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Objective: To study changes in the composition and functions of the gut
microbiota (GM) in children with growth hormone deficiency (GHD) using
high-throughput sequencing.
Methods: Thirty-three children with GHD diagnosed in Longgang District
Maternity and Child Health Hospital were included in the disease group and 24
healthy children of the same age comprised the control group. Total DNA was
extracted and amplified from stool samples obtained from all subjects. High-
throughput sequencing was used to analyze the GM composition and functions.
Results: The GM from the two groups of children showed significant differences in
α-diversity (P < 0.05). In comparison with the control group, the abundance of the
phylum Bacteroidetes was significantly higher (45.96% vs. 65.71%) while the
Firmicutes count was significantly lower (47.09% vs. 25.20%). At the genus level,
the abundance of Prevotella in the disease group was significantly higher (3.16%
vs. 20.67%) and that of Lachnospiracea incertae sedis, Clostridium XlVa, and
Megamonas was lower (6.576% vs. 1.75%; 4.51% vs. 0.80%; 5.08% vs. 2.02%,
respectively). GM functions, including those involved in membrane_transport,
energy_metabolism, poorly_characterized, metabolism_of_cofactors_and_
vitamins, glycan_biosynthesis_and_metabolism, transcription, folding,_sorting,
_and_degradation, were significantly altered in the disease group. The
abundance of various GM components was correlated with endocrine hormone
levels.
Conclusion: Significant alterations in the GM are seen in children with growth
hormone deficiency, which may affect both energy metabolism and the levels
of endocrine hormones, potentially leading to growth restriction.
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1. Introduction

Short stature is defined as a height of less than two standard deviations or less than the

third percentile among children of the same sex, age, or race. Growth hormone deficiency

(GHD) is a growth disorder caused by reduced or absent production of growth hormone

(GH). It is one of the most common causes of short stature in children, accounting for
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38.6% of all causes (1). The worldwide incidence of GHD in

children varies between 1/4,000 and 1/10,000 and most children

show idiopathic GHD (2).

The stability of the gut microbiota (GM) is an important factor

influencing the growth and development of children (3). Intestinal

microorganisms and metabolites such as short-chain fatty acids

(SCFAs) can regulate the production of hormones related to

bone health, including sex steroids, vitamin D, and serotonin (4,

5). In addition, they mediate signal transduction via the

intestinal–brain axis and affect the secretion of GH-releasing

peptide, somatostatin, and leptin, all of which regulate the GH/

insulin-like growth factor-1 (IGF-1) axis and modulate processes

such as GH secretion, appetite regulation, and bone growth (1,

6–10). Growth hormone can not only directly promote the

growth of all organs but also stimulate the production of IGF-1.

The latter is an effective growth factor that plays a synergistic

role with growth hormone to maintain overall growth and

metabolism (11, 12). Conversely, GH or IGF-1 can also affect the

composition and functions of the GM in different ways (1). Li

et al. (13) reported significant changes in the GM of children

with idiopathic short stature where intestinal Clostridium and

Eubacterium were significantly and positively correlated with

their height standard deviation score (SDS) and IGF-1 SDS. The

authors believed that the decrease in IGF-1 synthesis by

Clostridium and Eubacterium through SCFAs might be one of

the underlying causes.

The hypothalamus–pituitary–IGF-1 axis is the main hormonal

regulator of growth and development, of which GH and IGF-1 are

key components (14). GHD children have reduced levels of GH

and IGF-1. Imbalances in the GM can lead to endocrine hormone

disorders. We speculate that children with GHD may also have

GM imbalances. In this study, the intestinal composition and

function of GHD children and healthy children of the same age

were compared, and correlations between their GM and several

hormones were analyzed to explore the characteristics of the GM

of GHD children and the possible mechanism of action.
2. Materials and methods

2.1. Sample screening

We selected 33 children with GHD diagnosed at Longgang

District Maternity and Child Health Hospital as the disease group,

and 24 healthy children of the same age as the control group. The

ages of children in the two groups ranged between 5 and 14 years,

with no statistical difference seen in the comparative analysis (P >

0.05) (Table 1). All the children with GHD were diagnosed at the
TABLE 1 Comparison of clinical information between children in the disease

