Bronchopulmonary Dysplasia (BPD) is a chronic condition that affects preterm infants and is associated with long-term complications. Haemodynamic effects of BPD can lead to right ventricular (RV) dysfunction.
To synthesise and map the evidence of echo parameters used in identifying RV dysfunction in the first two weeks-after-birth (WAB) of preterm infants with early BPD.
This scoping review included the databases: Medline, CINAHL, PubMed, EMBASE, Scopus, ProQuest, Web of Science, Cochrane Library, JBI Evidence-Based Practise and Gray Literature.
The search utilised Boolean operators and descriptors registered in Medical Subject Headings.
Included were studies utilising echo parameters to examine RV function in preterm infants with early BPD in the first two WAB.
The results are presented as a map of the extracted findings in a tabular format with a narrative summary.
Eight studies were included. Differences were observed in the number and timing of echo scans performed in the first two WAB and the variations in the echo parameters used to compare preterm infants with and without early BPD. Only echo scans performed at the end of the first WAB, demonstrated significant differences in the echo parameters measurements between preterm infants with and without BPD. Studies using RV Myocardial Performance Index (MPI) to identify RV-dysfunction associated with early BPD demonstrated similar findings. The Pulsed-Wave Doppler technique identified differences in RV-MPI between preterm infants with and without BPD, while Tissue-Doppler-Imaging did not demonstrate similar results. Speckle tracking can measure strain (S) and strain rate (SR) and diagnose RV-dysfunction. However, the findings of studies that utilised speckle tracking varied. Finally, two of the included studies added blood tests to their diagnostic model of early BPD, which was able to demonstrate significant differences in blood test results between BPD-affected and control preterm infants.
BPD could adversely affect the myocardium function of the RV; these negative influences can be captured in the first two WAB. However, there are still knowledge gaps regarding the appropriate number, timing and the most suitable echo parameters to assess RV function.