier reached

0.819 in the testing cohort, which is only slightly lower than the
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experiment with the golden standard ROIs segmented by

radiologists.
4.3. Multi-task learning

Most deep learning methods use useful information from

historical data to help analyze future data and typically requires

large amounts of labeled data for training. However, certain

application (e.g., medical image analysis) cannot meet this

requirement because it requires a lot of manual labor to label

data. In these cases, multi-task learning is a good approach that

uses useful information from other related tasks to alleviate data

sparsity problem (34).

Based on the assumption that all tasks or at least some of them

are relevant (30), MTL aims to share useful information contained

in multiple tasks to build more accurate models which work better

empirically and theoretically than learning each tasks

independently.

In this part, MTDL-Net is applied to achieve automatic

segmentation of infant cranial US images and used the

segmented information to achieve prediction of WMI. MTDL-

Net extracted the feature map from the whole image through

FPN and ResNet50, selected the candidate regions through RPN,

obtained the corresponding feature map of each candidate

region through ROI Align. Finally, the segmentation mask was

output through FCN, and B-Box and classification labels were

output through the fully connected layer.

In the segmentation task, MTDL-Net performed best with Dice

coefficient of 0.78, which is better than SDL-Net. In the

classification task, MTDL-Net performed best with AUC of

0.863, also better than the ultrasound radiomics diagnostic

system. And within the ROIs segmented by MTDL-Net,

ultrasound radiomics diagnostic system had equivalent

performance comparing with the input of golden standard ROIs

segmented by radiologists. Therefore, MTDL-Net can

simultaneously achieve the ROI segmentation of white matter

based on ultrasound images and prediction of WMI in preterm

infants.

There were also some limitations in our study. First, in practical

clinical applications, ultrasound examinations are in the form of

video scanning plus preservation of static images. Therefore, if

the ultrasound video data can be processed directly instead of

using static images, the automaticity of the system will be

improved and enhanced (35, 36). In addition, due to the limited

number of WMI cases, preterm infants with PVL were not

categorized together for comparison. Further studies are needed

to determine the potential differences in the predictive efficacy of

WMI and PVL.

In conclusion, this paper presents a diagnostic system for white

matter injury in preterm infants. The system combines multi-task

deep learning and traditional radiomics features to achieve

automatic detection of white matter regions on the one hand,

and design a fusion strategy of deep learning features and
Frontiers in Pediatrics 11
manual radiomics features on the other hand to obtain stable

and efficient diagnostic performance.
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