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People with a Fontan circulation are at risk of neurodevelopmental delay and disability,
and cognitive dysfunction, that has significant implications for academic and
occupational attainment, psychosocial functioning, and overall quality of life.
Interventions for improving these outcomes are lacking. This review article
discusses current intervention practices and explores the evidence supporting
exercise as a potential intervention for improving cognitive functioning in people
living with a Fontan circulation. Proposed pathophysiological mechanisms
underpinning these associations are discussed in the context of Fontan physiology
and avenues for future research are recommended.
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Introduction

Neurodevelopmental and cognitive deficits are recognised as the most common

comorbidities associated with complex congenital heart disease (CHD) (1). Individuals born

with single ventricle heart disease, typically resulting in the Fontan circulation, are at the

greatest risk of cognitive dysfunction (2–5). The complex Fontan anatomy is associated with

neurological vulnerability and injury, that accumulates over the lifetime (Figure 1). Emerging

research suggests that early neurodegenerative decline and dementia may also be an

impending issue in this newly aging population (2, 6). These issues compound the spectrum

of medical and health challenges impacting individuals with a Fontan circulation, and

contribute to reduced quality of life, restricted educational and occupational achievements

and increased mental health issues (4, 7).

The implementation of routine neurodevelopmental and cognitive screening and increased

accessibility to neuropsychological assessment is vital for many individuals with a Fontan

circulation, however, a coexisting and paramount problem is the lack of resources and
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FIGURE 1

Accumulative neurodevelopmental and cognitive risk factors across the lifespan.
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evidence-based intervention strategies for those identified with

deficits. While this issue is not entirely unique to the CHD

population, additional considerations may be required in the

development of safe and effective intervention strategies for people

with Fontan physiology. Interventions that optimise outcomes

beyond improved cognitive abilities would be a major advantage.

For the purpose of this review, we focus on exercise as a proposed

intervention strategy following Fontan completion. While the
FIGURE 2

Multi-level factors associated with exercise and improved cognitive functioning
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distinction between early neurodevelopmental disability and

longer-term cognitive dysfunction is blurred in this cohort, who

have a lifetime prevalence of risk factors that contribute to reduced

functioning, we refer to alterations in cognitive functioning in

response to exercise, acknowledging that this is not mutually

exclusive to early neurodevelopmental outcomes. Proposed

mechanisms underpinning the exercise-cognition relationship are

summarised in Figure 2. While this review specifically focuses on
.
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individuals with a Fontan circulation, the discussion may have broad

relevance to people living with other types of complex CHD.
Established neurodevelopmental and
cognitive interventions

Hospital-based interventions that target early infant

neurodevelopment in babies born with a functional single ventricle

are vital for optimising the developmental trajectory. While

significant brain abnormality and injury occur perinatally and are

associated with patient-specific factors, advances in medical and

surgical strategies have optimised cerebral protection and outcomes

(8). Individualised neurodevelopmental follow-up programs

including formal evaluation, environmental modifications, and

therapeutic intervention, have been implemented into routine

clinical practice in some paediatric cardiac intensive care settings,

however, are not currently standardised care (9, 10). Longer-term

neurodevelopmental follow-up programs existing as part of routine

cardiac care are even less common. Individually tailored

developmental care plans have been shown to contribute to

improved neurodevelopmental outcomes in children with CHD

(11). Where neurodevelopmental delay or disability is identified,

traditional interventions may typically include occupational

therapy, speech pathology, and/or physiotherapy, that are often

initiated within the inpatient environment. Parent-focused

psychoeducation is associated with improved mental, social, and

emotional development in children with CHD at 6-months of age

and is associated with better family functioning and less school

days missed in early childhood (11). Family-focused education

should form an integral component of neurodevelopmental care

for children with CHD (12).

Beyond the neurodevelopmental interventions implemented in

early life, interventions may typically occur in the school setting

and are predominantly focused on improving learning outcomes

and academic achievement. Classroom strategies may include

assisted learning and tutoring, behavioural therapies, or

compensatory strategies, such as additional time to complete tasks.

