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Telomere dysfunction in some
pediatric congenital and growth-
related diseases
Bo Zheng and Jianhua Fu*

Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China

Telomere wear and dysfunction may lead to aging-related diseases. Moreover,
increasing evidence show that the occurrence, development, and prognosis of
some pediatric diseases are also related to telomere dysfunction. In this review,
we systematically analyzed the relationship between telomere biology and some
pediatric congenital and growth-related diseases and proposed new theoretical
basis and therapeutic targets for the treatment of these diseases.
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1. Introduction

Telomeres are part of the genome at the end of a linear chromosome. The telomeric

DNA of vertebrates is composed of TTAGGG repeats, which bind to a group of proteins

that regulate their biological functions and protect them from being recognized as DNA

damage. In DNA replication, the wear of the telomere length (TL) accompanies each

division; hence, the telomere length gradually shortens with age. Further evidence shows

that the TL wear caused by childhood stress and other factors is a risk factor for diseases

in adulthood and even in later life (1). Lin et al. (2) proved that the early telomere wear

in infants has a certain impact on their long-term growth. Consistent with this, TL

abrasion is closely related to the development of the nervous system within 2 years after

birth (3, 4). Increasing evidence show that telomere attrition is related to children’s

growth and pediatric diseases. Thus, we focus on the latest progress in understanding the

molecular properties of telomere biology in some pediatric diseases.
2. Telomere dysfunction in preterm infants

Approximately, 15 million children are born preterm (at 37 weeks gestational age) yearly

worldwide. Although the mortality rate of premature infants is decreasing with the

continuous improvement of rescue technology in the neonatal intensive care unit, more

than one million young people subsequently die of premature birth-related diseases each

year. The degree of premature delivery is also closely related to the morbidity and

mortality of surviving infants. Therefore, more research has been conducted on telomere

dysfunction in premature infants (Figure 1 and Table 1); however, to date, the regulatory

mechanism of premature infants is still unclear (8, 51–53). However, in detecting the

TL of premature infants at birth, studies showed that the TL of premature infants

decreased with the increase in gestational age, which was more obvious in premature

infants less than 32 weeks of age (54, 55). Casavant et al. (56) demonstrated in a recent

study that the mean absolute length of telomeres in the peripheral blood of premature

infants is greater than that of adults. The TL of males gradually becomes shorter than
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FIGURE 1

Evidence that telomere dysfunction causes some diseases in infants. For newborns, bronchopulmonary dysplasia is mainly associated with the respiratory
system, hypoxic-ischemic encephalopathy with the nervous system, and biliary atresia with the digestive system.
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that of females with age. They also studied the effects of pain

stimuli exposure, feeding methods, and nervous system

development on the TL of premature infants. The results show

that these factors have no significant effect on the absolute

length of telomeres. In contrast to this, some studies showed

that exposure to adverse factors (such as pain and stress)

during childhood is positively related with telomere shortening,

and these factors can also affect their long-term mental health

(57–59).
2.1. Congenital biliary atresia (BA)

Congenital BA is the blockage of the intrahepatic and

extrahepatic bile conduits, which can prompt cholestatic

cirrhosis, and ultimately liver failure. It is one of the indications

for liver transplantation in children and one of the most

common digestive diseases in neonatal surgery. Patients with BA

with hindered bile stream have determined jaundice, earth-like

stool, hepatomegaly, and/or splenomegaly. If timely and

reasonable intervention is not given in the early stage of the

disease, most children may die at 2 years of age, with the cause

of death mostly chronic liver disease (severe liver fibrosis, biliary

cirrhosis, liver failure, etc.) (60). Hartley et al. (61) reported that

the relative length of short telomeres in the peripheral blood of

children was associated with the incidence of BA (adjusted for

age and sex using logistic regression analysis). Their data also

showed that the TL of patients with BA negatively correlated

with the degree of liver cirrhosis. TL can also be used as one of

the important indicators to evaluate the progress of BA in

children (such as liver fibrosis) and is an important reference

value for the timing of liver transplantation (5–7).
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2.2. Bronchopulmonary dysplasia (BPD)

BPD is a chronic lung infection that causes constant respiratory

misery. It is one of the most well-known serious diseases that

influence preterm infants, particularly extremely preterm infants

(Babies born before 28 weeks of pregnancy). In the long run,

prolonged mechanical ventilation or oxygen inhalation may lead

to stagnation of lung development, decline of vital capacity,

emphysema, pulmonary hypertension, and even neurological and

cognitive dysfunction. Nordlund et al. (62) suggested that BPD

may damage the lung diffusion capacity of an infant. Airway

hyperresponsiveness is more serious in premature infants than in

full-term children with asthma at the same age. In a large-scale

survey of young people with early pregnancy, Hadchouel et al.

