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Neural tube defects (NTDs) are serious congenital deformities of the nervous
system that occur owing to the failure of normal neural tube closures. Genetic
and non-genetic factors contribute to the etiology of neural tube defects in
humans, indicating the role of gene-gene and gene-environment interaction in
the occurrence and recurrence risk of neural tube defects. Several lines of
genetic studies on humans and animals demonstrated the role of aberrant
genes in the developmental risk of neural tube defects and also provided an
understanding of the cellular and morphological programs that occur during
embryonic development. Other studies observed the effects of folate and
supplementation of folic acid on neural tube defects. Hence, here we review
what is known to date regarding altered genes associated with specific signaling
pathways resulting in NTDs, as well as highlight the role of various genetic, and
non-genetic factors and their interactions that contribute to NTDs. Additionally,
we also shine a light on the role of folate and cell adhesion molecules (CAMs) in
neural tube defects.
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Background

Neural tube defects (NTDs) are the most prevalent serious human birth anomalies of the

brain and spine that occur during embryogenesis (by the end of the 6th week of pregnancy).

NTDs originate owing to the failure of the neurulation process, which represents the failure

of the harmonized morphogenetic process involved in neural tube closure (1, 2). NTDs affect

ten infants per 1,000 established pregnancies but this figure varies among different

populations (3). The highest prevalence of NTDs has been reported in the Chinese

population while the lowest prevalence is in Scandinavian countries (4–7). In India, the

incidence of NTDs, especially in the northern part of the country, is approximately 7.8

per 1,000 births (8). NTDs are categorized into two kinds: open and closed NTDs. Open

and closed NTDs have affected areas that are either exposed to the body surface or

covered with skin, respectively. Anencephaly and spina bifida are the two most prevalent

types of open NTDs that arise due to the failure of closure of neural tubes at cranial and

spinal regions, respectively (Figure 1). Closed NTDs are classified based on the presence

(lipomyelomeningocele, lipomyeloschisis, myelocystocele, and meningocele) or absence

(caudal regression, dermal sinus, segmental, and spinal dysgenesis) of a subcutaneous

mass (1). Studies based on population and family suggested an intricate etiology for
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FIGURE 1

Diagrammatic representation of closure of the neural tube and the origin point for open neural tube defects.

TABLE 1 Factors linked with developmental risk of neural tube defects.

Factors Affected Genes Effects
1. Non-genetic factors

Nutritional Factors Decreased expression of
Cdx2,Gata4, Nes and
Pax6

Neural tube defects

Hyperthermia Aberrant expression of
Cx43 mRNA

Neural tube defects

Pesticides Enhanced the risk of NTDs

Arsenic (As) Induce the perturbation
in DNA Methylation

Neural tube defects

Polyaromatic aromatic Enhanced the risk of NTDs

Rai et al. 10.3389/fped.2023.1126209
NTDs that involves both genetic and environmental factors (9–13).

Genetic mechanisms underlying NTDs are extremely complicated

and follow multi-factorial inheritance that is regulated by the

interaction of many genes and environmental factors (14).

Harmonized gene programs are characteristic features of

embryonic development, which is essential for normal neural

tube formation. Alteration in harmonized gene programs

involved in different signaling pathways (BMP, Wnt, Shh, FGF,

TGFβ, etc.) culminates in NTDs (15–19). Recently, accumulating

studies performed on genetic models and patients with NTDs

revealed that the deregulation of multiple genes associated with

signaling pathways, such as WNT, BMP, SHH, and retinoic acid

(RA) signaling, culminates in NTDs (20–25). Hence, here we

review what is known to date regarding altered genes associated

with specific signaling pathways resulting in NTDs, as well as

highlight the role of various genetic and non-genetic factors, and

their interaction that contribute to NTDs. Additionally, we also

shine a light on the role of folate and cell adhesion molecules

(CAMs) in neural tube defects.
hydrocarbon (PAH)

Antibiotics Anencephaly –Antibiotics
Spina Bifida -NSAIDs, Opiods
and anti-epilectics

2. Genetic Factors Aberrant expression of
Lrp6 and Pax3

Neural tube defects

Mutation in TRIM36 Anencephaly

Mutation in BRCA1 Neural tube defects

Mutation in CFL1 Neural tube defects

Mutation in CITED2 Neural tube defects

Mutation in PDGFRA Neural tube defects

Mutation in PRKCA & B Neural tube defects

Mutation in TXN2 Neural tube defects

Mutation in TP53 Neural tube defects

Mutation in ZIC1/2/3 Neural tube defects
Etiology—neural tube defects

The formation of the neural tube is a multistep, zipper-like, and

discontinuous process regulated by multiple genes and is affected

by environmental factors of the host. It involves gene-nutrients,

gene-environment, and gene-gene interactions. Animal and

clinical studies in the last five decades have recognized the

etiology of neural tube defects, which comprise genetic,

epigenetic, environmental, and nutritional factors (Table 1)

