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Optimal neuromonitoring
techniques in neonates with
hypoxic ischemic encephalopathy
Valerie Y. Chock*, Anoop Rao and Krisa P. Van Meurs
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of Medicine and Lucile Packard Children’s Hospital Stanford, Palo Alto, CA, United States

Neonates with hypoxic ischemic encephalopathy (HIE) are at significant risk for
adverse outcomes including death and neurodevelopmental impairment.
Neuromonitoring provides critical diagnostic and prognostic information for
these infants. Modalities providing continuous monitoring include continuous
electroencephalography (cEEG), amplitude-integrated electroencephalography
(aEEG), near-infrared spectroscopy (NIRS), and heart rate variability. Serial
bedside neuromonitoring techniques include cranial ultrasound and somatic and
visual evoked potentials but may be limited by discrete time points of
assessment. EEG, aEEG, and NIRS provide distinct and complementary
information about cerebral function and oxygen utilization. Integrated use of
these neuromonitoring modalities in addition to other potential techniques such
as heart rate variability may best predict imaging outcomes and longer-term
neurodevelopment. This review examines available bedside neuromonitoring
techniques for the neonate with HIE in the context of therapeutic hypothermia.
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Introduction

Neonatal hypoxic ischemic encephalopathy (HIE) continues to be a significant health

problem leading to death and long-term disability. Randomized controlled trials have

evaluated the effect of systemic hypothermia on newborns with moderate to severe HIE

and the results are encouraging; however, the incidence of death or moderate to severe

disability remains 44%–52% in infants receiving induced hypothermia (1). A major

practical and ethical dilemma is the challenge of determining in real time the extent of

neuronal loss and irreversible injury which may have occurred to help guide discussions

with families. Methods available for neurological assessment include clinical data,

neurologic examination, neuroimaging, and neurodiagnostic techniques, but

determination of which method is both highly predictive of death and disability, and

feasible during the first few hours and days of life has been challenging. A reliable and

accurate bedside technique is needed to assist in predicting outcome early in the neonatal

course to better inform decision making by physicians and parents.

The randomized controlled trials of therapeutic hypothermia for newborns with HIE

marked the beginning of active investigation into the use of continuous neuromonitoring

techniques in the neonatal intensive care unit (NICU). Prior to this period, video EEG

was used in the NICU, but rarely for prolonged periods of time. The primary focus has

been identification of electrographic seizure activity. For prediction of outcome, EEG

background pattern is the most important factor and EEGs with low voltage, persistent
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burst suppression, or electrocerebral inactivity are highly correlated

with adverse outcome and death. Amplitude integrated

electroencephalography (aEEG), a simplified, continuous EEG

using a small number of electrodes provides an overall

impression of cerebral activity. The cerebral function monitor

(CFM) was developed by Prior and Maynard in the 1960s for

use in adults and subsequently applied to newborns in the late

1970s and 1980s. Its use has become more widespread for

outcome prediction as well as for seizure detection particularly in

newborns with perinatal asphyxia. The terminology used in

aEEG is similar to EEG allowing for communication between

neonatologists and neurologists.

Near infrared spectroscopy (NIRS) is a more recently utilized

technology for continuous, bedside, neuromonitoring by

measuring trends in cerebral oxygenation and evaluating the

balance between oxygen delivery and consumption. NIRS

monitors also demonstrate the relationship between oxygenation

of the brain and other end organs by providing cerebral and

somatic oximetry values. Heart rate variability has also emerged

as a potential bedside measure which may be predictive of

outcomes in the HIE population. Other bedside neuromonitoring

devices used less frequently in the NICU include visual and

somatosensory evoked potentials.

This manuscript will discuss the evidence for the use of these

neuromonitoring techniques in newborns with HIE focusing

primarily on outcome prediction and seizure detection.
Continuous electroencephalography
(cEEG)

Electroencephalography is the recording of brain waves

allowing for measurement of brain function. In newborns,

electrode placement is according to the International 10–20

System, modified for the smaller head size. In a term infant,

9–11 electrodes are used whereas in a preterm newborn fewer are

used. Electrode placement is at specific positions on the scalp

and for this reason an EEG technologist is necessary.

Interpretation is performed by a neurophysiologist trained in

EEG interpretation. When the EEG is for a short period such as

30–60 min it is considered a routine or “spot” EEG while longer

recordings are termed continuous EEG (cEEG) and record for

24 h or more, frequently including video (vEEG). cEEG is a key

neuromonitoring tool when caring for critically ill term and

preterm neonates. Its primary roles are identification of

electrographic seizure activity and prognostication by assessing

the background brain activity. The American Clinical

Neurophysiology Society has written guidelines for cEEG

monitoring in neonates (2). These guidelines describe preferred

methods and indications; however, these guidelines are not a

standard that all centers can achieve due to the personnel and

equipment requirements. The guidelines list the diagnoses with a

high risk for seizures where long-term EEG monitoring should

be considered; neonatal depression due to suspected perinatal

asphyxia is listed first. The guidelines recommend monitoring

with cEEG for 24 h to screen for seizures and if seizures are
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detected continuing for at least 24 h following the last

electrographic seizure. If suspicious clinical events are occurring,

monitoring should continue until multiple typical events are

captured without an associated electrographic seizure.
Identification of electrographic seizure
activity