(8) showed that a shorter salivary TL was related with hindered

lung capability. Previous studies also suggested that TL remained

to be associated with forced expiratory flow at 25%–75% of the

vital capacity in preterm adolescents, after adjusting for potential

confounders by multiple linear regression. Henckel et al. (9)

suggested that in children with early BPD, chitinase-3-like

protein 1 and relative TL can be used as biomarkers for long-

term lung development outcomes.
2.3. Hypoxic-ischemic encephalopathy
(HIE)

Neonatal HIE is a severe disease caused by hypoxia in perinatal

babies. Its normal cause is the fetal pain in the womb caused by

different sources, such as the umbilical cord on the neck and

abnormal amniotic fluid. It is very common in children who

have experienced serious and life-threatening diseases (hypoxia,
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TABLE 1 List of telomere dysfunction-associated pediatric diseases and supporting evidence.

Disease Telomere
dysfunction

Telomere cell type Animal
model

Specific impact on disease Refs.

Preterm Infants

Biliary atresia (BA) telomere attrition human liver cells no shorter TL— severe liver cirrhosis (5–7)

Bronchopulmonary
dysplasia (BPD)

telomere attrition cells from human saliva no shorter TL — lower FEF25−75 in extremely preterm
infants

(8)

human peripheral blood
leukocytes

no shorter TL— higher serum YKL-40 (9)

shorter TL in early life of BPD children—severe
outcome in adulthood

Hypoxic-ischemic
encephalopathy (HIE)

telomere attrition nerve cells of central
nervous system in rats

rat TERT inhibition decreased the expression ratio of Bcl-
2/Bax

(10,
11)

the activated TERT has a protective effect in the
hypoxic-ischemic neural model of rats

Endocrine diseases

Obesity telomere attrition human peripheral blood
leukocytes

no telomere attrition rate was greater (12,
13)

cross-sectional
study

no shorter TL— obesity—only in males (14)

cohort study no shorter TL— obesity—only in females (15)

human peripheral blood
leukocytes

no no association between TL and childhood obesity (16,
17)

human peripheral blood
leukocytes

no TL — positive correlation with SFA and DHA;
negative correlation with AA/DHA ratio

(18)

Diabetes telomere attrition human peripheral blood
leukocytes

no shorter TL — T1D children (19)

human peripheral blood
leukocytes

no TL — all-cause mortality in T1D children (20)

human peripheral blood
leukocytes

no TL — negatively correlated with BMI-SDS in T1D
children;

(21)

human peripheral blood
leukocytes

no shorter TL — time of onset and course of disease; TL
— negatively correlated with HbA1c

(22)

Hereditary diseases

Trisomy 21 syndrome longer telomeres Data set interest
generation
analysis

no trisomy 21 patients are born with longer telomeres;
Higher telomere decay rate

(23)

Dyskeratosis congenita
(DC)

TERT/TERC
mutation

human peripheral blood
leukocytes

no TERC RNA levels were decreased in DKC1 —mutant
cells

(24)

mutated genes affecting TL: 1. Telomerase-associated
components (TERC, TERT, DKC1, NOP10, NHP2,
TCAB1, NAF1, PARN); 2. Shelterin proteins (TIN2,
TPP1); 3. Regulators of TL (RTEL1, CTC1, STN1)

human/mice peripheral
blood leukocytes

mice (25–
28)

Duchenne muscular
dystrophy (DMD)

telomere attrition mice muscle cells mice lack of TERC — severe muscular dystrophy (29)

diaphragm muscles of
mice

mice exercise factors can accelerate the telomere attrition (30)

cardiomyocytes mice TL—mechanosensitive in DMD (31)

