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Machine learning clinical decision
support systems for surveillance: a
case study on pertussis and RSV in
children
Kimberly A. Mc Cord—De Iaco, Francesco Gesualdo*,
Elisabetta Pandolfi, Ileana Croci and Alberto Eugenio Tozzi

Predictive and Preventive Medicine Research Unit, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy

We tested the performance of a machine learning (ML) algorithm based on signs
and symptoms for the diagnosis of RSV infection or pertussis in the first year of
age to support clinical decisions and provide timely data for public health
surveillance. We used data from a retrospective case series of children in the
first year of life investigated for acute respiratory infections in the emergency
room from 2015 to 2020. We collected data from PCR laboratory tests for
confirming pertussis or RSV infection, clinical symptoms, and routine blood
testing results, which were used for the algorithm development. We used a
LightGBM model to develop 2 sets of models for predicting pertussis and RSV
infection: for each type of infection, we developed one model trained with the
combination of clinical symptoms and results from routine blood test (white
blood cell count, lymphocyte fraction and C-reactive protein), and one with
symptoms only. All analyses were performed using Python 3.7.4 with Shapley
values (Shap values) visualization package for predictor visualization. The
performance of the models was assessed through confusion matrices. The
models were developed on a dataset of 599 children. The recall for the
pertussis model combining symptoms and routine laboratory tests was 0.72, and
0.74 with clinical symptoms only. For RSV infection, recall was 0.68 with clinical
symptoms and laboratory tests and 0.71 with clinical symptoms only. The F1
score for the pertussis model was 0.72 in both models, and, for RSV infection, it
was 0.69 and 0.75. ML models can support the diagnosis and surveillance of
infectious diseases such as pertussis or RSV infection in children based on
common symptoms and laboratory tests. ML-based clinical decision support
systems may be developed in the future in large networks to create accurate
tools for clinical support and public health surveillance.
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Introduction

Public health strategies for controlling and preventing infectious diseases are based on

surveillance to continuously collect, analyze, and interpret data from the healthcare

system (1). As surveillance systems should ideally collect data from different settings, case

definitions are used to standardize the detection and monitoring of events to allow for

trend interpretation (2). Specificity of case definitions depends on the combination of

clinical symptoms and on the use of laboratory tests for confirmation (3). Clinical case

definitions are valuable at the point of hospital care for rapid triage, for determining the
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need of laboratory tests, and for deciding the most appropriate

management and treatment (2). Syndromic surveillance has been

developed in response to emerging threats to timely recognize

unexpected patterns of symptoms (4), and has been extensively

tested for influenza (5). However, there is much less effort on

extending syndromic surveillance to other diseases and to

settings where a timely management of cases is needed and

where laboratory facilities are not immediately available.

Pertussis is an endemic and highly transmissible disease

occurring worldwide (6). Although efficacious vaccines are

routinely used for controlling the disease and high immunization

coverage rates have been achieved over time, B. pertussis has

continued to circulate, possibly due to waning immunity after

immunization and natural infection (6). Respiratory Syncytial

Virus (RSV) is extremely common: it is estimated that almost

every child experiences an infection by RSV by the age of 2

(7, 8). The epidemiology of pertussis and RSV infection is

traditionally seasonal, with peaks of pertussis in spring-summer

and peaks of RSV infections during autumn-winter (9, 10).

Despite their distinct etiology, pertussis and RSV infections in

infants may be a diagnostic challenge for clinicians due to

similar clinical features (11, 12). The increased availability of

laboratory tests for confirming the etiology of these infections

has been helpful to counteract the low specificity of respiratory

symptoms.

The epidemiology of acute respiratory infections, including

pertussis and RSV infection (12, 13), has been disrupted by the

SARS-CoV-2 pandemic. Social distancing policies, face mask

wearing and possibly some ecological pressure exerted by SARS-

CoV2 have contributed to a decrease in the circulation of other

respiratory pathogens (14). After the easing of containment

policies, respiratory infections other than COVID-19 were

expected to re-emerge (12).