EEG is accepted as the gold standard for seizure detection and

cEEG is felt to be superior to the use of spot EEG. Both the high

rate of subclinical seizures in neonates without any clinical

correlate, as well as the fact that unusual movements such as

bicycling or lip smacking are not always accompanied by

electrographic findings make cEEG essential in the management

of seizures in neonates (3). If only clinical seizures are treated,

this can lead to under-diagnosis of subclinical seizures as well as

the over-treatment of suspicious clinical events. Once anti-

epileptic drugs have been used it is well recognized that

uncoupling of electrographic and clinical findings is common,

further increasing the value of cEEG in management of neonatal

seizures (4). Two randomized controlled trials have suggested

that outcomes are improved by treating subclinical seizures in

newborns with HIE (5, 6). Furthermore, several studies have

demonstrated that the use of cEEG within a neonatal

neurocritical care setting with a seizure guideline has reduced the

dosage and duration of anti-epileptic drugs used, either

confirmed or ruled out seizures in more than one-third of cases

and reduced the number of neonates progressing to status

epilepticus (7–10). These improvements are seen as important as

the overall seizure burden is associated with death and disability.

Furthermore, seizures adversely impact the developing brain.

Glass et al. found that clinical seizure activity in neonates with

HIE is associated with worse neurodevelopmental outcome after

controlling for the severity of brain injury on MRI (11). This

suggests that optimal management of seizures in neonates with

HIE may improve neurodevelopmental outcomes. During

therapeutic hypothermia, electrographic seizure activity is seen in

31 to 64% of neonates with HIE and the majority of seizures

occur within 24 h after birth (12, 13). A recent investigation by

Chalak et al. found that there was a higher odds of seizures

during the re-warming period when compared to a preceding

epoch (14). Seizures are also more likely in newborns with a

background pattern showing flat tracing. For this reason, the

current recommendation is to initiate cEEG shortly after birth

and to continue through the entire period of cooling and re-

warming.
Prognostication of outcome

EEG is frequently used when assessment of brain function is

needed; often when a neonate is encephalopathic or the

neurologic exam is otherwise worrisome. EEG background

activity has been found to prognosticate outcome in newborns

with HIE and serial EEG can be used to evaluate changes over
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time. Normal background in a term infant is a continuous,

symmetric mixture of normal amplitude activity. During sleep,

there are alternating higher and lower amplitudes termed trace

alternant. Excessive discontinuity in a term infant is abnormal

and reflects abnormal brain function due to underlying

pathology. Discontinuity is often seen in HIE and the degree of

discontinuity reflects the severity of injury (15). Mild or

moderate discontinuity may be seen with the use of

anticonvulsant or sedative medications. Extremely low amplitude

activity or burst suppression patterns are commonly associated

with very poor prognosis. Asymmetry of the EEG pattern can

indicate lateralized brain injury and warrants neuroimaging to

look for a structural cause such as hemorrhage or stroke. As

discussed previously, the presence of clinical seizures has been

independently associated with worse neurodevelopmental

outcome (11). In addition, in a multi-center observational study

of newborns with seizures where 38% of cases were due to HIE,

high electrographic seizure burden was a significant risk factor

for mortality, length of hospital stay, and abnormal neurologic

exam at discharge (16). The prognostic value of cEEG to predict

Bayley-III cognitive, motor, and language outcomes at 24 months

of age was evaluated in 41 neonates treated with therapeutic

hypothermia for HIE (17). The authors found that higher power

of central and occipital cortical bursts predicted worse cognitive
FIGURE 1

Classification systems for aEEG background pattern: Voltage method on le
Hellstrom-Westas L. Continuous electroencephalography monitoring of the p
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and language outcome while higher power of central cortical

bursts predicted worse motor outcome. A lower seizure burden

has been reported in newborns with moderate HIE treated with

therapeutic hypothermia and this finding may partially explain

the therapeutic benefit (18).
Amplitude integrated
electroencephalography (aEEG)

aEEG is a bedside brain monitoring tool which is used with

increasing frequency in NICUs worldwide. It was first developed

as a tool to assess the depth of anesthesia during surgery. The

aEEG data is derived following a process where the raw EEG

tracing is filtered, amplified, rectified, and then displayed in a

time-compressed, semi-logarithmic fashion. Current aEEG

devices display the compressed as well as the raw EEG tracing

allowing for evaluation of the background activity of the brain,

displaying changes in the background activity over time, and

enabling screening for seizure activity.