Cancers

Neuroblastoma (NB) TERT
overexpression

human tumor
pathological tissues and
cells

no TERT overexpression—Neuroblastoma (32)

neuroblastoma cell lines
LAN-6, GI-ME-N, SK-
N-FI

no Shorter TL—Neuroblastoma cells with telomerase
activated

(33)

Leukemia High/Low TERT
activity

human peripheral blood
mononuclear cells

no High TERT activity—ALL (34)

human bone marrow
cells

no Positive correlation between telomerase activity and
CDKN2B

(35)

human bone marrow
cells

no low TERT activity—AML (36,
37)

Brain Tumors High/Low TERT
activity

human tumor
pathological tissues

no TERT activity—level of differentiation (low TERT
activity—PLGGs; High TERT activity—PHGGs)

(38–
41)

(continued)
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TABLE 1 Continued

Disease Telomere
dysfunction

Telomere cell type Animal
model

Specific impact on disease Refs.

Other system diseases

Cardiovascular system telomere attrition human peripheral blood
leukocytes

no shorter TL—IMT in later childhood (42)

human peripheral blood
leukocytes

no shorter TL—vascular elasticity but not thickness (only
in adults but not in children)

(43)

Respiratory system telomere attrition fresh human frozen
plasma

no shorter TL—STRA and CCL11 expression in children (44)

human peripheral blood
leukocytes

no air pollution—shorter TL in children with asthma (45)

Digestive system telomere attrition human colon tissue
biopsies
human peripheral blood
lymphocytes and
granulocytes

mice

no

shorter TL—activation of ATM/YAP1— related to
IBD shorter TL—not related to IBD

(46–
48)

Urinary system telomere attrition/
TERT activity

human kidney
pathological tissues

no shorter TL—complications after renal transplantation
in children

(49)

human peripheral blood
leukocytes

no High TERT activity—in children with renal
transplantation

(50)

In this table, we present the evidence, specific effects of telomere dysfunction and various diseases, and cell line models and/or animal pathological models.
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neonatal asphyxia) during or after childbirth, and occasionally

other diseases that endanger the brain. This ordinarily happens

in full-term babies, yet it can likewise happen in untimely

newborn children. It has been reported that its incidence rate in

live births was 1.5 ‰ (63). A total of 25% of neonates with HIE

have severe neurological complications sooner or later

(64).Telomerase reverse transcriptase (TERT) encodes rate-

limiting catalytic subunits and key regulators of telomerase

activity(65). Some studies reported that TERT is a protective

molecule against hypoxic-ischemic brain damage. This theory has

been verified in HIE models of neonatal rats (10, 11). Li et al.

(66) believed that TERT can promote cell proliferation, increase

the migration and separation of sensory cells, and then reduce

the apoptosis of neurons after hypoxia-ischemia. This theory has

been fully confirmed in in vitro experiments. Moreover, the

overexpression of TERT can activate myelination in the brain of

newborn rodents. In addition, TERT overexpression reduced

learning disabilities, memory ability, and neural function after

hypoxic-ischemic brain injury. They also conducted in-depth

research on the neuroprotective mechanism of TERT and found

that the sonic hedgehog/glioma-associated oncogene 1 signaling

pathway may play an important and positive role.
3. Telomere dysfunction in nutritional
and endocrine diseases in children

Telomere wear may be closely related to some endocrine

diseases (such as diabetes) and may increase the early mortality

of patients with these diseases. In some economically

underdeveloped areas, children are more likely to experience

various environmental stress factors, leading to malnutrition,

stunting, and even fatality. Increasing evidence shows that

telomere dysfunction is related to the nutritional status of and

metabolic diseases in children.
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3.1. Obesity in children

The incidence rate of childhood obesity is rising rapidly, as

well as its related comorbidities, including obstructive sleep

apnea syndrome, psychological problems, cardiovascular

diseases, type 2 diabetes, and cancer. They seriously threaten

the short- and long-term health of children. The telomerase

plays a crucial role in human embryonic development.