Artificial intelligence (AI) has been indicated as a powerful tool

for improving the timeliness and accuracy in surveillance systems

gathering information from heterogeneous sources (15). There is

also the need to move towards pre-syndromic surveillance, to

identify space-time clusters of novel syndromic entities not yet

recognised by traditional systems, which may be detected with

the support of AI-based techniques (16, 17). In essence, AI

algorithms developed for syndromic surveillance on large datasets

may be more accurate and flexible than traditional case definitions.

Clinical decision support systems (CDSS) based on AI models

provide physicians with patient-specific assessments or

recommendations towards a decision tailored on the specific

characteristics of each patient and based on current evidence

(18). In a post-COVID scenario, developing such systems to

provide diagnosis support for acute respiratory diseases before

laboratory confirmation may have important public health and

clinical implications.

As clinical case definitions for some respiratory infections

currently have a low specificity, we focused on the hypothesis

that AI algorithms may be trained to recognize specific infections

to support clinical decisions and public health surveillance. For

these reasons, we tested the performance of a ML algorithm for

the diagnosis of RSV infection or pertussis in the first year of age
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at the emergency department, and developed models suitable for

different settings.
Methods

Population and settings

Italy has a universal, free of charge healthcare system, which

includes primary pediatric care for all children. Family

pediatricians are available for pediatric visits during office hours.

Clinical requests outside office hours or holidays and urgent

clinical problems are usually referred to Emergency Rooms,

where services are offered continuously (19).

The population included in this study consisted of patients

enrolled in previous surveillance studies coordinated by the

Bambino Gesù Children’s Hospital, a pediatric research

hospital located in Rome, Italy (20). In previous surveillance

activities, we enrolled children less than 1 year of age

presenting to the emergency department with respiratory

symptoms between August 2015 and June 2020 and, after

obtaining a signed informed consent, a research nurse

collected, through a standardized questionnaire, demographic

information and respiratory signs and symptoms. For each

patient, we also recorded, through patients’ hospital records,

full white blood cell count, lymphocyte fraction and the result

of a multiplex PCR test on nasopharyngeal aspirates for

respiratory pathogens, including B. pertussis and RSV. We did

not include asymptomatic patients or those with other

symptoms. Fever was defined as follows: single > 37.8°C oral/

tympanic membrane (21). To evaluate hypoxia, we considered

the arterial oxygen saturation (SaO2) [which refers to the

amount of oxygen bound to hemoglobin in arterial blood]. The

measurement is given as a percentage. Resting SaO2 less than

or equal to 95% was considered abnormal. “Cough” and

“paroxysmal cough” were treated as two independent variables.

This is consistent with the clinical observations in the clinic,

where these two symptoms may be observed independently.

Only one child had a paroxysmal cough but no “normal”

cough (i.e., most patients experiencing paroxysmal coughs also

report “normal” cough).
Laboratory confirmation

Nasopharyngeal aspirates were collected and processed using a

standardized protocol (22).

The presence of B. pertussis was investigated using a Bordetella

Real Time PCR kit targeting IS481 (Bordetella R-gene assay

Argene, Biomerieux, Marcy l’Etoile, France). For RSV

identification, we used a commercial multiplex RT-PCR kit

(AllplexTM Respiratory Full Panel Assay) for 16 respiratory viruses

including RSV A and B, influenza virus A and B, human

coronavirus OC43, 229E, NL-63 and HUK1, adenovirus, human

rhinovirus, parainfluenza virus 1–2–3–4, human metapneumovirus

and human bocavirus.
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Feature selection