(26–28). It is well-reported that genetic factors are responsible

for 70% of the variance of neural tube defects (29).
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(i) Non-genetic factors: Non-genetic factors indirectly affect the

process of neural tube formation by modulating the gene

functions that are discussed as follows:

a) Nutritional factors: The majority of congenital birth

deformities occur especially in families with lower

socioeconomic statuses, which leads to the evaluation of

the involvement of nutritional factors in neural tube
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defects. It is well-reported that maternal nutrition plays a

crucial role during the normal growth and development of

the fetus. It can also affect the capacity of fertilization and

the quality of gametes. An abundance of studies showed

that polymorphism in folate metabolizing genes (MTRR

and MTHFR) is associated with increased chances of non-

disjunction (30–32). A low level of B-vitamin folate was

noticed in fetuses with neural tube defects (33), inducing a

clinical trial of folic acid supplementation to reduce the

population burden of neural tube defects. A multi-centric

randomized controlled trial showed that supplementation

of folic acid mitigates (4mg/day) the occurrence of neural

tube defects (34). Several other clinical trials confirmed the

reduction of neural tube defects after the uptake of folic

acid (35–37). Numerous previous studies suggested that

the supplementation of folic acid reduced the occurrence

of neural tube defects by 50%–70% (37, 38). Sub-optimal

levels of folate may trigger neural tube defects in

individuals who carry genetic mutations in the pax3 gene

(39). Numerous experimental and clinical studies showed

that alteration in purine and thymidylate biosynthesis is

linked with the development of neural tube defects

(40–42). A study conducted on curly tail mice showed that

myo-inositol prevents cranial and spinal neural tube

defects (43). Clinical studies reported no recurrence of

neural tube defects in neonates with a combination of

inositol and folic acid (44, 45). Previous studies

demonstrated the relationship between Zn and neural tube

defects (46, 47). The status of folate may also affect the

gene expression associated with neurodevelopment as they

influence histone modification and DNA methylation (48).

Folate of maternal plasma affects the differential

methylation of DNA in the newborn, leading to alterations

of gene expression that eventually culminate in neural tube

defects (49). Clinical data demonstrated that GNAS

imprinting plays a crucial role in the regulation of folic

acid metabolism during embryogenesis and that alteration

in GNAS imprinting clusters leads to neural tube defects

(50). Folate deficiency promotes the monoubiquitination of

H2A histone, resulting in decreased expression of genes

(Gata4, Cdx2, Pax6, and Nes) associated with neural tube

closures in the embryonic stem cells of mice (51).

However, the exact mechanisms underlying folate-

deficiency-induced neural tube defects are still not known.

b) Hyperthermia: Elevated body temperature (>40°C) during

the pregnancy is nominated as maternal hyperthermia and

may happen because of fever, hot water baths, and the

usage of saunas and hot tubs, causing developmental

deformities (52, 53). In vivo and in vitro studies on

different animal models showed that the neural tube is

highly sensitive to elevated temperature (32).

Hyperthermia influences multiple developmental processes

such as cell differentiation, migration, apoptosis, and

proliferation (32, 54). The impacts of heat stress on

embryogenesis depend on the duration and dose of the

heat exposure, strain, species, and stage of embryonic
ntiers in Pediatrics 03
development (55, 56). Clinical case and animal studies

reported the teratogenic and mutagenic effects of

hyperthermia (56–60). Significant upregulation of

expression of Cx43 mRNA (connexin 43) was observed in

neural tubes, especially in heat-treated groups in contrast

to the control, indicating a relationship between

upregulated Cx43 mRNA and neural tube defects (53).

Exposure to the influenza virus during the first trimester

induces the risk of the development of neural tube defects

(58). Nine case report studies clearly showed a clear

relationship between maternal exposure to hyperthermia

and elevated risk of neural tube defects (57). A study

performed in California, United States, also observed

similar effects of febrile illness and maternal fever on

neural tube cases (61). A cohort study conducted on

23,491 women reported the association between maternal

exposure to hyperthermia through various sources (hot

water baths, hot tubs, fever, and sauna) and the risk of the

development of neural tube defects (62). A combination of

different sources of hyperthermia increased the risk of

neural tube defects (59). A comparative study conducted

on the population of the Texas-Mexico border showed

that maternal exposure to hyperthermia during the first

trimester enhanced the relative risk of development of

neural tube defects by 3.6% (63). However, recent studies

on pregnant women do not observe any fetal

abnormalities after COVID-19 vaccination (64–68).

c) Pesticides: The population explosion increased the demand

for the development of novel approaches to enhancing

agricultural production to fulfill the increased demand,

and these new methods were highly dependent on the

utilization of pesticides. Continued and injudicious use of

pesticides increased its residues in fruits, vegetables, cattle

milk, cattle meat, food, and water, enhancing the risk of

exposure to pregnant women. Several studies demonstrated

the negative medical side effects caused by an enhanced

and indiscriminate use of pesticides (69, 70). Several lines

of evidence reported that pesticides contribute to

significant developmental and reproductive disorders with

carcinogenic and teratogenic capabilities (69, 71, 72).