Telomerase action can result in a uniform TL in cells of

different tissues, as well as differentiated cells (67–69). The

shortening rates of telomeres are high during the first three

years of life (approximately 250 bp/year) and reach a stable

phase at 4 years of age. The loss rate of telomeres is stable or

may decrease (approximately 50 bp/year) from the age of 4

years to youth and old age (approximately 50 bp/year) (70–

74). In children with obesity, the wear rate of telomeres is

increased (12, 13, 15). Different scholars hold different views

on whether obesity is related to TL. Some research showed

that there was a clear correlation between childhood obesity

and shorter telomeres (14, 75, 76). In contrast, others

reported that there was no clear correlation between obesity

and TL (16, 17). Liu et al. (18) reported that in preschool

children with obesity, leukocyte TL shortening negatively

correlated with the body mass index. They also reported that

the TL of peripheral blood lymphocytes negatively correlated

with arachidonic acid (AA)/ docosahexaenoic acid (DHA)

ratio but positively correlated with saturated fatty acid and

DHA levels, respectively. In any case, no affiliation was found

between erythrocyte DHA levels and the methylation of the

TERT promoter. One study likewise focused on the effect of

the sex distinctions of children with obesity on TL. Other

relevant studies also indicated that only the shortening of

TL in males was found to be associated with the incidence of

obesity; however, this association was not obvious in

females (14).
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3.2. Diabetes in children

Diabetes in children is an endocrine and metabolic illness

caused by the lack of insulin emission. This mainly results in

carbohydrate, protein, and fat metabolism disorders, giving rise

to fasting, postprandial hyperglycemia, and urine sugar. Type 1

diabetes (T1D) is common in young people and often occurs

during childhood. Its main disease feature is the absolute lack of

insulin, and it is a chronic immune system disease (77, 78).

Previous studies showed that the TL of children with T1D was

significantly shorter than that of healthy children. In-depth

follow-up studies reported that shorter telomeres were associated

with all-cause mortality (19, 20). Tesovnik et al. (21) reported

that the average TL of young people with T1D was adversely

connected with the body mass index standard deviation score,

and that serum vitamin D levels were not associated with TL in

these individuals. In another study by Tesovnik et al. (22), they

reported that a shorter telomere indicates an earlier and longer

onset and duration of T1D; however, TL negatively correlated

with glycated hemoglobin A1c. In the study of Törn et al. (79),

after a comprehensive sequencing test of the gene level of

thousands of children with T1D, results showed that the age of

onset negatively correlated with TL, and that children with HLA-

DR4/4 or HLA-DR4/X phenotypes had longer telomeres

compared with children with HLA-DR3/3 or HLA-DR/9 genes.
4. Telomere dysfunction in hereditary
diseases of children

4.1. Trisomy 21 syndrome

Trisomy 21 syndrome, also known as Down syndrome (DS), is

caused by chromosomal abnormalities (an additional chromosome

21). Moreover, 60% of Trisomy 21 pregnancies were miscarried in the

early fetal period. Children with DS have clear mental retardation,

exceptional faces, developmental obstacles, and multiple

malformations. A comparative study of three different Indian trisomy

21 data sets by Bhattacharya et al. (23) indicated that the TL of

children with trisomy 21 syndrome decreased by 58 bps/year. In

contrast, the TL of normal children decreased by 38 bps/year. The

telomere attenuation rate of children with trisomy 21 was evidently

higher. However, Nakamura et al. (80) tested the peripheral

lymphocytes (diploid, 10; trisomy 18, 10; trisomy 21, 11) of 31 live

newborns. They observed that there was no measurable difference in

TL among trisomy 18, trisomy 21, and diploid infants. In contrast,

some studies showed that normal children have longer TL than

children with trisomy 21 (81, 82). Thus, the above views on the

divergence between TL and trisomy 21 must be further studied.
4.2. Dyskeratosis congenita (DC)

Dyskeratosis congenita (DC), a multisystem inherited

condition, is characterized by skin symptoms and can lead to
Frontiers in Pediatrics 05
bone marrow regeneration disorder or tumor. The inheritance of

DC can be X-linked latent, autosomal predominant, or

autosomal passive. Practically, patients with X-linked latent DC

were male. Hoyeraal–Hreidarsson disease, Revesz syndrome, or

Coats plus disease is usually the first symptom of DC (83–86).

Some sporadic, non-classical cases are usually related to DC-

related reproductive biological gene mutations, which mainly

manifested as aplastic anemia, familial myelodysplastic

syndromes/acute myeloid leukemia (AML) carriers, etc (87–90)..