Group Age (year) Gender (male/female)
Disease group (n = 33) 8.73 ± 2.40 21/12

Control group (n = 24) 8.78 ± 2.04 14/10

F/t Value 0.057 0.165

P-value 0.955 0.685
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District Maternity and Child Health Hospital. The disease group

met the diagnostic criteria for GHD in Chinese children (15):

① Below the third percentile of the height of normal healthy

children of the same age and sex (−1.88 standard deviations

[−1.88 SD] or minus 2 standard deviations [−2 SD]); ② Annual

growth rate <5 cm/year; ③ Symmetrical dwarfism and childish

face; ④ Normal intelligence development; ⑤ Bone age lagging

behind actual age; ⑥ Peak values of two GH drug provocation

tests of <10 µg/L; ⑦ Lower than normal level of serum IGF-1.

The exclusion criteria for children in the two groups included:

① Severe liver or gastrointestinal disorders; ② Severe infection;

③ Treatment with antibiotics or probiotic preparations within

one month before the test. All children provided informed

consent from their guardians before enrollment.
2.2. Sample handling and species
annotation

2.2.1. Collection of fecal samples for DNA
extraction and sequencing from two groups of
children

Approximately 5 g of the middle section of the feces was

collected and immediately frozen and stored at ‒80°C. The samples

were transported on dry ice to Shenzhen Micro Health Gene

Technology Co., Ltd. for high-throughput sequencing. MoBio’s

PowerSoil® DNA Isolation Kit was used to extract bacterial DNA

from fecal samples. Amplification of the V3 – V4 region of the

16S rRNA gene in DNA was performed by polymerase chain

reaction (PCR). Amplified samples were sequenced using the

Illumina MiSeq high-throughput sequencing platform.

2.2.2. Sequencing data analysis
Low-quality reads were filtered from the sequencing data using

self-programming bioinformatics tools, and the data were spliced

using FLASH software (v12.11, http://ccb.jhu.edu/software/FLASH/

index.shtml). The splicing sequences were aggregated into OTUs

(sortable elements) with USEARCH, which were compared with the

bacterial library (Greengene V201305) to obtain the GM

compositions of all samples. The bacterial abundance in the samples

of both groups was analyzed only at the phylum and genus levels.
2.3. Statistical methods

The ade4 package in R (v3.3.3) software was used to perform

principal component analysis (PCA) based on the composition
and control groups (�x+ s).

Weight (kg) Height (cm) IGF-1
22.53 ± 1.02 120.72 ± 1.87 179.71 ± 75.73

27.45 ± 1.34 128.55 ± 2.49 235.55 ± 70.89

0.037 2.566 2.171

0.154 0.013 0.038

frontiersin.org

http://ccb.jhu.edu/software/FLASH/index.shtml
http://ccb.jhu.edu/software/FLASH/index.shtml
https://doi.org/10.3389/fped.2023.1133258
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Huang et al. 10.3389/fped.2023.1133258
and relative abundance of bacteria in all samples at the genus

level. The overall distribution of the microbiota compositions in

the two groups was plotted. Bacteria were classified to the

phylum and genus levels, and different species between the two

groups were investigated by the Wilcoxon method where P <

0.05 indicated a significant difference. The 16S rDNA

sequencing data were used to evaluate differences in bacterial

functions between the two groups of children based on the

functional analysis performed by the Kyoto Encyclopedia of

Genes and Genomes (KEGG) database. SPSS 22.0 software was

used for general data analysis. The age, weight, height, and

IGF-1 values were compared by χ2 tests or two-group

independent sample t-tests.
3. Results

3.1. Comparison of differences in the
composition of the GM

The GM of two groups of children showed significant

differences in α-diversity (P = 0.033) (Figure 1). We used PCA to

reduce the dimensionality of the GM data of the two groups,
FIGURE 1

Chart showing comparison of microbiota diversity between the two
groups.
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finding that there were marked differences in the GM between