However, in our clinical experience, many children with a Fontan

circulation who demonstrate milder cognitive difficulties, such as

inattention (which is particularly common) (13, 14), often “slip

through the cracks” and their learning challenges are not always

recognised due to a lack of formal assessment. Where attention

deficit hyperactivity disorder (ADHD) is diagnosed, stimulant

medication remains the frontline treatment for children over

6 years of age and is generally considered effective and safe for

people with CHD. However, the choice of stimulant medication

should be guided by cardiovascular risk factors on an individual

basis and appropriate monitoring is required (15). Multifactorial

intervention models incorporating stimulant and behavioural

intervention are considered more effective than pharmacological

intervention alone (16). Exercise has been shown to be particularly

beneficial in people with ADHD; Notably, moderate-to-large

positive effects have been identified between exercise and a broad

range of executive functions in child and adult ADHD cohorts

(17–20). Exercise may be an effective alternative treatment for

people with ADHD who have contraindication or opposition to
Frontiers in Pediatrics 03
commence pharmacological intervention, or where stimulant

medication has been ineffective (21). Psychotherapy or the use of

anti-depressants to improve low mood or anxiety may have

secondary benefits for cognitive ability (22, 23), however findings

are mixed and may depend on the severity of psychological

symptoms and the type of treatment (24).

Cognitive remediation strategies typically utilised in adult cohorts

include compensatory behavioural and environmental modifications,

“brain-training” strategies, or medication when cognitive dysfunction

is associated with a psychiatric or neurological condition. As the

adult Fontan population continues to increase rapidly, so does the

need for longer term cognitive interventions that take into account

the unique and lifelong medical and psychosocial complexities

associated with Fontan physiology.

The only prospective, randomised control intervention trial

including individuals with a Fontan circulation investigated the

benefits of computerised working memory training on executive

functioning and social outcomes in people with complex CHD.

Benefits in self-regulatory control were identified. However,

working memory, that was the primary outcome measure, did not

significantly change post-intervention. Possible long-term benefits

to other cognitive domains are not yet established (25). The

effectiveness of computerised cognitive training programs remains

widely debated.
Exercise, cognition, and Fontan
physiology

Historically, exercise participation was discouraged for people

with a Fontan circulation due to the perceived risks associated with

their complex cardiac physiology, including haemodynamic

derangement and sudden cardiac death. Emerging research has

demonstrated that increased physical activity may not only be

beneficial, but of great importance for individuals living with a

Fontan circulation (26, 27). Reduced exercise capacity in this

cohort is associated with worse long-term prognosis (28, 29).

Exercise training has been shown to positively affect stroke volume,

cardiac output, lung function, and skeletal muscle mass,

subsequently optimising overall physical function and exercise

capacity (30–34). Exercise participation is now strongly encouraged

as a safe therapy for most children and adults with Fontan

physiology (35, 36), although guidance regarding the nature and

intensity of exercise should continue to be provided to patients on

an individualised basis (37).

In healthy children and adults, greater exercise capacity and

physical fitness are associated with better cognitive functioning

(38–40) and physical inactivity is a risk factor for cognitive

impairment (41, 42). Longitudinal studies have shown improved

cognitive functioning after aerobic and/or resistance exercise

training programs (43). Notably, improvements in executive

functioning associated with increased physical fitness and greater

exercise participation have been widely reported in both children

and adults (44–46), which is a key area of dysfunction in people

with a Fontan circulation (2, 47). Greater exercise capacity and

physical activity may have a neuroprotective role by promoting

cognitive resilience and preventing neurodegenerative decline and
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dementia (42). This is an important consideration for individuals

with a Fontan circulation, who are predicted to be at increased risk

of reduced cognitive reserve and early-onset dementia (6).

Emerging research has shown significant associations between

exercise capacity and sustained attention and adaptive functioning

in people with a Fontan circulation (48). The extent to which

exercise capacity may improve other cognitive functions (e.g.,

working memory, processing speed, executive function and/or

internalising symptoms) were undetermined in this cohort, that

was limited by modest sample sizes. Self-reported improvements in

cognitive functioning have also been observed in children and

young adults with a Fontan circulation and tetralogy of Fallot

following a standardised 12-week aerobic exercise program (49).