Mutations in the genes encoding TERT, telomerase RNA

component (TERC), and dyskerin pseudo uridine synthase 1

(DKC1) genes are all related to the pathogenesis of DC (91–93).

Mitchell et al. (24) reported that the level of TERC RNA in the

DKC1-mutant cells of patients with DC was reduced. In the past

years, there has been increasing evidence that gene mutations

that maintain telomere gene length may increase the incidence of

DC by 70%. At present, 13 known genes have this effect (25–28).

They include the genes encoding telomerase-associated

components [TERC, TERT, DKC1, nucleolar protein 10, H/ACA

ribonucleoprotein complex subunit 2, telomerase Cajal body

protein 1, nuclear assembly factor 1, and poly(A)-specific

ribonuclease], shelterin proteins (TERF1-interacting nuclear

factor 2, tripeptidyl-peptidase 1), and other regulators of TL and

replication (regulator of telomere elongation helicase 1, CTC1,

STN1).
4.3. Duchenne muscular dystrophy (DMD)

DMD is an X-chromosome recessive disease, which mainly

occurs in males. Approximately one in each 3,500 newborn

infants have this disease. Patients usually experience progressive

degeneration of skeletal muscles, which gradually leads to muscle

atrophy and eventually loss of motor function. These

manifestations generally occur during the early-school age. It is

mainly characterized by the gradual replacement of necrotic

skeletal muscle cells by fibrocytes and adipocytes. Gradually,

patients lose their exercise ability before and after school age,

leading to death during adulthood when respiratory muscles are

involved in serious cases. This disease is caused by the lack of

proteins connecting the cytoskeleton and extracellular matrix,

resulting in serious destruction of the integrity of the skeletal

muscle cell membrane. The main genetic factors of this disease

have been studied; however, its main pathogenesis must be

further investigated (94). Sacco et al. (29) reported that the TL of

dystrophin-deficient (mdx) mouse muscle cells lacking

telomerase RNA components was shortened, leading to extremely

severe malnutrition, which gradually worsened with age. The

severity of muscle atrophy parallels the decline of the

regeneration ability of muscle stem cells. Vita et al. (30) showed

that in an mdx mouse model, the TL of the diaphragm was

significantly shortened, and exercise factors could accelerate the

telomere wear rate. Chang et al. (31) showed that telomere

shortening is progressive, contraction-dependent, and

mechanically sensitive in cardiomyocytes of DMD mice.
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5. Telomere dysfunction in pediatric
cancers

The incidence of cancer in children ranges from 0.05 to 3 per

10,000, accounting for 1% of all types of cancer (95). Childhood

cancer is mostly related to congenital and genetic factors, but not

strongly related to environmental factors and poor lifestyle,

which is different from adult cancer. The role of telomere

dysfunction in the occurrence and development of childhood

cancer has gained more attention in recent years.
5.1. Neuroblastoma (NB)

NB is the most common extracranial tumor in children andmay

originate from early nerve cells of the sympathetic nerve system.

Currently, only a few human tumors are known to spontaneously

degenerate from undifferentiated malignant tumors to completely

benign tumors, including NB. Lindner et al. (32) reported that the

increased expression of TERT was detected in most NBs.

Telomerase activation occurs in parallel with telomere shortening

in NB (33, 96). Ackermann et al. (97) reported that repeated

genome rearrangement in the proximal 5 p15.33 chromosome

region may be the reason for the overexpression of TERT in NB

cells. In the biological behavior of NBs, telomerase activation and

the maintenance of TL are very important and necessary links that

provide relatively accurate molecular mechanisms that determine

the clinical phenotype of the tumor (33).
5.2. Leukemia

Leukemia is a malignant proliferative disease of the human

hematopoietic system, which seriously threaten children’s lives. Among

the types of childhood leukemia, acute lymphoblastic leukemia (ALL)

and AML are the two most common, accounting for approximately

3% of childhood malignant tumors (98, 99). A study by Engelhardt

et al. (34) used data from the telomerase activity of peripheral blood

monocytes. Compared with healthy children, the telomerase activity of

children with ALL was 10–20 times higher. Similarly, Hu et al. (35)

reported that the methylation of the cyclin dependent kinase inhibitor

2B gene was closely related to the telomerase activity in childhood

cancer, and that telomerase activation is one of the important

monitoring indicators for childhood cancer. It is interesting to note

that, unlike previous perceptions, the mutation of the gene with

reduced TERT activity is an important risk factor for the disease in

children with AML (36). The telomerase activity of bone marrow cells

positively correlated with prognosis in adult patients with AML, but

negatively correlated with prognosis in children with AML (37).
5.3. Brain tumors