Several previous experimental and case reports indicated a

connection between congenital disorders and pesticide

exposure (69–71, 73, 74). A study performed in

Washington, USA, showed the increased risk of

development of neural tube defects post pesticide exposure

(75). A case-control study demonstrated that pesticide

exposure induced the developmental risk of neural tube

defects (76). Another study performed on a case group

found that there were 2 times greater chances of neural

tube defects affecting pregnancies in individuals who were

living 0.25 miles from agricultural fields or using pesticides

at home (70). A population-based case-control study

showed a marginal or zero developmental risk of neural

tube defects post-pesticide exposure (63). Another study

proved that other confounding factors (folate deficiency

and low level of vitamin B12) may increase the
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developmental risk of neural tube defects on pesticide

exposure. A systematic review showed that, due to the

heavy usage of pesticides, the occurrence of neural tube

defects in neonates is more prominent in developing

countries such as those in the African continent (72). A

case report study based on a questionnaire as directed by

the WHO found an increased incidence of neural tube

defects post-maternal exposure to pesticides (71). A study

conducted on agriculture workers observed a higher

incidence of congenital deformities in neonates (77).

d) Arsenic (As): Globally, the level of arsenic has increased due

to metalworking industries, the combustion of coal, and the

production of pesticides, resulting in contamination of

inorganic arsenic in air, water, and soil. Approximately

95% of Arsenic absorption among Europeans is due to the

consumption of arsenic-contaminated foods (48). Several

lines of evidence reported the teratogenic and toxic

properties of arsenic and found that it is an utmost risk

for the development of neural tube defects (78–80).

Numerous past studies reported that arsenic disrupts the

placental structures, resulting in the disruption of the

transport of nutrients and molecules (79–82). Animal and

human studies showed that Arsenic induces neural tube

defects because it triggers epigenetic alteration and gene

mutation (80, 81). A case-control study based on GWAS

recognized the 14 single nucleotide polymorphisms (SNP)

expressed in neural tube defects pregnancies post arsenic

toxicity (80). DNA methylation is a crucial process during

the developmental period and is influenced by arsenic

poisoning. Studies based on arsenic poisoning showed that

it inhibits DNA methylation by reducing the activity of

DNA methylase (1 and 3b) and S-adenosyl methionine

(SAM) (48, 83, 84). Folate interacts with arsenic resulting

in a reduction of arsenic in blood as well as an extensive

efflux of folate (79). A case-control study conducted in

Bangladesh showed that high efflux of folate owing to the

interaction with arsenic increases the risk of neural tube

defects (80). A case study that included 49 mothers and

their neonates showed a clear relationship between arsenic

levels in the environment and the placenta (82). The

research also reported increased levels of lipid peroxidase

and reduced glutathione in the blood and placenta,

leading to increased oxidative damage. The states of

Assam and Uttar Pradesh, in India, were dependent on

rice and consumption of groundwater and developed

arsenic belts between the regions, as is indicated by the

high incidence of neural tube defects in these regions (78).

e) Polyaromatic hydrocarbons (PAHs): PAHs are

environmental pollutants that arise through anthropogenic

activities particularly owing to the incomplete combustion

of wood, oil, coal, and petrol (85). PAHs have several

medical side effects including enhanced risk of neural tube

defects. A study conducted in the rural population of

Shanxi province, China found that women with coal

exposure (IAPCC) had a 60% enhanced risk of having

newborns with neural tube defects in contrast to women
ntiers in Pediatrics 04
without IAPCC exposure (86). Maternal occupational

exposure to PAHs was found to enhance the risk of

neonates with spina bifida amongst women with

underweight or normal weight (87). Higher concentration

of PAHs has been reported in the placenta in cases of

neural tube defects (88). A woman with an elevated

concentration in the serum was found to be associated

with a high risk of neural tube defects in neonates (89).

However, the molecular mechanisms underlying PAHs-

induced neural tube defects are not well known. On the

contrary, a recent study by Huang et al. (90), showed that

reduced global DNA hypo-methylation could be one of

the possible mechanisms underlying the increased risk of

neural tube defects induced by PAHs.

f) Antibiotics: Antibiotics are employed to treat bacterial

infections, such as acute cystitis and bacteriuria, experienced

by pregnant women. Past studies revealed that antibiotics

cause functional and physical deformities in the fetus or

human embryo (91, 92). A study found that antibiotics

prescribed for the management of urinary tract infections

(UTIs) were linked with neural tube defects in neonates

(93). Epidemiological reports observed that the

trimethoprim drug increased the risk of both childbirth

deformities and miscarriage (93–95). A population-based

case-control study noted the association between the use of

antibiotics during the first trimester and birth deformities in

neonates (91). One study discovered the association between

nitrofurantoin exposure during the first trimester and

enhanced risk of birth defects in neonates (96).