the two groups. The genera that contributed most to this

difference included Prevotella (P < 0.001), Megamonas (P = 0.01),

Bacteroides (P = 0.765), Bifidobacterium (P = 0.011), and

Faecalibacterium (P = 0.094) (Figure 2).
3.2. Comparison of the dominant bacterial
phyla between the two groups of children

The top five dominant bacterial phyla differed between the

groups with a significant increase in the abundance of

Bacteroides in the disease group (P = 0.000) together with a

significant reduction in the abundance of Firmicutes (P = 0.000).

In addition, there was also a significant difference between the

two groups in the abundance of Fusobacteria and Actinomycetes

(P < 0.05) (Table 2 and Figure 3).
3.3. Comparison of the dominant bacterial
genera between the two groups of children

We selected the top 15 dominant bacterial genera in the two

groups for comparison. The results showed that the abundance

of Prevotella, Fusobacterium, Klebsiella, and Alistipes was

significantly increased in the disease group (P < 0.05) while that

of Lachnospiracea incertae sedis, Megamonas, Blautia,

Clostridium XlVa, Bifidobacterium, and Eubacterium was

significantly decreased (P < 0.05) (Table 3 and Figure 4).
3.4. Alterations of GM functions in the GHD
children

In comparison with the healthy children, the GHD patients

showed significant changes in GM functions, including the

decreased “Membrane transport” (P < 0.001, FDR < 0.001), “Lipid

metabolism” (P = 0.025, FDR = 0.042), and “Transcription” (P <

0.001, FDR < 0.001, Figure 5), which indicated the. In contrast, the

functional categories, such as “Energy metabolism” (P < 0.001,

FDR< 0.001), “Metabolism of cofactors and vitamins” (P < 0.001,

FDR< 0.001), “Nucleotide metabolism” (P = 0.008, FDR = 0.016),

“Glycan biosynthesis and metabolism” (P < 0.001, FDR < 0.001),

and “Folding sorting and degradation” (P < 0.001, FDR < 0.001)

were enriched in the GHD patients (Figure 5). These elevated GM

metabolic activities in the GHD patients, especially the “Glycan

biosynthesis and metabolism” function, affect the neuro-regulations

in hosts and is probably related to the occurrence of GHD.
3.5. GM and clinical phenotypes

Spearman’s correlation analysis was used to investigate

associations between the GM of children with GHD and eight

endocrine hormones. Our results showed that Bacteroides were

positively correlated and Prevotella was negatively correlated with
frontiersin.org
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FIGURE 2

Principal component analysis.

Table 2 Analysis of dominant bacteria in children in the disease and
control groups (top 5).

Top 5
dominant
phyla

Disease group Control group P-
value

FDR

Mean
(%)

SD
(%)

Mean
(%)

SD
(%)

Bacteroidetes 65.71 18.02 45.96 21.21 0.000 0.002

Firmicutes 25.20 12.11 47.09 20.66 0.000 0.000

Proteobacteria 4.90 8.28 2.80 1.86 0.312 0.369

Fusobacteria 2.71 9.86 1.54 4.69 0.011 0.018

Actinobacteria 1.14 3.64 2.54 2.98 0.002 0.004
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insulin, while Alistipes and Haemophilus showed a negative

correlation with GH. A positive correlation was also reported

between Fusicatenibacter, Fusobacterium, and Sutterella, whereas

Veillonella was negatively correlated with prolactin. Faecaliterium

and FSH were positively correlated (Figure 6).
4. Discussion

4.1. The GM composition differed markedly
between the disease and control groups

Compared with the healthy controls, children in the disease

group showed reduced α-diversity in the GM, consistent with

results reported in malnourished children (16). The phylum
Frontiers in Pediatrics 04
Bacteroides was more abundant in children from the disease