Intracranial tumors are the most common tumors during

childhood, which makes it a serious threat to the life and health
Frontiers in Pediatrics 06
of children. Its overall incidence in the population ranks second

(only next to the incidence of leukemia). People of all ages may

have this disease; however, its peak of occurrence is during 5–8

years of age. In recent years, some studies have shown the close

relationship between the maintenance mechanism of TL and

occurrence of intracranial tumors in children (100–102). In

pediatric glioma, the level of differentiation is related to

telomerase activity. Some studies suggested that according to the

standards of the World Health organization, telomerase activity

was significantly reduced in low-grade gliomas in children (38,

39). In contrast, telomerase activity is significantly enhanced in

most children with high-grade glioma (40, 41). Telomerase

activity was increased in primary medulloblastoma but did not

change in secondary medulloblastoma (101, 103).
6. Pediatric diseases in other body
systems

Telomere dysfunction is rarely studied in the pediatric diseases

of other body systems, such as the cardiovascular and urinary

systems. Nevertheless, we included them in this review (Figure 2

and Table 1).

Carotid intima-media thickness (IMT) is a risk factor for

cardiovascular events in adult patients. Skilton et al. (42)

confirmed that a shorter TL in youth was related to carotid IMT

at 8 years of age but not to early life risk factors (birth weight,

gestational age, skewed weight gain at the beginning, asthma, and

atopy). In contrast, Nguyen et al. (43) reported that in middle-

aged adults, TL was related with vascular versatility but not

thickness. The influence of the telomere on respiratory diseases

in children mainly focuses on its effect on asthma. Barbe-Tuana

et al. (44) suggested that telomere shortening is positively related

to severe therapy-resistant asthma in children, and that telomere

attrition was associated with increased plasma eotaxin-1

expression in children. Lee et al. (45) confirmed that in children

with asthma, exposure to air pollution is related to a shorter TL

and that telomere wear may be reduced by steroid intervention.

Similarly, Isaevska et al. (104) reported that for pregnant

mothers, air pollution factors were related to shorter telomeres at

birth, which can increase the long-term incidence of asthma and

other diseases in children. In the study of Chakravarti et al. (46)

found that telomere dysfunction leads to activation of ATM/

YAP1 pathway, which is related to the pathogenesis and severity

of inflammatory bowel disease (IBD).However, some scholars

also believe that no evidence has been found that TL is

associated with IBD in children (47, 48).

For patients undergoing renal transplantation, TL can be used

as one of the indicators of long-term renal function; moreover, the

incidence of renal transplantation or long-term complications is

positively correlated with shorter telomeres (49). In contrast to

adult patients, in children undergoing renal transplantation,

plasma TRF2 correlated with the creatinine level and epidermal

growth factor. Notably, although there is no significant difference

in TL between children receiving renal transplantation and
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FIGURE 2

Schematic diagram of the relationship between telomere dysfunction and certain systemic disorders in older children. Acute lymphoblastic leukemia, ALL,
acute myeloid leukemia; AML, dyskeratosis congenita; DC, Duchenne muscular dystrophy; DMD, Down syndrome; DS, inflammatory bowel disease; IBD,
neuroblastoma; NB, type 1 diabetes, T1D. Telomere dysfunction may also be related to the body systems in children. It may be related to vascular elasticity
in the cardiovascular system. In the respiratory system, it can enhance the sensitivity of the respiratory tract to air pollution. In the urinary system, it may be
related to the success rate of renal transplantation.
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healthy children, the telomerase activity of children undergoing