A population-based cohort study showed that gestational

exposure to nitrofurantoin is marginally linked with

developmental malformations (97). Antibiotics such as non-

steroid anti-inflammatory drugs (NSAID), paracetamol, and

opioids are prevalent drugs employed for the management

of pain. Concurrent usage of opioid drugs and NSAIDs for

the management of pain was found to be associated with a

higher incidence of spina bifida in contrast to singular

drug-mediated pain medication (98). Some of the studies

also found similar outcomes with the usage of opioid drugs

(99, 100). A study conducted in the USA reported the

connection between the usage of anti-epileptic drugs and

the incidence of cleft palate and spina bifida (101).

g) Trace Elements—Neural Tube Defects: Trace elements are

chemical compounds in organisms that are required in

minuscule amounts for physiological functions. Trace

elements are divided into two groups: Essential trace

elements (ETEs) and Non-essential trace elements. ETEs

include Zn, Mn, Co, Mo, Fe, and Se; these trace elements

play a key role in fetal and maternal health during

pregnancy (102–104). Studies showed that ETEs are

involved in cell function and differentiation, suggesting

that ETEs play a key role in multiple physiological and

cellular functions. Therefore, an alteration in the

homeostasis of ETEs during pregnancy may lead to birth

defects (105). Insufficient dietary intake of Fe is linked

with a higher risk of spina bifida (106). Higher
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concentrations of Mn in maternal blood during pregnancy

significantly increase the risk of NTDs (107). Studies have

demonstrated that low selenium levels in maternal plasma

and serum are associated with an enhanced risk of NTDs

(108, 109). Several lines of evidence have demonstrated

that lower concentrations of Zn in maternal serum and

scalp hair are linked with increased risk for NTDs in

offspring (110–112). However, some studies found that a

higher concentration of Zn in maternal hair during the

peri-conceptional period and nails during the third

trimester is linked with elevated risk for NTDs (113, 114).

Previous studies also observed the association between the

level of Mo and Co and enhanced risk of NTDs in

offspring (115, 116). Alkaline earth metals such as Ba, Th,

and Cs also cause neural tube defects in children (117–

119). Maternal exposure to Ba during the embryonic

period leads to the development of NTDs in offspring

(117). A case-control study has demonstrated the

association between NTDs and Th levels (118). Another

study led by Pi et al. (119), observed the association

between Cs level and increased risk of NTDs (119).

(ii) Genetic factors: Neural tube defects are multi-factorial in

origin (2, 120). Epidemiological evidence on humans showed

that the genetic basis for neural tube defects is acquired from

the positive concordance of neural tube defects from

monozygotic twins in contrast to di-zygotic twins (121, 122).

In mice, more than 400 genes are involved in the closure of

the neural tube (123, 124), and approximately 191 NTD

candidate genes are found in NTD fetuses (125). Although

defects in neural tube closure occur more familiarly after one

neural tube defect-affected pregnancy (recurrence rate is 1 in

20), the recurrence rate of neural tube defects does not

exceed 10% even after two neural tube defect-affected

pregnancies. These recurrence risks strongly indicate the

involvement of multiple genes in neural tube defects. The risk

of recurrence and pattern of inheritance of neural tube

defects in the multiplex families do not follow the Mendelian

law of inheritance (126). Some studies showed that both

sex-influenced and maternal genetic factors contribute to the

developmental risk of neural tube defects (127, 128). The

estimated heritability rate in neural tube defects is

approximately 60%, especially when multiple susceptible

genes are involved (12). Animal models are very crucial in

understanding the role of candidate genes in the development

of neural tube defects because the process of neurulation is

very similar in humans and mice. Several gene ablations that

were responsible for neural tube defects in mice models

echoed the few cases of neural tube defects observed in

humans, such as Pax3 (paired box-3 protein) and Lrp6 (low-

density lipoprotein receptor-related protein-6) (129, 130).

Apart from animal models, next-generation sequencing

(NGS) shines a new light on underlying molecular insight of

genetic risk factors for neural tube defects that includes whole

exome sequencing (WES), target panel sequencing (TPS), and

whole genome sequencing (WGS). One research recognized

the homozygous missense genetic ablation in the TRIM36
Frontiers in Pediatrics 05
gene by using WGS, which is responsible for autosomal

recessive anencephaly, particularly in Indian families (131).

Another study identified the de novo damaging variants of

anencephaly through WES (132). Ishida et al. (133),

identified the 397 damaging variants of anencephaly cases

through TPS, in which 21 variants out of the 397 had not

been previously reported. A recent study used WGS to reveal

the genetic mutation in non-coding regions that contributes

to neural tube defects (134). Several studies have

demonstrated the association between mutations in epigenetic

regulators and enhanced risk of NTDs (28, 120, 135).

(iii) Epigenetic Factors: An epigenetic mechanism of gene

regulation makes stable phenotypic changes without any

change in the nucleotide sequence of DNA. Epigenetic

regulators play a pivotal role in global gene regulation.