The first aEEG background classification system was developed

by Hellström-Westas and colleagues (19) (Figure 1). It is based on

pattern recognition and uses conventional EEG terminology which

facilitates communication between neonatologists and neurologists.
ft and pattern recognition on right (reproduced with permission from
reterm infant. Clin Perinatol. 2006;33(3):633–47, vi).
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A second classification system developed by al Naqeeb uses

voltage-based criteria and is also shown in Figure 1 (20).

Figure 2 describes the 5 background patterns and their voltage

criteria as well as the classifications often used for sleep wake

cycling (SWC), and seizures (21). Medications such as sedatives,

analgesics, and anticonvulsants may have an impact on the

background pattern with lower amplitudes or alterations in SWC.

Furthermore, there are also potential sources of artifact which

may affect an aEEG recording. Some are electrical from sources

such as high frequency ventilation, electrocardiogram (ECG),

electromyography (EMG), or other medical equipment, while

others are from physical movement of the neonate such as

hiccups, patting, and sucking.

aEEG has a number of strengths as the leads are easy to apply

and do not require an EEG technician. Furthermore, aEEG devices

are easy to use and do not interfere with bedside care.

Interpretation does not require extensive training in

neurophysiology. Both physicians and nurses can be trained to

initiate aEEG monitoring and recognize and document the

background pattern and areas of the tracing concerning for

seizure; However, aEEG does not replace cEEG as the “gold
FIGURE 2

A: Suggested classification of aEEG patterns in preterm and term infants (reprod
G. Amplitude-integrated EEG classification and interpretation in preterm and
wake cycling, repetitive seizures, and status epilepticus.
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standard” for seizure detection. Seizure diagnosis is facilitated by

evaluation of both the compressed aEEG as well as the raw EEG

trace and review by an experienced provider is critical. As aEEG

only records from a limited number of channels, seizures arising

away from the central and parietal regions where the electrodes

are usually located can be missed. Seizures which are brief (less

than 30 s), focal, or low amplitude are not recognized as they are

not visible on the compressed tracing.
Prognostication of outcome

Evolution of the aEEG background pattern in term neonates

with HIE has been known to convey prognostic information

dating back to a study by Bjerre et al. in 1983 (22). A subsequent

study by ter Horst et al. focused on 30 term newborns with

severe asphyxia and examined the aEEG tracing over the first

72 h of life using pattern recognition (23). The evolution of the

aEEG pattern in relation to the neurologic outcome was

examined and the sooner the aEEG changed to a normal pattern,

either continuous normal voltage or discontinuous normal
uced with permission from hellström-westas L, rosén I, de Vries L, greisen
term infants. Neoreviews. 2006;7(2):376-e86) and B: Examples of sleep-
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voltage, the better the prognosis. Normal patterns by 48 h of age

were associated with normal outcome while burst suppression or

worse was associated with adverse outcome. Early aEEG tracings

were used in 3 of the randomized trials as an entry criterion due

to its prognostic accuracy within several hours after birth

(80%–85% within 6 h after birth) (24–26). To determine the

effect of hypothermia treatment on the predictive value of aEEG

in newborns with HIE, Thoresen et al. compared the predictive

value of aEEG performed at <6 h on outcome as measured by

Bayley Scales of Infant Development II at 18 months of age in

normothermia (n = 31) and hypothermia treated infants (n = 43)

(27). Tracings with continuous normal voltage (CNV) or

discontinuous normal voltage (DNV) were classified as normal

while burst suppression (BS), continuous low voltage (CLV) or

flat tracing (FT) were classified as abnormal. The authors found

that the positive predictive value of an abnormal aEEG pattern at

3–6 h of age was 84% with normothermia compared to 59% for

hypothermia. Time to normal background pattern was the best

predictor of poor outcome (96.2% with hypothermia) and never

developing SWC always predicted poor outcome. They concluded

that early aEEG patterns do not accurately predict outcome in

neonates treated with hypothermia and that infants with good

outcome had normal background patterns return by 48 h of age

(Figure 3). Several single center studies have confirmed these

findings. Sewell et al. looked at background pattern evolution and

the specific hour of life where the aEEG normalized or sleep

wake cycling developed (28). They categorized evolution into 6

separate patterns and concluded that this classification

distinguished between outcome groups more reliably, evidenced
FIGURE 3

The PPV for an abnormal tracing to predict adverse outcome.
HT = hypothermia and NT = normothermia. Abnormal tracing Is
defined as burst suppression, low voltage or flat tracing and adverse
outcome Is defined as death or Either Bayley Scales of Infant
Development Mental Developmental Index <70, gross motor
classification level 3-5 or No useful vision.(reproduced with
permission from thoresen M, hellström-westas L, Liu X, de Vries LS.
Effect of hypothermia on amplitude-integrated electroencephalogram
in infants with asphyxia. Pediatrics. 2010 Jul;126(1):e131-139).
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by a higher likelihood ratio compared with assessment of the

background pattern at discrete timepoints. Newborns who did

not have a discontinuous pattern by 15.5 h of life, cycling by

45.5 h or continuous normal voltage by 78 h of life were most

likely to have an adverse outcome, defined as death or severe

brain injury on MRI.