renal transplantation was significantly increased (50).
7. Prospect of treatment

It can be inferred that most telomere dysfunction-related

diseases are caused by TL wear; hence, considering how to

enhance telomerase activity and reduce telomere wear may

potentially be the main targets of treatment. There are currently

two main views. One is to promote the increase in the

endogenous expression of TERT. As an endogenous promoter of

TERT, androgen has been widely used in the treatment of

aplastic anemia (105). As a specific PAPD5 inhibitor, BCH001

can restore telomerase activity in patients with DC and reduce

the TL wear of pluripotent stem cells (106). In a mouse model,

TA-65 has been shown to delay telomere wear by increasing

telomerase activity (107). Recently, as a therapeutic method,

TERT was overexpressed in an adeno-associated virus vector and

transfected into animal models. Significant achievements have

been made in the treatment of some adult aging-related diseases

such as Alzheimer’s disease, aplastic anemia, and idiopathic
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pulmonary fibrosis (96, 108–110). However, these kinds of

treatment have not been investigated in terms of the risk of

tumor occurrence and pediatric application.

Telomere overexpression is common in most patients with

pediatric cancers; hence, inhibiting telomerase activity may be a

potential therapeutic target. The 1,3,4-Oxadiazole scaffold is a five-

member heterocyclic ring, which can be used as a telomerase

inhibitor in tumor therapy (111, 112). As a telomerase inhibitor,

imetelstat also plays a significant role in the treatment of adult

AML (113). It can competitively inhibit the binding of telomerase

and the human telomerase RNA component sequence, thereby

inhibiting telomerase activity. For myelofibrosis, myelodysplastic

syndrome, and other hematological malignancies, the application of

imetelstat has also achieved gratifying results (114). As discussed

above, telomerase expression in adults and children with AML is

different; thus, this treatment is not applicable to children.

Antisense oligodeoxynucleotides (ASO) are a new class of

drugs, which have gained more attention. It was confirmed in a

mouse model that telomere ASO can reduce the DNA abrasion

caused by telomere abrasion (115, 116).

Most of the above treatments for telomeres are based on the

treatment of diseases related to adult telomere dysfunction
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(Table 2 and Figure 3). Research on the treatment of telomere

dysfunction-associated pediatric diseases is lacking. Therefore,

both the change in telomerase activity and maintenance of TL

may be potential targets for pediatric diseases.
8. Conclusions

Telomere dysfunction is often associated with some adult

cancers and aging related diseases. Since increasing evidence

show that telomere dysfunction is related to the occurrence,

development, and prognosis of some pediatric diseases, we

systematically analyzed the relationship between telomere biology

and some pediatric congenital and growth-related diseases in this

article. Similar to that of adults, shorter TL is closely related to

the pathological process of some children’s diseases. To the

preterm infants, shorter TL is mainly related to BPD and BA;

For older children, studies on telomere dysfunction mainly focus

on the following kinds of diseases: In endocrine system diseases,

the influence of shorter TL on obese children of different

genders is controversial. It is clear that the shorter TL is closely

related to children’s T1D in terms of disease occurrence and all-

cause mortality of diseases; For Hereditary diseases, children with

DS have longer telomeres, at the same time, they have higher

telomere decay rate. For children with DC and DMD, telomere

dysfunction is mainly related to the abnormality of telomere

RNA structure TERC; Similar to the adult cancer, the

overexpression and activation of TERT were also detected in

most pediatric cancer patients such as NB, Brain tumor, et al.
TABLE 2 Prospect of treatment of telomere dysfunction-related diseases.

TERT
activation

treatment type Representative
drugs

(1) endogenous
expression of TERT

Androgen Danazol

specific PAPD5 inhibitor BCH001 enhance the
the consump

A special ingredient is
found in the root of
astragalus

TA-65 an effective t
human immu
keratinocytes

(2) Exogenous
import TERT

gene therapy AAV9-CMV-Tert After overexp
was introduc
through AAV

gene therapy AAV9-Tert After overexp
was introduc
through AAV

gene therapy AAV9-Tert After overexp
was introduc
through AAV

TERT inhibitor

TERT inhibitor 1,3,4-Oxadiazole Inhibiting th
inhibiting the

Competitive inhibitors of
TERT

GRN163L It directly bin
catalytic site

ASO Short peptide chain tASOs Antisense str

The therapeutic targets for diseases with telomere dysfunction mainly focus on the inte

for some diseases (not limited to pediatrics): TERT activation: (1) Endogenous expressio