The diagnostic outcome for pertussis and RSV infection data

was already labeled, and there was no missing data for this

variable. We defined a binary outcome (normal or high) for

three laboratory values based on standard pediatric cutoffs, as

follows. For C-reactive protein (CRP), any value greater than

1.0 ml/dl was considered high. White blood counts were

considered high if they were greater than 34.0 × 103/μl at 30 days

of age and 19.5 × 103/μl over 30 days of age (23). The

lymphocyte fraction was considered high if greater than 50% at

any age. Symptoms recorded for this study included Cough,

Cyanosis, Emesis, Petechiae, Paroxysmal cough, Fever,

Conjunctival petechiae, Stridor, Hypoxia, Dehydration,

Convulsions, Difficulty feeding and Pre-existing conditions,

which were also classified as binary variables.
Machine learning approach

We performed a retrospective binary classification to identify

patients diagnosed with pertussis (model 1) or RSV infection

(model 2) with a set of symptoms, either with (model 1–2 a) or

without (model 1–2 b) routine blood testing results (CRP, white

blood cell count, lymphocyte fraction). Rather than developing a

complex model to identify the possible respiratory pathogen, we

focused on developing simple models to discern between the 2

pathogens most likely to require additional interventions or early

treatment in clinical care. For pertussis, the aim was to identify

patients early in order to initiate antibiotic treatment as soon as

possible; whereas for RSV infection the aim was to identify

patients with this viral illness in order to exclude other

respiratory pathogens and orient proper management.

Since different clinical sites may have different needs and

resources, we developed 4 models so that we could 1) identify

patients presenting with pertussis a) using clinical symptoms and

routine blood testing, or b) simply using clinical symptoms; or 2)

to identify RSV infection a) using clinical symptoms and routine

blood testing, or b) simply using clinical symptoms.

To enable estimation of pertussis and RSV infection case

predictions with minimal clinical data, we conducted a

retrospective diagnostic classification analysis by training

gradient-boosting decision tree binary classifiers. We compared

several ML models (Logistic Regression, Gaussian Naive Bayes,

Random Forest and Light Gradient Boosting Machine—

LightGBM) before choosing LightGBM as the highest performing

at a moderate time cost as well as being able to ingest missing

values (which may be useful for point-of-care CDSS

implementation). All analyses were performed using Python 3.7.4

with Shapley values (Shap values) visualization package for

predictor visualization.

In order to reduce the complexity of the models as much

as possible, we included 14 binary clinical symptoms

(Cough, Cyanosis, Emesis, Petechiae, Paroxysmal cough, Fever,

Conjunctival petechiae, Stridor, Hypoxia, Dehydration,
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Convulsions, Difficulty feeding and Pre-existing conditions) and

four demographic binary features (gender male/female, age less

than/greater than 30 days, prematurity yes/no, duration of illness

greater than/less than 3 days) in the basic models (models b) and

included the most commonly performed testing for emergency

departments or clinics in the primary model (lymphocyte count

high/normal, white blood cell count high/normal, CRP high/

normal—models a).

While there was a significant class imbalance, we did not wish

to introduce bias and thus avoided resampling the data. Due to the

class imbalance and the nature of the application of the model, we

focused on the recall metric for model selection and

hyperparameter tuning (as to minimize false negatives).

Hyperparameter tuning of each LightGBM model was

performed using the verstack package (Optuna) and feature

importance graphs were obtained with the Shap package.
Results

Data and patient characteristics

The sample size was 599 children, but 14 observations were

dropped since children were positive to both B. pertussis and

RSV. Out of 585 final observations, 154 (26%) patients had a

positive PCR test for B. pertussis, 97 (17%) had a positive PCR

test for RSV, in 123 patients (21.0%) the RT-PCR was not able

to identify a pathogen among the 16 included in the diagnostic

panel, while the remaining patients with respiratory symptoms

had evidence of other viral infections. 313 (54%) patients were

males and 272 (46%) females, 514 (88%) were over a month of

age and 71 (12%) were less than 30 days old at diagnosis

(median age in days 63, IQR 42–108 days). The symptom

duration was less than or equal to 3 days in 272 children (46%)

and greater than 3 days in 313 (54%) children (median duration

in days 9, IQR 2–11). A total of 179 children (14%) were born

preterm (less than 37 weeks of gestation). White blood cell count

was normal in 508 (87%) children, whereas lymphocyte fraction

was elevated in 318 (54%). The frequency of symptoms was the

following: cough 85%, paroxysmal cough 56%, emesis 39%, fever

38%, cyanosis 34%, stridor 25%, hypoxia 11%,difficulty feeding

11%, petechiae 5%, conjunctival petechiae 5%, dehydration 2%

and convulsions 1%. Fifty-six children (10%) had pre-existing

conditions, mostly chronic diseases.
Model performance

The performance of our four ML models was fair (Table 1).