Several studies have demonstrated the association between

mutations in epigenetic regulators and enhanced risk of

NTDs (28, 120, 135). Alterations in DNA methylation,

chromatin remodeling, and histone modification may lead to

an increased risk of NTDs (28, 136). It has been shown that

DNA methylase 3A (DNMT3A) and DNMT3B are

responsible for demethylating and remethylating the majority

of the embryonic genome except for the imprinting region,

while DNMT1 maintains the methylation pattern (137).

Mice deficient in DNMT3A and DNMT3B had an increased

risk of NTDs, indicating that appropriate remethylation is

essential prior to implantation (138). Extensive studies have

demonstrated the association of folate one-carbon

metabolism with an elevated risk of NTDs owing to

diminished methylation (139, 140). A study conducted on

splotch embryos showed that enhanced methylation of

H3K27 in neural crest cells leads to an increased risk of

NTDs (141). Knockout mice of p300 (histone

acetyltransferase enzyme) exhibited cranial NTDs, suggesting

that it is essential for the closure of the neural tube (142).

Studies have found that mutations in Gcn5 and Cited2

disrupt HAT activity and elevate the risk of NTDs (143,

144). Pharmacological inhibitors such as valproic acid and

trichostatin-A demolish the regulation of acetylation that

causes NTDs (145, 146). Mutations in histone deacetylase

(hdac4 and sirt1) cause cranial NTDs (147, 148). Mutations

in several chromatin remodeling enzymes are associated with

NTDs (121, 149). Several studies showed that mutation in

SMARCC1, CERCR2, BRD2, and SMARCA4 is linked with

an enhanced risk of NTDs (150–153).

Signaling pathways—neural tube
defects

Neurulation occurs in two phases in mice and humans (primary

and secondary) from embryonic day 8.5 to 10.5 (day 22–23 and 26–

30 of gestation in humans) (154). The neural tube is an embryonic

precursor that develops later into the spinal cord and brain through

fine-tuned coordination of multiple signaling pathways, including

planar cell polarity (PCP) signaling, sonic hedgehog (Shh)
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signaling, bone morphogenetic protein (BMP) signaling, inositol

metabolism, retinoid signaling, canonical Wnt signaling, fibroblast

growth factor (FGF) signaling, tumor growth factor (TGF-β)

signaling, Notch signaling, receptor tyrosine kinase-like orphan

receptor (ROR) signaling, and folate-methionine metabolic

signaling pathway, during the time window that is required for

closure of the neural tube (155). Genes associated with these

signaling pathways are involved in epigenetic modifications

(acetylation and methylation), organization of chromatin,

regulation of the cell cycle, and actin cytoskeleton (156). The

perturbation in genes and cross-talk between signaling pathways

leads to the pathogenesis of neural tube defects (120) (Table 2),

which are discussed as follows:

(i) Planar cell polarity (PCP) signaling pathway: PCP signaling is

required for the closure of the boundary between the cervical

and hindbrain; hence, it is nominated as a planar signaling

pathway owing to its involvement in the coordinated

polarized orientation of cells. Planar cell polarity was

originally described in a Drosophila model as a signaling

cascade that mediates its action without the requirement of β-

catenin; so-called as a non-canonical Wnt signaling pathway

and required for specification of plane polarity in epithelia,

including compound eye and wing (156). PCP signaling

pathway is highly conserved in vertebrates and involved in

various developmental processes such as cellular and tissue

polarity during morphogenesis and harmonized orientation of

hair cells of the inner ear (156–159). Positioning cloning of
TABLE 2 Genes of signaling pathways linked with developmental risk of
neural tube defects

Signalling Pathways Affected Genes Outcomes
1. Planar cell polarity (PCP) Fzd-3& 6, Dvl-2 & 3 Craniorachischisis

Srb1 & Ptk7 Neural tube defects

Sec42b with Vangl2 Spina bifida

Fuz or Intu Exencephaly

Vangl2 with Cthrc1 Exencephaly

Ptk7 with Grh13 Spina bifida

Celsr1 and Scrb1 Neural tube defects

2. Canonical Wnt Β-Catenin with Pax3 Spinal NTDs

Ptk7 and Lrp6 Neural tube defects

3. Sonic hedgehog (Shh) Ptc1 Neural tube defects

Smo and Shh Neural tube defects

Fkbp8 Spina bifida

Ptch1, Rab23 and
Tulp3

Spina bifida and
Craniorachischisis

4. Bone morphogenic
protein (BMP)

BMP4 with NOG Neural tube defects

Noggin Exencephaly and Spina bifida

BMP2 Neural tube defects

Bmpr1A & Bmpr1B Holoprosencephaly

Zic2 Spina bifida

5. Retinoid Raldh2 and Cyp26a1 Neural tube defects

Retinoic receptor α
and λ

Neural tube defects

6. Notch Hes1, Hes3 and
RBP-jk

Neural tube defects

N1 (Notch) Neural tube defects

CSL Neural tube defects

Notch3 Exencephaly
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Vangl2 in loop-tailed mutant mice that exhibited severe forms

of neural tube defects (craniorachischisis) was the first

evidence that shed a light on the role of PCP signaling

pathway in the pathogenesis of neural tube defects (160, 161).