However, to our knowledge, no other studies have investigated the

effect of exercise on cognitive performance among individuals with

a Fontan circulation, or other CHD cohorts.
Neural mechanisms underpinning the
exercise-cognition relationship

Structural morphology: brain volumes and
white matter microstructure

The pathophysiological mechanisms underpinning associations

between exercise and cognitive functioning are not fully

understood. Neuroimaging studies have demonstrated that

improved cognitive function associated with exercise capacity and

physical activity is paralleled by differences in brain structure,

connectivity, and functioning (45). Associations between brain

morphology and cognitive functioning in people living with a

Fontan circulation are also incompletely understood, however

smaller brain volumes are considered a key structural underpin

associated with worse cognitive outcomes (2, 50, 51). Significant

associations between exercise and brain volumes have been

observed in healthy aging adults. Greater levels of physical activity

have been associated with larger total brain and white matter

volume (52–54) and hippocampal volume (55). Notable

associations are reported between cardiorespiratory fitness and grey

matter volumes in regions that typically show the greatest age-

related volume loss, including frontal, superior parietal, and

temporal cortices, and the hippocampus (56–58). These are regions

that have associated roles in executive functioning and memory

decline. Taken together, these findings suggest that exercise

capacity and physical activity may attenuate progressive brain

volume loss associated with aging, that appears to be accelerated in

adults living with a Fontan circulation (2). However, future

research is necessary to determine causal associations. Other

factors such as gender, comorbidities, and interindividual variation

are also likely to influence the relationship between exercise

capacity and brain structure (59–61).

Significant associations between hippocampal volume, fitness,

and memory performance have been demonstrated in healthy pre-

adolescent children (62), and an emerging study by Valkenborghs

and colleagues has identified changes in hippocampal metabolism

and working memory in response to a 6-month exercise

intervention program in adolescents (63); Suggesting that exercise
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may enhance hippocampal development and structure in the

developing brain, as well as possibly mitigate age-related volume

loss in the aging adult brain. In infants and young children with a

Fontan circulation, smaller brain volumes are predominantly

attributed to cerebral dysmaturation that is associated with altered

cerebral perfusion and blood flow, placental insufficiency, and

genetic vulnerability (3, 64). Associated perioperative white matter

injury is a major concern (65). Early interventions to mitigate

these factors remain experimental but are vital for promoting early

neurodevelopment, however the extent that perinatal brain

dysmaturation can be modified remains unknown. These early

interventions are not the focus of the current review and have been

discussed in detail elsewhere (3). Exercise may be a beneficial

therapeutic strategy beyond the unstable surgical period to enhance

brain volumes and mitigate the impact of early brain injury by

promoting neurogenesis and synaptic plasticity, which has been

shown to continue in certain brain regions throughout the human

lifespan, notably in the hippocampal region (66, 67). Extensive

animal studies have shown that exercise promotes repair processes,

including enhanced neurogenesis, new-born neuron maturation

and increased functional plasticity in the hippocampus of rodents

(68); These alterations are likely to be associated with improved

learning and memory and mood regulating processes (69). In the

first controlled intervention study of its kind, Riggs et al. (2017)

demonstrated that aerobic exercise promoted hippocampal growth

and improved the white matter architecture of various white

matter tracts in children who had been treated with radiation

therapy for a brain tumour. White matter damage and smaller

bilateral hippocampal volume were present prior to the

intervention, and changes in fractional anisotropy and

hippocampal volume were observed irrespective of typical age-

related brain maturational changes—These findings suggest that

exercise may have the potential to promote neural recovery during

childhood (70). We can only speculate on these associations in the

context of Fontan physiology, especially given that the mechanisms

of cerebral injury vary, however these findings warrant

investigation. Hippocampal volume is significantly reduced in

adolescents with a Fontan circulation and is associated with worse

memory performance (50). Widespread alterations in white matter

microstructure are reported across the lifespan in people with a

Fontan circulation and have shown variable associations with

cognitive performance (71–75). Cross-sectional studies in healthy

child and adult cohorts support associations between exercise and

enhanced white matter microstructural architecture (76, 77),

however associations in other clinical cohorts are scarce and the

extent that exercise-induced changes in white matter

microstructure extends to improvements in cognitive functioning is

undetermined (78). Exploratory work by our research team

demonstrated a significant positive association between predicted

peak oxygen uptake during exercise (an indicator of aerobic

fitness) and fractional anisotropy of the uncinate fasciculus in an

adolescent and adult Fontan cohort (75), suggesting the association

between exercise capacity and white matter microstructure may

apply to this cohort. Predovan et al. (2021) similarly found

increased fractional anisotropy of the uncinate fasciculus associated

with increased aerobic exercise in healthy adults following a

6-month randomised exercise intervention program, although
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significance was lost after correction for multiple comparisons (79).