For pertussis (model 1) recall was 0.72 including laboratory

testing and 0.74 with clinical symptoms only. For RSV infection

(model 2), recall was 0.68 including laboratory testing and 0.71

with clinical symptoms only. The F1 score for the pertussis

model was 0.72 in both models a and b, and, for RSV infection,

it was 0.69 and 0.75 for models a and b, respectively. The area

under the receiver operating characteristic curve (AUC) was 0.69
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for model 1a, 0.71 for model 1b, 0.59 for model 2a, and 0.62 for

model 2b.

For pertussis model 1a, the principal driving feature was

elevated lymphocyte fraction, followed by stridor and cyanosis

(Figure 1); whereas for pertussis model 1b, the most important
TABLE 1 Model performance.

Pertussis (model 1) RSV (model 2)

Model A Model B Model A Model B
Recall 0.72 0.74 0.68 0.71

1 class 0.61 0.72 0.67 0.67

0 class 0.83 0.75 0.69 0.75

Precision 0.72 0.71 0.60 0.62

F1 0.72 0.72 0.59 0.63

AUC 0.69 0.71 0.59 0.62

Model A refers to the main model including basic laboratory data (hospital/clinic),

model B refers to the alternative model including only syndromic data (for

outpatient settings without availability of performing laboratory data).

FIGURE 1

Pertussis model A (with laboratory testing).

Frontiers in Pediatrics 04
features were stridor, cyanosis and absence of fever (Figure 2).

For RSV model 2a the most important features were cough,

stridor and hypoxia (Figure 3); and for RSV model 2b they were

hypoxia, emesis and stridor (Figure 4). Most of the feature’s

Shap values contributed fairly equally among the two classes.

Overall the model which performed the best was the pertussis

prediction without the inclusion of laboratory testing, and for both

illnesses the addition of these three features did not improve the

prediction in a substantial way. Generally, negative patients to

both infections had better prediction scores (hence it was easier

for the model to predict children who did not have pertussis or

RSV infection than those that were sick), likely due to the class

imbalance. We only had 4.5% missing data. Due to the nature of

the data collection (prospective, active, by research nurses) we

didn’t feel comfortable assuming that missing data would equate

to a “0” (symptom not present, which would be a safe

assumption in a clinical note). Hence, these rows were dropped

to avoid imputation and potential addition of bias to the analysis.
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FIGURE 2

Pertussis model B (syndromic only).
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Confusion matrices

The confusion matrices are reported in Table 2. Briefly, the

sensitivity and specificity were 83% and 61% for pertussis model

a and 75% and 72% for model b. For the RSV model, the

sensitivity was 69% and the specificity 67% for model a, and 74%

and 69% for model b.

Accordingly, in our holdout set of 117 children, we would have

missed 14 cases of pertussis and classified another 14 with an

incorrect pertussis diagnosis (model 1a). For RSV infection, we

would have missed only six children with the virus but would have

incorrectly diagnosed 31 with having the virus when in fact they

were negative. Depending on the preference of the hospital or

pediatrician’s office, the standard threshold of 0.5 (where any

predicted probability above would be classified as a 1 and inversely as

a 0) could be adjusted to further reduce false positives or false negatives.
Discussion

We developed four models for the diagnosis of pertussis and

RSV infection that, based on clinical symptoms and routine blood
Frontiers in Pediatrics 05
tests, accurately predict the laboratory test confirmation for these

pathogens. These models represent a prototype which could be

deployed in an application (eg. for smartphones or for electronic

health records) that may be integrated in routine clinical care to

assist clinicians in the proper management of these diseases and to

provide information that may be immediately available for public

surveillance. To our knowledge, no Machine Learning-Clinical

Decision Support Systems (ML-CDSS) exists yet to support the

diagnosis of pertussis or RSV infection in children.