Experimental studies showed that a double mutant of Fzd

(Frizzled)-3 and -6 Dvl (disheveled)-1 and -2 protein

contributes to the pathogenesis of craniorachischisis (162,

163). Several lines of experimental studies linked the other

PCP-related genes (Srb1 and Ptk7) with the development of

severe neural tube defects (161, 164). Genetic ablation in

Sec24b contributes to the pathogenesis of neural tube defects

(165). They also reported that the mutant form of Sec24b

significantly enhances the prevalence of spina bifida by

interacting with the LoF (loss of function) Vangl2 allele.

Mutational studies showed that mutation of Sec24b, Ptk7, or

Sdc4 contributes to craniorachischisis in combination with a

heterozygous allele of Vangl2Lp/+ (161, 164, 166).

Combination of Vangl2Lp/+ with genes (Fzd2+/−, Fzd1+/−, and

Dvl3+/−) of the Wnt signaling pathway contributes to the risk

of exencephaly (167, 168). Some other studies showed that

PCP effector genes (Fuz or Intu) are also responsible for

exencephaly (169–171). A mutational study on mice showed

that genetic ablation in Smurf1/2 leads to PCP-related neural

defects (172). The digenic combination of double knockout

Vangl2 with Cthrc1 or cordonbleuC101 contributes to

exencephaly (173, 174). Experimental mutational studies on

mice demonstrated that Ptk7 (PCP genes) with Grh13 (non-

PCP genes) develops spina bifida (164, 175) while with Cthrc1

develops exencephaly (175). A mutational study performed on

mice models demonstrated the role of Celsr1in the

pathogenesis of neural tube defects (176). A genetic study

performed on a circle-tail mouse found that dysfunction of

the Scrb1 (Scribb) gene contributes to neural tube defects

(177). The candidate genes identified in the animal model

provide the rationale for the recognition of orthologous genes

involved in human neural tube defects. The Orthologue of

Vangl2 was the first human gene of PCP signaling implicated

in neural tube defects. A study conducted with Italian patients

analyzed the role of Vangl2 and its paralogue Vangl (178) and

reported on the three variants of Vangl: p.Val239Ile and

p.Arg274Gln were involved in familial neural tube defects

while p.Met328Thr was involved in sporadic cases of the

disease. The p.Val239Ile mutation inhibited the interaction

between Dvl proteins and Vangl1. Several clinical studies

demonstrated the role of the Vangl1 gene in human neural

tube defects (16, 179–183). Embryo with double heterozygous

mutation of Vangl2Lp and Ptk7XST87 exhibited the

development of spina bifida (184). Genetic studies also

implicated the role of various genes (CELSR1–3, PRICKLE1,

FZD6, LRP6, and SCRIB) in human neural tube defects (185–

190). A missense mutation in ANKRD6 alters the reciprocal

antagonism mechanisms between both Wnt signaling

pathways involved in neurulation, resulting in NTDs (187).

LRP6 is another candidate gene that encodes DIVESIN and

functions as an antagonist on both Wnt signaling pathways

(188). Genetic ablation of LRP6 leads to spina bifida (129). In
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another study, mutations in WDR34 impaired the PCP

signaling pathway, increasing the risk of NTDs (191).

(ii) Canonical Wnt signaling pathway: Wnt/β-catenin signaling

pathway is involved in anterior-posterior patterning during

embryonic development and any perturbation in this process

culminates in neural defects. Wnt signaling is also involved in

the activation of the PCP signaling pathway through

stimulation of Rho-dependent kinase (192). Altered

expression of the Wnt signaling pathway leads to impairment

in anterior-posterior patterning, resulting in NTDs (193).

Genetic alteration in β-catenin with Pax3 contributes to

spinal neural tube defects (194). Recently, one study

conducted on a mouse model suggested that abnormal

expression of Gcm1protein linked with the Wnt signaling

pathway leads to neural tube defects (192). Habert et al. (195)

observed the burden of deleterious SNPs associated with

canonical Wnt signaling genes in patients with

myelomeningocele. Several experimental studies reported the

molecular switches, such as Ptk7 and Lrp6, that regulated the

involvement of the Wnt signaling pathway (canonical and

non-canonical) in the closure of neural tube defects (21, 196,

197). Some studies showed that Ptk7 mutation abrogates the

targets of the canonical Wnt signaling pathway, resulting in

failure of neural tube closure (198, 199). Another study

conducted on animal models showed that Ptk7 and Lrp6 alter

the activity of the canonical signaling pathway, resulting in

neural tube defects (199). Exome sequencing analysis showed

that mutations in ten Wnt genes are prominent among

Mexican-American patients with myelomeningocele (21).