Several meta-analyses have sought to further clarify the role of

aEEG in prediction of outcome for HIE. Each have had a slightly

different focus. A study by Spitzmiller in 2007 was the first

meta-analysis to evaluate the use of aEEG to predict outcome in

HIE prior to the use of therapeutic hypothermia (29). In a

pooled analysis of 8 studies including 529 newborns, the

sensitivity of an abnormal aEEG tracing for prediction of poor

outcome was 91% (95% Confidence Interval (CI) 87%–95%) with

specificity 88% (95% CI 84%–94%). They noted that infants who

progressed to a normal tracing earlier (8–12 h of age) had better

outcome than those infants whose tracings remained abnormal

or worsened during the monitoring period. A meta-analysis by

Awal et al. examined which background patterns most accurately

predicted long-term outcome (30). They included 31 studies and

concluded that burst suppression, low voltage, and flat tracing

had the highest odds ratios for abnormal outcome (Table 1).

Limitations were the variability in the background pattern

definitions and the type of aEEG device used. In 2016, del Rio

et al. published a systematic review to determine the optimal

chronologic age to predict outcome in neonates with HIE treated

with TH. Seventeen studies and 360 infants were analyzed. They

concluded that the maximum predictive reliability was achieved

at 72 h (post-test probability 95.7%, 95% CI 84%–98%) while the

predictive value at 6 h was low (59%, 95% CI 55%–63%)

(Figure 4) (31). Chandrasekaran et al. also investigated the

optimal timing for prognostication and compared timepoints at

6, 24, 48 and 72 h of age including 9 studies and 520 infants in

this analysis (32). The odds ratio was highest at 48 h of age (66.9

with 95% CI 19.7–227.2). Prior to the use of therapeutic

hypothermia, an abnormal aEEG at 6 h of age was predictive of

abnormal outcome (33). Due to the beneficial effects of

therapeutic hypothermia performed over a 72 h period, the

maximum predictive value has shifted and is now seen at 48–

72 h of age.
Near infrared spectroscopy (NIRS)

As neonatal HIE may also result in hemodynamic and cerebral

metabolic alterations, measurement of cerebral oxygenation

(rScO2) and cerebral fractional tissue oxygen extraction (fTOE)

with NIRS bedside monitoring has significant promise as a

neurodiagnostic technique. A NIRS sensor placed on the left or

right forehead emits near-infrared light, which penetrates

through skin and bone and is differentially absorbed by

oxygenated and deoxygenated hemoglobin in the underlying

tissue. Residual light is then reflected back to a detector, with

subsequent calculation of rScO2, a measure of tissue

oxygenation. Cerebral fTOE is estimated using the combined

measure of peripheral oxygen saturation (SpO2) and rScO2
frontiersin.org
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TABLE 1 Sensitivity and specificity for abnormal background patterns to predict adverse outcome.

aEEG Background pattern No. studies No. subjects Sensitivity Point estimate (95% CI) Specificity Point estimate (95% CI)
Burst suppression 29 914 0.87 (0.78–0.92) 0.82 (0.72–0.88)

Low voltage 19 566 0.92 (0.72–0.98) 0.99 (0.87–1.0)

Flat/inactive 13 493 0.78 (0.58–0.91) 0.99 (0.88–1.0)

FIGURE 4

Likelihood ratios (LR) and post-test probability (ppost) of abnormal aEEG and adverse neurologic outcome in newborns treated with hypothermia at specific
hours of life (reproduced with permission fromDel Río R, ochoa C, alarcon A, arnáez J, blanco D, garcía-alix A. Amplitude Integrated Electroencephalogram as a
Prognostic Tool in Neonates with Hypoxic-Ischemic Encephalopathy: A Systematic Review. PLoS ONE. 2016;11(11):e0165744).

Chock et al. 10.3389/fped.2023.1138062
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FIGURE 5

For All grades of neonatal encephalopathy, (A) cerebral saturation
(cSO2) increases over the first 24 h of life and (B) cerebral fractional
tissue oxygen extraction (FTOE) levels decrease (reproduced with

Chock et al. 10.3389/fped.2023.1138062
(fTOE = (SpO2 – rScO2)/SpO2), indicating the balance between

oxygen delivery and oxygen consumption in the interrogated

tissue. Different commercial NIRS devices operate using these

same principles, although with slightly different light wavelengths

and algorithms, resulting in discrepancies in absolute rScO2

levels between devices (34). For this reason, trends in rScO2 may

be of greater comparative significance. In the transition period

after birth, rScO2 peaks by 36 h of age, but then declines over

the first week as cerebral fTOE increases (35, 36). Nonetheless,

population-based normative values range between 55%–85% in

the preterm infant using a small adult sensor and INVOS device

(Medtronic, Minneapolis, MN), with higher rScO2 seen with

increasing gestational age (35–37). Term infants using the same

NIRS device with pediatric sensors similarly had normative

values 71%–85% in the first 2 days of age (38, 39).