These findings were inconsistent in another similar study (80). An

issue across diffusion MRI research surrounds the heterogeneity in

methodologies utilised and continual advances are being made in

the recommended diffusion data acquisition, processing methods,

and analysis pipelines (81). Further research is necessary to

determine associations between exercise and white matter

architecture and consistent methodologies are required when

investigating the replicability of findings across cohorts.

Our previous work demonstrated significant positive associations

between resting and/or peak exercise oxygen saturations and brain

volumes; white matter microstructural organisation was also worse

in the setting of reduced oxygen saturations (2, 75). Low oxygen

saturations may impair exercise performance due to reduced

oxygen delivery to the peripheral muscles (34, 82), although the

extent to which this is a causative factor remains undetermined

(26). Nevertheless, efforts to maximise oxygen saturations in people

with Fontan physiology may be important to consider for

optimising both exercise capacity and brain morphology.
Cellular, molecular and vascular processes

Exercise may have a potential role in protecting the brain against

the persisting and accumulative burden of hypoxic-ischaemic events,

that is an ongoing concern throughout life for people living with a

Fontan circulation (2, 64). Animal studies have demonstrated that

exercise training preconditions brain ischaemic tolerance and

facilitates functional recovery following brain injury through a series

of cellular and molecular mechanisms, including the promotion of

angiogenesis, mediation of the inflammatory response, inhibition of

gamma aminobutyric acid (GABA), protection of the blood brain

barrier, and inhibition of apoptosis (83), suggesting that patients

with high risk for chronic brain injury should engage in regular

exercise to promote neuroprotection. Exercise is associated with

increased expression of brain derived neurotrophic factor (BDNF)

and insulin-like growth factor-1 (IGF-1), that are directly involved in

neuronal and synaptic growth, and angiogenesis. In humans, BDNF

and IGF-1 have been shown to mediate improvements in executive

function after a 12-month aerobic exercise intervention program

(84) and are considered crucial for long-term memory functioning

(83). Furthermore, increased BDNF concentrations are observable

following acute exercise participation and are associated with

immediate improvements in processing speed, executive functioning,

learning speed, and memory after high intensity training, suggesting

that exercise may induce acute benefits on cognitive functioning and

daily participation in exercise may bolster day-to-day cognitive

functioning (85, 86). Increased expression of neurotrophic factors

may also protect against neurodegenerative decline (83).

Skeletal muscle mass may be an important mediator in the

relationship between exercise and neuroprotective mechanisms.

Skeletal muscle secretes circulating myokines in response to exercise,

that have a role in molecular and cellular neuroprotective processes in

the brain, including the expression and regulation of BDNF, among

others (87–89). Indeed, significant associations have been identified

between sarcopenia and cognitive decline in healthy aging cohorts

(90–92). Fontan-associated myopenia is a recently established
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phenomena (93) and may contribute to the myriad of risk factors

associated with Fontan physiology and reduced cognitive functioning.

Emerging research also highlights the role of the cerebral

endothelium in the release and synthesis of BDNF, that is

considered to be an important link between endothelial function

and cognition. Other important processes associated with endothelial

function, include the regulation of inflammatory and immune

responses, thrombosis, neuroplasticity, angiogenesis, and cerebral

blood flow (94, 95). Endothelial dysfunction is common in people

living with a Fontan circulation and is associated with reduced

exercise capacity and health related quality of life (96). In other

cardiovascular disease cohorts, endothelial dysfunction is linked to

cerebrovascular damage including white matter hyperintensities,

lacunar infarct, brain atrophy, and cerebral hypoperfusion (97–99).