Our work suggests that AI-based decision support systems may

be developed with little clinical data to identify pertussis and RSV

infection in children < 1 year of age. The same approach may be

easily applied to other infectious diseases that would benefit from

surveillance.

Interestingly, the performance of the two models was not

improved by the addition of routine blood tests. Regarding

pertussis, there was a slight improvement in the detection of the

cases with the inclusion of laboratory testing in terms of recall

performance, which is consistent with the clinical practice of

considering lymphocytosis for the differentiation of pertussis vs.

other respiratory infections. However, the overall model
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https://doi.org/10.3389/fped.2023.1112074
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


FIGURE 3

RSV model A (with laboratory testing).
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performance was not strong enough to justify its deployment,

considering that classifying patients with symptoms features only

is less complex and more scalable.

The models for pertussis yielded a higher classification

performance than those for RSV infection, however, the sample

size was lower for RSV infection and the class imbalance more

pronounced, therefore, it is possible that the performance could

improve basing the analysis on a larger dataset. While these

predictions alone may not replace a laboratory test for

confirmation, a CDSS integrating these models at the point of

care could help to timely support the clinician’s judgment in

further testing or initiating early treatment when necessary. The

simplicity of a CDSS based only on syndromic data makes it

invaluable during periods of changing epidemiology, such as the

one we are facing with RSV infections in the aftermath of

COVID-19, providing information immediately suitable for

public health surveillance.
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Indeed, other studies attempted COVID-19 case predictions

based on AI algorithms (24), but required additional sources of

information, such as data obtained from patients through

surveys, possibly leading to delays as well as selection biases,

which would be minimized with a system embedded at the

clinical point-of-care.

A further development of this system could consist in a model

for identification of novel clinical syndromes. This kind of model

should be fed with unlabelled data collected prospectively and

should be based on unsupervised learning.

In a hypothetical future scenario, the identification of

individual cases of infectious diseases within the community in a

rapid timeframe, as well as the ability to flag novel syndromes or

pathogens that pose a threat to public health systems, will rely

on fully automated and integrated systems across hospitals and

primary care providers, similar to the one conceptualized in this

study.
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FIGURE 4

RSV model B (syndromic only).

TABLE 2 Confusion matrix.

Pertussis (model 1) RSV (model 2)

Model A Model B Model A Model B
Sensitivity 0.83 0.75 0.69 0.74

Specificity 0.61 0.72 0.67 0.66

Total test set (n) 117 117 117 117

True positives (n) 22 26 12 12

True negatives (n) 67 61 68 74

False positives (n) 14 20 31 25

False negatives (n) 14 10 6 6

Model A refers to the main model including basic laboratory data (hospital/clinic),

model B refers to the alternative model including only syndromic data (for

outpatient settings without availability of performing laboratory data).

Mc Cord—De Iaco et al. 10.3389/fped.2023.1112074
We chose two case studies that have relevance both from the

point of view of the clinician and for public health. A pertussis

clinical case definition for surveillance is available, although it is

not very helpful at the point of care, as it includes a long

duration of cough that may only be assessed after early medical

encounters (19). We already demonstrated that a decision tree
Frontiers in Pediatrics 07
algorithm outperforms the accuracy of a clinical case definition

for pertussis (19).

The interest for RSV surveillance has recently increased, as new

candidates of RSV vaccines and monoclonal antibodies are in late-

stage clinical trials (25–27). However, a universal surveillance

system for RSV does not exist yet. A standard algorithmic

approach may be scaled up to multiple institutions and support

timely surveillance systems.

Indeed, syndromic surveillance at the emergency department

has been frequently used to complement existing surveillance

systems (5) and may remain in place for a long time (28, 29).

These systems have been classically developed for monitoring

emerging threats from bioterrorism (30).