In infants with HIE, decreased cerebral blood flow after acute

injury is followed by reperfusion over time. As a surrogate for

cerebral blood flow, the chronologic evolution of rScO2 may be

an important bedside measure and further serve as a prognostic

tool (40). While therapeutic hypothermia itself contributes to

vasoconstriction and decreased cerebral blood flow, this effect is

mitigated by a larger decrease in metabolic demand, subsequently

resulting in higher rScO2 and lower fTOE (41, 42) (Figure 5).

After initiation of cooling, a modest increase in rScO2 is typically

seen due to these effects. However, minimal changes after

rewarming demonstrate that the impact of therapeutic

hypothermia on the brain is not as significant compared to the

effect of hypothermia on other organs such as the kidney (43).

In a study by Chock, et al. mean rScO2 decreased non-

significantly by 0.5% after rewarming compared to an increase in

renal tissue saturation by 12 ± 8% after rewarming (Figure 6) (43).

permission from garvey AA, O’Toole JM, livingstone V, et al. Evolution
of early cerebral NIRS in hypoxic ischemic encephalopathy. Acta
Paediatr. 2022;111:1870-77).

FIGURE 6

Cerebral saturation (csat) Is higher during the cooling period compared
with renal saturation (rsat) (p < .01). After rewarming at 72 h, cerebral
saturation decreases While renal saturation increases (reproduced with
permission from Chock VY, Frymoyer A, Yeh CG, Van Meurs KP. Renal
Saturation and Acute Kidney Injury in Neonates with Hypoxic Ischemic
Encephalopathy Undergoing Therapeutic Hypothermia. J Pediatr.
2018;200:232-239.e1).
Prognostication of outcome

Several studies have examined cerebral NIRS measures during

therapeutic hypothermia as a predictor for both adverse brain

MRI outcomes and longer-term neurodevelopmental outcomes.

High rScO2 and low fTOE are associated with worse

neuroimaging outcomes by MRI in several small studies (44–47).

A high rScO2 may indicate that cerebral blood flow occurs in

excess of the need for oxygen utilization (luxury perfusion).

Decreased cerebral oxygen utilization may also be a marker of

secondary energy failure after neuronal cell death. Jain et al.

found that in a small study of 21 neonates cooled for HIE,

higher rSO2 between 24 and 36 h correlated with subcortical

brain injury on MRI. Peng et al. found that for maximum

rScO2 > 75% by as early as 10 h of age, the sensitivity for

subsequent brain MRI injury was 100% and specificity 83% with

AUC 0.93 (45). Szakmar, et al. showed association between

rScO2 during rewarming and grey matter injury on post-

rewarming MRI with adjusted odds ratio 1.23 (95% confidence

interval 1.02–1.49) (47). In contrast, Shellhaas et al. did not find

any correlation between cerebral NIRS measures at rewarming

and MRI outcomes (48). The most predictive time period of

NIRS monitoring varied between studies and may be related to
Frontiers in Pediatrics 07 frontiersin.org
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MRI grading system, type of NIRS device, and time period of

monitoring, although most support predictive capabilities by at

least 24 h of age (44, 45).

Similarly, several small studies have demonstrated adverse

neurodevelopmental outcomes at 18–30 months of age in infants

with higher rScO2 and lower fTOE during cooling. These studies

all were limited by relatively small sample size and differed on

optimal time period to capture differences, with best predictive

capabilities ranging from 12 h of age, 24–48 h of age, or after

72 h and rewarming (44, 49–51).

Rate of change of rScO2 may also be prognostic and associated

with the severity of HIE. In a prospective, observational study, 15

non-cooled infants with mild HIE had significantly higher mean

rScO2 and lower FTOE at 6 h of age compared to 15 cooled

infants with moderate HIE (mean difference in rScO2 of 8.1%

(95% confidence interval 2.7%–13.5%)), although differences

resolved by 18 h (40). An early time-point of NIRS assessment

such as 6 h of age may thus have very different implications than

measurements at 24–48 h, with need for close evaluation of the

trajectory of NIRS measures. Wintermark, et al. found a greater

increase in rScO2 from day 1 to day 2 in four infants with severe

HIE (mean increase of 4.4 ± 1.9%) compared to three with

moderate HIE (mean increase of 1.3 ± 0.1%) (52). Jain et al., also

found that those with more rapidly increasing rScO2 until 36 h

of age had increased injury on brain MRI (44).

More sophisticated NIRS techniques and analyses of NIRS data

may provide additional insight for the neonatal HIE population.