(iii) Sonic hedgehog (Shh) signaling pathway: Shh signaling

pathway plays a crucial role in patterning, growth, and

morphogenesis during embryonic development. It regulates

the patterning of the ventral neural tube and its extension

into the brain regions (200). Several lines of studies showed

that genetic ablation in Ptc1 (patched) contributes to the

failure of neural tube closure (201, 202). Negative mutation

in Shh signaling inhibitory genes gives rise to neural tube

defects (201–203). Some of the studies suggested that the

overexpression of Smo and Shh proteins of Shh signaling

may lead to the failure of neural tube closure (201, 202).

Studies based on a knockout mouse model showed that

Fkbp8 (FK506 binding protein-8) mutation leads to the

development of spina bifida (204, 205). Mutation in many

other genes of the Shh signaling pathway contributes to

exencephaly (206–218). Some studies also implicated the

mutation in the genes (Ptch1, Rab23, and Tulp3) of the

Shh signaling pathway in the development of spina bifida

and CRN (209–212, 217, 218). Another study showed that

mutation in protein required for the function of cilia leads

to impaired Shh signaling pathway, culminating with neural

tube defects (17). Accumulating evidence on humans also

showed that genetic ablation in the Shh signaling gene

leads to the development of neural tube defects (219–221).

Genetic ablation of the WDR34 gene impaired the Shh

signaling pathway resulting in exencephaly (191).
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(iv) BMP (bone morphogenetic protein) signaling pathway:

BMPs are members of the TGF-β superfamily that acts as a

morphogen, involved in the development, patterning, and

function of the nervous system. It is needed for the

development of dorsal neural tubes, especially for stimulation

of dorsal neurons and neural crest cells (NCC) prior to

neurulation. Animal and human studies showed that

knockout mice with BMP4 and NOG (noggin) lead to neural

tube defects (15, 19, 222–225). Evaluation of BMP4 and NOG

showed that the genetic alteration in both genes resulted in

neural tube defects in humans (222). Evidence from the

knockout mouse model showed that mutation in Noggin

culminates in exencephaly and spina bifida (15). Studies on

genetic mouse models observed that BMP2 mutation

culminates in premature as well as exaggerated bending of

caudal neuropore and various cranial deformities (225, 226).

Genetic studies performed on mouse models showed that

double knockout of Bmpr1A and Bmpr1B leads to the

development of holoprosencephaly (227–229). Genetic

analysis based on the double mutant of Bmpr1A and Bmpr1B

showed the existence of two kinds of holoprosencephaly (227).

Embryo with Zic2 mutation leads to the development of spina

bifida owing to the absence of DLHP required for closure of

the neural tube in the lower region spinal cord (226).

(v) Retinoid signaling pathway: Retinoic acid, a derivative of

vitamin-A, is crucial for the patterning of the spinal cord and

hindbrain (229). An imbalance in the level of vitamin-A and

retinoic acid has been implicated in birth defects including

neural tube defects (230–232). Negative mutation in Raldh2

(key enzymes involved in retinoic acid synthesis), Cyp26a1

(key metabolizing enzyme), and retinoic receptors α and γ

contributes to neural tube defects (233–235). A case-control

study identified the association of variants of Raldh1A2,

Cyp26A1, and CRABP1retinoic genes and neural tube defects

in humans (230). Experimental studies on mouse models

have shown that overexpression of retinoic acid leads to

neural tube defects (236, 237). A recent study found that

treatment of neural crest cells (NSCs) with all-trans-retinoic

acid culminates in neural tube deformities (238).

(vi) Notch signaling pathway: The notch signaling pathway

regulates the proliferation and differentiation of NSCs

(neural crest cells) during embryonic development. These

NSCs are required for the normal closure of the neural tube

(2) and dysregulation of proliferation, migration, and

differentiation of NSCs leads to brain anomalies (239, 240).

Previous Studies observed that mutation in the genes Hes1,

Hes3, and RBP-Jκ of the Notch signaling pathway

contributes to neural tube anomalies (121, 149). A recent

study observed that abnormal expression of N1 (Notch1)

enforces the occurrence of neural tube deformities (238). A

study conducted on embryonic stem cells showed that the

double mutant embryo of CSL (CBF-1/Suppressor of

hairless/Lag-1) displays the phenotypes of neural tube

defects (241). Overexpression of Notch3 in the nervous

system of mice has been implicated in exencephaly (242).
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Folate–neural tube defects

Folate is a water-soluble vitamin B that plays a crucial role in

nucleotide synthesis and methylation pathway required for

cellular proliferation and differentiation during embryonic

development (Table 3) (19, 27). Several lines of evidence

showed that genetic ablation in FOLR1, which encodes the

protein required for folate transport, culminates in neural tube

defects (243–245). However, mutations in FOLR2 and RFC

(trans-membrane receptor) did not cause any congenital

abnormalities (244, 246). A study led by Barber et al. (247),

showed that the development of neural tubes will be delayed if

an ample amount of nucleotide is not available in

neuroepithelial cells, indicating the crucial role of folate during

embryonic development. Experimental research conducted by

Flemming et al. (248), on splotch mouse models supports this

hypothesis. The authors concluded that mutation in the Pax3

gene leads to neural tube defects due to a deficiency of dTMP

synthesis. Many studies on the splotch mouse model showed

that supplementation with folic acid (FA) or thymidine

ameliorates neural abnormalities (41, 248). Embryos with a null

mutation in the SHMT1gene display an exencephaly similar to

the one caused by maternal folate dietary deficiency (249, 250).