AAV9-Tert; TERT inhibitor: 1,3,4-Oxadiazole, GRN163L; ASOs (Antisense oligodeoxynu
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but there are exceptions, such as AML. There are also sporadic

reports that telomere dysfunction is related to other body

systems, such as cardiovascular system, respiratory system,

digestive system and urinary system. Most of them are related

to shorter TL. An interesting hypothesis is as follows. TERT

acts as an RNA-dependent reverse transcriptase in the nucleus

under stable conditions. When stress events occur, ROS

production in mitochondria increases. At this time, TERT will

translocated to mitochondria and combine with

mitochondrial circular DNA (Mit DNA) to inhibit ROS

production. The relative number of TERT in the nucleus

decreases, resulting in telomere attrition. (Figure 4) Since

telomere length is hereditary, it will be interesting to evaluate

the correlation between the telomere length of newborns with

diseases and the telomere length of their parents. This is of

great significance for the long-term complications and

treatment of newborns.

The length of telomeres at birth has a very important impact on

the length of telomeres in children and adults. In the study of

Martens DS et al. (117), the telomere length of newborns has a

high predictive value to the telomere length of their later years. In

the study of Martens DS et al. (118), it was found that the blood

pressure of early school-age children was related to the length of

telomere at birth. However, telomere length in childhood is also

affected by other factors: Exposure to environmental pollution in

early life is closely related to telomere wear (104, 119).

Socioeconomic factor, and health and lifestyle factors also related

to telomere wear (120). Sleep duration may also have a significant

impact on TL in the first few years of life (121).
Drug action Animal
model

Disease Refs.

no AA (105)

activity of TERT by reducing
tion of TERC

no DC (106)

elomerase activator in
ne cells, and neonatal
and fibroblasts

mice Senescence (107)

ression of TERT in vitro, it
ed into animal models

mice AD (108)

ression of TERT in vitro, it
ed into animal models

mice osteoporosis, glucose
intolerance, AA, IPF

(109)

ression of TERT in vitro, it
ed into animal models

mice osteoporosis, neuromuscular
coordination

(110)

e activity of TERT and then
immortalization of tumor

no broad-spectrum anticancer
activity against different cell
lines

(111,
112)

ds to TERC at the enzyme
to inhibit TERT activity

no AML (113,
114)

and RNA interference no DNA damage mediated by
telomere attrition

(115,
116)

rvention of telomerase (TERT) activity. In this table, we present potential treatments

n of TERT: Danazol, BCH001 TA-65; (2) Exogenous import TERT: AAV9-CMV-Tert/

cleotides): Antisense strand RNA interference.
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FIGURE 3

In this figure, we show various treatment methods and their mechanisms in detail. Danazol, TA-65 directly increase the activity of TERT; BCH001 reduces
the consumption of TERC by inhibiting PAPD5 to improve the activity of TERT; The exogenous AAV9-CMV-Tert/AAV9-Tert enhances its activity by
increasing the relative number of TERT in the nucleus; 1,3,4-Oxadiazole, GRN163L; ASOs inhibit the activity of TERT.

FIGURE 4

The occurrence of stress events is caused by pathogenic factors of various diseases. Mitochondrial damage increases the release of ROS, and TERT
transfers from the nucleus to the mitochondria and binds with its circular DNA (Mit DNA) to inhibit the production of ROS. The reduction of the
number of TERT in the nucleus leads to the wear of telomere length.
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Most of the current treatments considering telomeres are based

on the treatment of diseases related to adult telomere dysfunction.

These therapeutic targets mainly focus on the intervention of

TERT activity. Danazol, and BCH001 TA-65 used for

endogenous TERT expression. AAV9-CMV-Tert/ AAV9-Tert

used for exogenous import TERT. 1,3,4-Oxadiazole, GRN163L

used for TERT inhibitor. Antisense strand RNA interference can

also be used to inhibit TERT activity. The above treatment

suggestions are based on the summary of the treatment of adult

diseases and the validation of animal models. If they are applied

to children’s diseases, a large number of experiments are needed

to verify their safety.

But telomerase activity and telomere length maintenance may

be potential therapeutic targets for pediatric diseases.
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