Several investigators have explored impaired cerebral

autoregulation with failure to regulate cerebral blood flow as a

mechanism for brain injury after HIE. Various measures of

autoregulation using NIRS have included a higher pressure

passivity index with increased coherence between mean arterial

pressure and cerebral oxygen saturation, increased time domain

reactivity index, and wavelet coherence analysis (53–55).

Regionality of impaired autoregulation has also been described,

with greatest differences in anterior compared to posterior

measures (56). These findings suggest that temporal-occipital

regions may potentially be more vulnerable to autoregulatory

impairment given higher baseline perfusion and metabolism in

these areas in the newborn. The wavelet neurovascular bundle

concept moreover combines metrics from NIRS, blood pressure,

and EEG in neonates with HIE to measure changes in brain

vascular function as related to both cerebral autoregulation and

neuronal electrical activity (55). Others have combined frequency

domain NIRS with diffusion correlation spectroscopy to calculate

cerebral metabolic rate of oxygen (57). Ideally, future advances in

NIRS monitoring may permit targeted strategies to improve

outcomes in neonates with HIE.
Heart rate variability

Perinatal oxygen deprivation with subsequent HIE may impact

cortical and subcortical neuronal pathways, disrupting the integrity

of the autonomic nervous system (58, 59). Consequently,

autonomic influence over the sino-atrial node is deranged leading
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to alterations in heart rate variability (HRV). While core body

temperature is a relevant factor and therapeutic hypothermia

itself reduces heart rate and respiratory rate, persistent changes

in HRV are reflective of the underlying pathophysiology (60, 61).

Accordingly, HRV has been proposed as a potential biomarker

for HIE severity during the first week of life (62). Of note, HRV

is not a single entity but rather a set of linear (across time and

frequency domains) and non-linear metrics. In this section, HRV

predominantly refers to the time and frequency domain indices.

A synthesis of four observational studies (n = 248) concluded

that moderate and severe HIE was associated with a reduction in

most HRV measures (62). Generally, infants with HIE had

significantly lower low frequency (LF), higher high frequency

(HF) and lower LF/HF ratio and values compared with controls

(63). This reflects an increased parasympathetic and decreased

sympathetic drive (64). HRV parameters also correlated with

severity of findings on multichannel EEG recordings in patients

with HIE (65). From a prognostic perspective, a depressed HRV

on DOL1 was associated with moderate-severe HIE and adverse

outcomes including mortality (66). It has also been shown that

the degree of HRV depression is related to the pattern of brain

injury and topography of brain injury (67). Furthermore, HRV at

24 h of life and post-rewarming predicted severity of brain injury

on MRI, death or impaired neurodevelopment at 15 months, and

two years of life (65–68). Autonomic dysfunction was shown to

impairment at school age in survivors of neonatal HIE (69). Of

note, unlike cEEG, aEEG and NIRS, nearly all the work that

relates to HRV in patients with HIE has been retrospective. Only

one study used real-time assessment with a heart rate

characteristic (HRC) index score and found that loss of HRV

during therapeutic hypothermia was associated with severity of

MRI injury after rewarming (70, 71). With regards to expected

confounders, males generally had a higher HRV compared to

females and mechanical ventilation did not significantly affect

HRV, although the LF/HF ratio may be altered given the loss of

respiratory variability in mechanically ventilated infants (58, 72).

The impact of prematurity, concurrent sepsis, seizure activity,

vasoactive medications and sedatives on HRV metrics in patients

with HIE remains an active area of research. Nevertheless,

despite inconsistencies of definitions and methodologies, prior

research supports use of HRV metrics as a non-invasive adjunct

in assessing patients with HIE. The ability to translate these

findings for real-time monitoring to inform prognosis, evaluate

strategies for neuroprotective intervention, and track recovery

will be vital for impacting care of patients with HIE.
Serial bedside neuromonitoring
methods

Cranial ultrasound

Serial cranial ultrasound studies may also be useful in

evaluation of brain injury after neonatal HIE. For example,

assessment of cerebral edema or increased echogenicity in

vulnerable areas like basal ganglia may be determined. However,
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predictive accuracy is relatively low for abnormal neurologic

outcome at 18 months (73). Moreover, disagreement exists over

the value of early cranial ultrasound compared to more definitive

MRI imaging after rewarming (74). Ongoing research into power

Doppler ultrasound to calculate cerebral blood flow may improve

use of this technique as a predictive tool, although its utility may

be limited by discrete measurement intervals compared to

continuous monitoring modalities (75).
Visual and somatosensory evoked
potentials