In adults with cyanotic CHD, endothelial dysfunction has been

associated with reduced global grey matter volume (100), however

associations with neurological outcomes in a Fontan cohort are yet

to be examined. Markers of endothelial dysfunction are associated

with worse performance in various cognitive domains, including

processing speed, attention, executive function, memory, and

visuospatial abilities (101–104). Endothelial dysfunction may be an

early predictor of neurodegenerative disease (105). Aerobic and

resistance exercise training have independently been shown to

improve endothelial function in healthy individuals and those with

cardiovascular disease (106–108), providing further evidence to

support the relationship between exercise and brain health.

Improvement in endothelial function following a 3-month exercise

intervention has been associated with improved overall cognition in

individuals with coronary artery disease (109). However, to our

knowledge, no randomised controlled studies exist investigating

these associations and causative links are undetermined. Non-

invasive markers of endothelial dysfunction provide an accessible

opportunity to investigate these factors. Future longitudinal and

cross-sectional studies are encouraged to include such measures

when investigating associations between exercise and neurological

and cognitive outcomes in people with Fontan physiology.
Functional brain activation in response to
exercise

Less is known about functional brain changes occurring in

response to exercise, however functional MRI (fMRI) research

using Blood Oxygen Level Dependent (BOLD) signal as indirect

markers of neuronal activities has provided additional support for

the association between vascular risk factors and cognitive

dysfunction (110). Changes in BOLD functional brain activation

are observed following acute bouts of physical exercise, and

sustained exercise over an 8-month period has been shown to

improve spatial refinement of several key functional brain networks

at rest (111). However, the associated changes in cognitive

functioning with exercise-induced functional brain activation are

variable and limited research investigating these associations has

been conducted to date (112, 113). Patterns of exercise-induced

functional brain activation also vary across different cohorts and

may be influenced by levels of cardiorespiratory fitness (113).

Studies including individuals with a Fontan circulation are required
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to understand these associations in the context of Fontan physiology

and will provide insight into functional brain connectivity in this

cohort. Even less is known about exercise-induced changes in

neurotransmitter release and associated cognitive performance.
Psychosocial and behavioural mediators
of the exercise-cognition relationship

Psychological functioning

It is likely that improved behavioural and psychosocial functioning

associated with exercise participation and greater fitness, also mediate

improvements in cognitive functioning. Children and adults with a

Fontan circulation are at an increased risk of psychological distress

and developing psychiatric disorders, that is associated with a

myriad of factors linked to their cardiac anatomy (114). Physical

restrictions and reduced exercise capacity likely contribute to these

issues. The lifetime prevalence of a psychiatric disorder in people

living with a Fontan circulation has been reported as 65% and

includes a high incidence of depression, anxiety, and medically

related trauma, reduced psychosocial functioning is also prevalent (4,

115, 116). People with major depressive disorder and high levels of

anxiety demonstrate reduced attention, executive functioning, and

memory (117), that are cognitive domains similarly most affected by

physical inactivity (118). The rate of comorbidity between

psychological disorders and cognitive dysfunction in people living

with a Fontan circulation is anticipated to be high but has not yet

been investigated.

The relationship between exercise and improved mental health

and overall quality of life is well-established and broadly applies to

clinical and healthy populations (119–123). Furthermore,

participation in physical activity and sport is considered to

improve social health and functioning through increased

opportunities to socialise and connect with peers (124), that may

also provide opportunities to practice behavioural and emotional

self-regulation. In children and young adults with a Fontan

circulation, exercise training is associated with improved health

related quality of life and psychosocial functioning (49, 125, 126).

These benefits are anticipated to extend to better family

functioning and improved quality of life for caregivers and siblings,

who are also importantly impacted (127, 128). Important

associations have also been identified between physical inactivity

and greater rates of depression in people with various forms of

congenital heart disease (129). No studies have yet directly

investigated the link between exercise, psychosocial functioning,

and cognitive outcomes in people with a Fontan circulation.

Importantly, interventions to promote psychological functioning,

independent of cognitive dysfunction, are also greatly needed in

this cohort (114).
Sleep

Sleep disturbance and fatigue are also important risk factors that

may contribute to reduced cognitive functioning and are commonly

reported by people with a Fontan circulation. In a large study of
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disturbance was strongly associated with increased odds of

attentional problems, the use of medication for ADHD,

behavioural issues, developmental delay, learning problems, mood

concerns, and reduced health related quality of life (130). Hedlund

et al. (2019) have demonstrated positive associations between total

sleep time and time engaged in moderate-vigorous physical activity

in children and adolescents with a Fontan circulation (131).