group than in those from the control group while the opposite

trend was observed for Firmicutes, in contrast to findings on

obese and diabetic patients (17). The abundance of Prevotella

in the disease group was also significantly higher than that in

the control group. Prevotella can degrade broad-spectrum plant

polysaccharides (18), and carbohydrate-based diets tend to

form a Prevotella-dominated “gut type.” Increased abundance

of Prevotella abundance has been shown to reduce blood sugar

and insulin levels, thus affecting energy absorption and

promoting weight loss (19). In the disease group, the

abundance of Fusobacterium, Klebsiella, Alistipes, and other

genera was found to be significantly increased. Fusobacterium

is present in the normal oral flora and can inhibit the immune

response as well as promote the transformation of

inflammation to malignancy (20). An increase in the

abundance of both Klebsiella and Alistipes has been shown to

be associated with intestinal inflammation (21, 22); therefore,

the increase in the population of these genera can promote

chronic inflammation in the intestine and disrupt the function

of the intestinal barrier. This can lead to a cellular biochemical

imbalance, reduced absorption capacity, and increased

susceptibility to enteric pathogen infections, and consequently

affect energy metabolism and nutrient absorption (23). In

addition, Klebsiella and Alistipes are both associated with

neurological diseases (24) and can produce neurotransmitter-

related metabolites such as serotonin, dopamine, and histamine
frontiersin.org
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FIGURE 3

Comparison of the GM levels in the two groups.

TABLE 3 Comparison of the top 15 dominant bacterial genera in the two
groups of children.

Top 15
dominant
genus

Disease group Control group P-
value

FDR

Mean
(%)

SD
(%)

Mean
(%)

SD
(%)

Prevotella 20.67 29.63 3.16 14.46 0.000 0.000

Lachnospiracea
incertae sedis

1.75 1.34 6.57 4.70 0.000 0.000

Megamonas 2.019 2.85 5.08 15.17 0.001 0.008

Blautia 1.69 0.82 4.05 3.59 0.027 0.077

Clostridium XlVa 0.80 0.67 4.51 4.32 0.000 0.000

Fusobacterium 2.71 9.86 1.54 4.69 0.012 0.041

Bifidobacterium 1.03 3.64 2.17 2.89 0.011 0.040

Klebsiella 1.89 8.21 0.10 0.25 0.004 0.017

Alistipes 1.62 2.95 0.28 0.55 0.006 0.022

Gemmiger 1.00 1.82 0.90 1.79 0.031 0.084

Roseburia 0.63 0.81 0.61 1.22 0.018 0.052
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(25). These neurotransmitters enter the brain through the gut-brain

axis to regulate the energy balance and function of the

hypothalamus (26, 27). The hypothalamus is the highest regulatory

center of thehypothalamic–pituitary–growth axis (HPA) and can

reduce appetite and cause weight loss (28, 29). Lachnospiracea

incertae sedis, Megamonas, Blautia, Clostridium XlVa, and

Bifidobacterium were found to be significantly reduced in the

intestines of the disease group, which could lead to reduced

concentrations of SCFAs such as butyric acid produced by these

beneficial bacteria (30). Decreased abundance of Lachnospiracea

incertae sedis might also affect protein synthesis (31), disturb the

intestinal energy supply, and retard growth and development.

Jensen et al. (5) reported that increased Prevotella abundance

together with reduced numbers of Bifidobacterium can reduce the

levels of growth hormone-releasing peptide (GHRP) and leptin,

thus reducing the release of GH.