Evoked potentials are electrical responses to visual or

somatosensory stimulation and may help in prognostication of

outcomes in infants with HIE. Visual evoked potentials (VEP)

are typically obtained to assess the optic pathway in response to

a flash of light. Most studies demonstrating association of

abnormal VEPs with adverse neurodevelopmental outcome were

obtained in the pre-hypothermia era, although in more recent

cohorts of infants treated with therapeutic hypothermia for HIE,

VEP abnormalities have been associated with impaired hearing-

language scores and with abnormal glucose levels and MRI brain

injury (76–78). Somatosensory evoked potentials (SEP) are

measured by electric stimulation of both median nerves to assess

function of the sensory cortex and sensory pathways. Absent or

delayed latency of SEPs in the pre-hypothermia era were

associated with mortality and neurodevelopmental impairment in

infants with HIE with PPV 85%–100% (76). However, with the

onset of therapeutic hypothermia, other investigators found that

infants with bilateral absent SEPs may have a better

neurodevelopmental prognosis than previously reported, although

the negative predictive value of SEPs for neuroimaging lesions

and neurodevelopmental impairment (93%–97%) remains a

strength (79, 80). The neurophysiologic tests of VEP and SEP in

combination with EEG may further improve prognosis of

psychomotor outcome (85% NPV) (77). Measurement of evoked

potentials typically occurs after completion of therapeutic

hypothermia, which may limit the utility of the technique for

early prognostication. These controversial findings have also led

clinicians to interpret evoked potentials with caution in the

cooled HIE population.
Multi-modality neuromonitoring with
aEEG and NIRS

NIRS and aEEG or cEEG are the neuromonitoring modalities

most utilized in NICUs, specifically in newborns with HIE. The

use of both modalities has the distinct advantage of simultaneous

assessment of both cerebral oxygenation and brain function.

NIRS serves as a trend monitor to evaluate the balance between

tissue oxygen delivery and consumption while aEEG or EEG

provides a continuous monitoring of cerebral function while also

alerting the medical providers to electrographic seizure activity.

Stratification of hypoxic-ischemic injury may be distinguished by
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findings on combined neuromonitoring. In several animal

models of HIE, NIRS was highly sensitive to an acute hypoxic

ischemic insult, while aEEG was less sensitive, particularly for the

detection of mild hypoxia ischemia (81, 82). However, NIRS was

not a good indicator of severity of evolving injury due to

recovery of hemodynamic parameters over time, compared to

depressed aEEG amplitudes which persisted after cessation of

hypoxia-ischemia and correlated with insult severity (81–84).

In clinical studies of neonates with HIE, combined use of aEEG

and NIRS improved predictive value compared to either modality

alone for both MRI abnormalities and neurodevelopmental

outcomes at 18 months of age or 30 months of age (50, 51, 85).

In a cohort of 32 infants cooled for HIE, a combination of

reassuring rScO2 and aEEG background pattern at 54–60 h of

age led to a combined negative predictive value (NPV) for brain

MRI injury of 95% compared to 86% for rScO2 alone or 91% for

aEEG pattern alone (85). Positive predictive value for MRI injury

was less robust, ranging from 70%–78% after 48 h (85).

Combining neuromonitoring with NIRS and EEG may also

have promise for improved seizure detection and improved

assessment of hemodynamic changes during seizure evolution

(86). Higher cerebral metabolic demand during a seizure may

lead to a decrease in rScO2 (Figure 7) (87). The corresponding

degree of cerebral hypoxia may be helpful in classifying seizure

severity and evaluating the effectiveness of anticonvulsant therapy.

Simultaneous use of these neuromonitoring techniques may

improve the understanding of alterations in cerebral and systemic

hemodynamics and the resulting risk of cerebral injury. Some

infants with HIE may also require extracorporeal life support

(ECLS), and close neuromonitoring in these patients is

particularly important given their inherent risk for both

hemodynamic instability and abnormal brain function (88, 89).

Despite the advantages, the simultaneous use of NIRS and aEEG

or cEEG in neonates with HIE has not yet been broadly utilized.
Comparison of neuromonitoring
techniques for prediction of outcome

Selection of optimal neuromonitoring modalities for the infant

with HIE must take into consideration sensitivity and specificity for

prediction of adverse neurodevelopmental outcomes, timing of

monitoring to impact clinical care, and ease of implementation

and interpretation at the bedside. Table 2 summarizes this

information for the modalities previously reviewed and

incorporates some of the available predictive data from several

systematic reviews (76, 90, 91). Techniques are frequently

compared to later brain MRI performed after completion of

therapeutic hypothermia. Imaging with T1/T2 weighted MRI in

the first week had high sensitivity (0.89), while diffusion

weighted MRI (DWI) had high specificity (0.89) (76). In

addition, MRI completed at 4–8 days performed better than later

MRI. Injury to the posterior limb of the internal capsule or to

the thalami on DWI or increased lactate/N-acetylaspartate peak

were strong predictors (91). However, before MRI changes

become evident, earlier markers of brain injury are needed for
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FIGURE 7

Combined neuromonitoring with aEEG and NIRS in a preterm infant with clinical seizures on the first day of life after severe anemia. The aEEG shows a flat
tracing with seizure activity (arrow). Simultaneous NIRS tracing shows supranormal rScO2 Which transiently decreases during seizure activity (reproduced
with permission from Variane GFT, Chock VY, Netto A, Pietrobom RFR, Van Meurs KP. Simultaneous Near-Infrared Spectroscopy (NIRS) and Amplitude-
Integrated Electroencephalography (aEEG): Dual Use of Brain Monitoring Techniques Improves Our Understanding of Physiology. Front Pediatr. 2019;7:560).
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prognostication while undergoing therapeutic hypothermia.