ML-CDSS for infectious diseases are drawing increased interest,

but a minority of them have been developed in emergency care or

primary care settings (31). A recent review showed that ML-CDSS

for diagnosis have been developed for tuberculosis, healthcare

associated infections, surgical site infections, infections at

admission into hospital, bacterial or viral meningitis (31).

The next steps for this pilot would be the deployment of our

algorithms in an EHR system, making predictions but not
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displaying them to the physicians (shadow mode). This way, we

could manually validate a subsample of these predictions and

compare them to a gold standard (such as a PCR result). Only

then would we release the AI algorithm monitoring changes in

clinical performance (quality control study).

The importance of our work is in representing a proof of

concept of ML-CDSS for diagnosis of infectious diseases that can

be collectively developed and trained by multiple sites increasing

performance and generalizability. These systems may be deployed

either into electronic health records and in simple applications

for smartphones to enhance or create sustainable and timely

surveillance systems for events of interest in hospital and

primary care settings.
Limitations

One of the main limitations of our study is its retrospective

nature. Our model is based on data collected for two previous

surveillance studies on respiratory infections. Therefore, although

the quality of our data is high, the data collection had not been

specifically designed with the purpose of developing a ML-CDSS.

An improvement of the model could be achieved through a

prospective study design, which would enable us to collect

additional data to improve the diagnostic evaluation and increase

the accuracy of the model. Additional clinical information that

might be considered for a future model are respiratory rate, chest

retractions and breath sounds (rales, wheezing), which are

typically found in children with RSV infections. An improved

model to be applied in high resource settings might also include

audio tracks of respiratory auscultation.

Another limitation concerns the fact that we transformed

continuous variables (such as oxygen saturation, fever, leukocyte/

lymphocyte counts, CRP) into binary variables using cut-off

values based on the published literature. A possible improvement

of the model should include an assessment of the variability in

the accuracy based on different thresholds of the continuous

variables.

Another limitation of our analysis is that it was difficult to

determine if the predictive abilities of our models were magnified

or minimized by our data. On the one hand, since our data was

collected in the emergency room, there likely was a selection of

more severe (and possibly easier to identify) patients. On the

other hand, the relatively small sample size, particularly with

class imbalance, may have underestimated the real signal.

However, our example can be improved with additional data

from multiple sites and serves the purpose of describing the

potential of a CDSS in the Italian healthcare system.

Another limitation regards the elimination of missing data. We

decided to adopt a conservative approach, and to drop the records

that included missing data. Although this may have biased the

result, the proportion of missing data was very small (4.5%),

therefore we do not expect it to have had a major impact on our

results.

Moreover, we decided not to include observations with

coinfections in our model, in order to minimize the influence of
Frontiers in Pediatrics 08
coinfections on our findings. The number of coinfections in our

dataset was actually small (2.3%), but the fact that they were not

included in the model might limit its applicability. A potential

amelioration of our model should better take into account the

possibility of having patients with coinfections.

The high rate of false positive for RSV yielded by our model

may seem worrying. However, this may suggest that such tools

may be more helpful in epidemic settings, when the prevalence

of the condition is high. Again, a better performance of the

model may be achieved including a larger set of parameters in

the model, as previously discussed.

Finally, generalizability could be also limited by the high

quality of our data, due to the research setting in which it was

gathered. Validation of the model in a wider, real world scenario

would better elucidate its potentials.
Conclusions

ML-CDSS may represent valuable tools for surveillance of

infectious diseases. We present here a proof-of-concept which

could serve as a basis for the future development of AI-based

surveillance systems. The model we tested in this feasibility study

included a limited set of high-quality clinical and laboratory

parameters, obtained in a specific research setting, which might

limit its performance and generalizability. To improve

performance and generalizability, future research steps should aim

at a collective effort to: enlarge the dataset used for training and

validation, including data from different settings; increase number

of parameters used to train and validate the model; testing the

model in a real life scenario, e.g., shadow testing on EHRs. These

perspectives deserve to be further explored to extend the

application of artificial intelligence to public health surveillance.
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