Ruminococcus2 0.41 0.60 0.79 0.79 0.022 0.064

Streptococcus 0.18 0.31 0.75 1.14 0.043 0.098

Oscillibacter 0.42 0.53 0.20 0.29 0.041 0.098

Eubacterium 0.02 0.04 0.58 2.71 0.046 0.103
4.2. Significant differences in GM function
between the two groups

The enriched functional categories in the GHD group included

“Replication and repair, Energy metabolism, Poorly characterized,

Metabolism of cofactors and vitamins, Nucleotide metabolism,

Cellular processes and signaling, Nucleotide metabolism, Glycan

biosynthesis and metabolism, Transcription, Folding sorting and

degradation”. Children with GHD showed dysregulation in
Frontiers in Pediatrics 05
energy metabolism, vitamin and related factor metabolism, and

polysaccharide metabolism and biosynthesis. Considering that

Prevotella significantly increases the catabolism of carbohydrates

and that the abundance of butyric acid and other bacteria such

as Lachnospiracea incertae sedis is significantly reduced in
frontiersin.org
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FIGURE 4

Comparison of the abundance of bacterial genera between the two groups. Remarks: * indicates P < 0.05, ** indicates P < 0.01, and *** indicates P < 0.001
statistically significant differences between the two groups. The higher the number of asterisks, more significant the difference.
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children with GHD, the GM imbalance in this population may

affect the functions of the flora. This phenomenon may lead to

chronic inflammation of the intestine and poor intake and

absorption of nutrients such as fats and proteins, affecting both

growth and development.
4.3. GM is closely related to the clinical
phenotype

We conducted a correlation analysis of the GM and endocrine

hormones and found that Prevotella abundance was negatively

correlated with insulin. Significantly higher abundance of

Prevotella can affect insulin secretion, which can not only

regulate food intake (19, 32) but also modulate blood glucose

levels through signaling pathways essential for maintaining

energy storage, glucose metabolism, sugar production,

adipogenesis, cell growth, survival, and reproduction (33). We

speculate that this significant increase in Prevotella abundance

may be detrimental to growth and development. We also found a
Frontiers in Pediatrics 06
variety of other intestinal bacteria related to endocrine hormones

and confirmed the interaction between the GM and endocrine

hormones. Maintaining the stability of the GM is conducive to

the promotion of growth and development.
5. Conclusion

There was a significant reduction in the α-diversity of

the intestinal microbial composition in GHD children, together

with an increased abundance of Bacteroides and reduced

numbers of Firmicutes. Fusobacterium, Klebsiella, Alistipes, and

other genera were significantly enriched in children with GHD

while the numbers of Lachnospiracea incertae sedis, Megamonas,

Blautia, Clostridium XlVa, and Bifidobacterium were significantly

reduced. These imbalances in the GM were predicted to affect

pathways involved in energy metabolism and biosynthesis, as

well as induce abnormal secretion of insulin and other endocrine

hormones, which may promote the occurrence and development

of GHD.
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FIGURE 6

Correlations between GM compositions and endocrine hormones in children with GHD. Legend description: A correlation analysis was performed with eight
clinical phenotypes and genera with a relative abundance of ≥0.1%. Results are shown as above where significance was expressed as *P < 0.05 and **P < 0.01.

FIGURE 5

Comparison of GM functions between the two groups of children.

Huang et al. 10.3389/fped.2023.1133258
5.1. Deficiencies and next steps

There are many factors that cause insufficiency in GH secretion

in children with GHD, and GM imbalance may be one of the major

factors. On the one hand, GM imbalance leads to the abnormal

secretion of endocrine hormones as well as an abnormal

production of microbial metabolites, especially neurotransmitters,
Frontiers in Pediatrics 07
that can influence the HPA through the gut–brain axis. The

sample size in the present study was small, consisting of only 33

children with GHD; hence, large-sample, multi-center research is

needed to verify the associations between the GM and GHD.

Studies combined with metabolomics could better clarify the

mechanism of action of the GM and its metabolites in growth

and development.
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