Neurologic exam and cerebral ultrasound performed poorly as

predictors of outcome, with a large number of false positive
TABLE 2 Comparison of neuromonitoring modalities.

Monitoring
Technique

Strengths Limitation

cEEG Continuous, bedside monitor; Gold
standard for seizure detection

Labor intensive, specializat
apply and interpret EEG

aEEG Continuous, bedside monitor; Easy to
apply and interpret background
patterns. Seizure detection over central
and parietal regions

Limited number of channe
short or low amplitude sei

NIRS Continuous, bedside monitor;
Measures trends in cerebral
oxygenation

Best comparative significan
monitor rather than absolu

HRV Bedside monitoring of measures of
autonomic balance

Typically requires data pro
few retrospective studies; M
and definitions inconsisten
additional research in HIE

VEP Assess optic pathway Not a continuous measure
completion of cooling; Con
of predictive value

SEP Assess function of sensory cortex and
sensory pathways; Good negative
predictive value

Not a continuous measure
completion of cooling; Con
of predictive value

cEEG= continuous electroencephalography, aEEG= amplitude-integrated electroen

VEP = visual evoked potentials, SEP = somatosensory evoked potentials. TH = therapeu
aPooled sensitivity and specificity for death or adverse neurodevelopmental outcome a

TH from 13 studies in systematic review (76).
bPooled sensitivity and specificity for adverse neurodevelopmental outcome between 1

systematic review (90).
cApproximation of pooled sensitivity and specificity for death or adverse neurodevelopm

from 37 studies in meta-analysis (91).
d(51).
e(50).
f(68).
g(92).
h(77).

Frontiers in Pediatrics 10
findings (76). In contrast, background pattern and presence of

seizures on aEEG and EEG are promising predictors of adverse

outcomes, with maximal predictive value seen at 48–72 h after
s Optimal time
period for
prediction of
outcome

Sensitivity
for
adverse
outcome

Specificity
for
adverse
outcome

ion needed to First 72 h after birth 0.92a, 0.63b,
0.86c

0.83a, 0.82b,
0.58c

ls; May miss
zures

48–72 h after birth 0.93a, 0.90b,
0.78c

0.90a, 0.46b,
0.90c

ce as a trend
te values

Varying predictive times,
but most studies suggest by
at least 24 h after birth

0.88d, 0.92e 0.50d, 0.64e

cessing; Mainly a
ethodologies
t; Need

Varying- possibly by 24 h
after birth and post-
rewarming

0.8f, 0.74g 0.9f, 0.79g

; Performed after
troversial studies

After completion of
therapeutic hypothermia

0.90a, 0.50h 0.92a, 0.93h

; Performed after
troversial studies

After completion of
therapeutic hypothermia

0.93a, 0.52b 0.78a, 0.76b

cephalography, NIRS = near-infrared spectroscopy, HRV= heart rate variability,

tic hypothermia.

t minimum 18 months, n= 1,306 infants with HIE both treated with TH and without

8 and 36 months of age, n= 1,458 infants with HIE treated with TH from 4 studies in

ental outcome at minimum 18 months, n= 3,072 infants with HIE treated with TH
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birth (Table 2). EEG may have a higher specificity than aEEG, but

this needs to be balanced by the complexity and difficulty in

performing and interpreting EEG. The modalities of NIRS, HRV,

and SEPs need larger studies to confirm predictive ability and

thresholds, but in the case of NIRS and HRV, have the potential

for earlier discrimination of outcomes. Combining

neuromonitoring modalities also may improve prediction and

requires further investigation.
Conclusions

Neuromonitoring in neonates with HIE plays an important

role for both diagnostic and prognostic purposes. As future

neuroprotective strategies are developed in the era of therapeutic

hypothermia, timely initiation of neuromonitoring is critical for

risk stratification of neonates with HIE, early prognostication,

and counseling of families. A combination of neuromonitoring

techniques with HRV metrics, bedside imaging, evoked

potentials, or other newer technologies in the infant with HIE

requires further exploration. Multimodality neuromonitoring

with aEEG/EEG and NIRS holds particular promise for

continuous, bedside assessment of both electrical function and

hemodynamic changes in the brain. Consideration should also be

given to the necessary training of bedside staff for the

implementation of neuromonitoring modalities and

interpretation of results. An individualized approach to care

using real-time neuromonitoring will ideally optimize

neurodevelopmental outcomes in the vulnerable neonatal HIE

population.
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