Impairment in de novo synthesis of purine has been reported in

homozygous knockout mice for the MTHFD1gene resulting in

neural tube defects (40). However, this observation has not

been reported in heterozygous mice for the MTHFD1 gene. A

mouse model with a null mutation in the Cited2 gene exhibited

exencephaly while this effect was reverted by FA

supplementation (251). Previous reports have demonstrated that

the proper functioning of methylation cycles is required for the

normal closure of neural tubes (252, 253). A delay in the

normal closure of neural tubes has been observed in chick

embryos when the methylation cycle is inhibited by using

inhibitors (254). Studies performed on mice showed that the
TABLE 3 Genes of folate-mediated pathway and cell adhesion molecules
(CAM) linked with developmental risk of neural tube defects.

Affected Genes Effects
1. Folate FOLR1 (Folate

transport)
Neural tube defects

Pax3 gene (dTMP
synthesis)

Neural tube defects

SHMT1 Exencephaly

MTHFD1 Neural tube defects

Cited2 Exencephaly

Axd and Amt Unresponsiveness to
supplementation of FA

2. Cell adhesion
molecules (CAM)

NCAM1 Neural tube defects

Fat1 Exencephaly

Integrin-α3/α6 and
Perlecan

Neural tube defects

Laminin-α5 Neural tube defects

EphrinA5 (EphA5) or
EphA7

Neural tube defects

EphrinB1 Exencephaly
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Axd and Amt mutation contributes to the unresponsiveness to

FA supplementation (255, 257). Several lines of experimental

studies found that the perturbation in the methylation process

owing to folate deficiency leads to a reduction in the normal

closure of neural tubes (254, 257, 258). Exposure of an embryo

to cycloleucine, an inhibitor of methylation, or Adox (oxidized

adenosine), an inhibitor of S-adenosylhomocysteine hydrolase,

leads to a delay in the neurulation process (257, 258). Previous

reports showed that culturing the mouse embryo with a low

concentration of methionine displays the phenotype of neural

tube defects (259, 260). A study performed by Bjorklund et al.

(261), hypothesized that the post-translation modification of

cytoskeleton proteins might be involved in the abnormal

closure of neural tubes. One of the studies showed that

abnormal modification of actin protein leads to neural tube

defects (259).
CAM (cell adhesion molecules)—neural
tube defects

CAMs are groups of proteins found at the surface of a cell

and are involved in the adhesion of the cell to cell or

extracellular matrix; thus acting as a so-called molecular glue.

They play a critical role in contact inhibition, cellular growth,

and programmed cell death in fully developed animals (262).

Apart from this, they also play an essential role in

neurulation, cell-cell interaction, axon guidance, and cell

migration during neural development (263). Experimental

studies on humans and animals showed that mutation in

genes associated with CAMs leads to neural tube defects

(Table 3) (264–267). A study led by Deak et al. (265)

observed the association between SNPs in the NCAM1

(neural-CAM-1) and neural tube defects. Fat1 is a cadherin

molecule that is involved in the organization of the

cytoskeleton at cell boundaries especially actin polymerization

(267). Mutation in the gene of Fat1displays exencephaly,

while Fat2 mutation did not cause exencephaly, however, a

null mutation in both Fat1 and Fat2 enhanced the frequency

of exencephaly in contrast to Fat1 alone (268). Existing

literature showed that the mutation in integrins-α3/α6,

perlecan, and laminin-α5 genes gives rise to neural tube

defects (269–271). A lack of the ephrinA5 or EphA7 gene in

mice led to neural tube defects (272–274). Another study

reported that the null mutation in EphrinB1 displayed a

higher incidence of exencephaly in heterozygous females in

contrast to heterozygous males (275).
Conclusion

Neural tube defects are serious birth defects of the nervous

system that occur because of an abnormal closure of the neural

tube during embryonic development. Several lines of studies

explored the mutated genes responsible for neural tube defects in

humans and animals. However, the exact molecular mechanisms
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underlying neural tube defects are still not known. Advances in

whole genome and exome sequencing in the near future may

pierce our knowledge of the interactions between teratogens and

their effects on the normal closure of neural tubes, leading to the

understanding of the molecular mechanisms underlying neural

tube defects.
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