Patients and controls with low sleep efficiency (amount of time in

bed spent sleeping) at baseline demonstrated increased sleep

efficiency following exercise endurance training. Consistent with

this, Callegari et al. (2022) found a significant association between

daily minutes of moderate-vigorous physical activity and a lower

incidence of sleep disturbance in a similar Fontan cohort (132).

Sleep efficiency has been shown to mediate the relationship

between physical activity and improved executive functioning in

healthy young and older adults (133). In contrast, total sleep

duration does not always show consistent associations as this may

be impacted by sleep interruptions that interfere with important

sleep cycle stages that are associated with restorative pre-frontal

and hippocampal functioning (134). Excessive sleep may also

reflect depressed mood or chronic fatigue. Increased exercise and

improved cardiorespiratory fitness may also alleviate symptoms of

sleep disordered breathing, that is a recognised concern in children

and adults with a Fontan circulation (135–137), and may be a

modifiable contributor to reduced cognitive performance (138).
Uncertainties and future directions

Exercise training is garnering much enthusiasm as a possible

non-pharmacological therapy for a range of physical, psychological,

and cognitive illnesses. However, the mechanisms by which

exercise exerts benefit on cognitive outcomes are not fully

understood and are likely multifactorial and influenced by

interindividual differences. In addition, methods to investigate

cellular and molecular neural changes in-vivo are limited, and

much of what we currently know has come from animal studies

that may have limited applicability. Well-designed and adequately

powered, randomised controlled human intervention studies are

critically needed to investigate these associations in the context of

Fontan physiology and detailed phenotyping is required to

understand possible mediating factors. Where feasible, minimally

invasive methods to directly, or indirectly, investigate underlying

mechanisms are required. Animal models with Fontan physiology

may provide additional avenues for future research in this regard.

The type, frequency, and intensity of regular exercise are likely

important factors for facilitating cognitive change, and overall, there

appears to be a dose-response relationship between exercise and

cognitive performance (118, 139). Moderate to vigorous exercise

shows the most consistent benefit on cognitive performance,

however some studies have found that participation in low intensity

exercise, such as walking, yoga, and balance or resistance training

also improves cognitive outcomes (140–143), which may be

promising for patients with more severe exercise limitation. Different

types of exercise appear to be associated with different underlying

neural mechanisms associated with cognitive outcomes (144).
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Aerobic exercise is predominantly associated with the production and

regulation of BDNF, whereas resistance training is associated with

increased expression of IGF-1 (145, 146). Combined training

programs incorporating both aerobic and resistance training are

therefore considered optimal to target varying molecular pathways

that have a beneficial impact on brain health. Better understanding

the detailed mechanisms by which exercise improves cognitive

outcomes may provide an opportunity to develop novel therapeutic

interventions that mimic these mechanisms in individuals with

Fontan physiology who are unable to exercise.

Exercise interventions introduced early in childhood will likely

yield maximum benefits for people with a Fontan circulation, both

physically and cognitively. Engagement in exercise as a child is

associated with continued exercise participation in adulthood,

which is anticipated to maximise cognitive resilience for aging

adults with a Fontan circulation. The long-term benefits of exercise

interventions programs remain largely undetermined, and it is

likely that regular and consistent exercise participation is required

to maintain optimum cognitive functioning.

While current recommendations highlight the importance of

exercise for people living with a Fontan circulation (26, 34, 37,

147), the optimal methods and guidelines surrounding exercise

prescription remain poorly characterised. The primary target of

exercise intervention in this cohort is to optimise cardiac and

physical functioning, however investigations should consider the

intensity, duration and type of exercise that is required to also

maximise cognitive outcomes. Additional efforts will likely be

required to facilitate long-term behaviour change surrounding

exercise participation in many people with a Fontan circulation,

given the multitude of factors that contribute to reduced physical

activity in a large proportion of the population.
The Fontan-Fitness Intervention Trial (F-FIT)

To our knowledge, the Fontan-Fitness Intervention Trial (F-FIT)

(26) will be the first multicentre, randomised controlled exercise

intervention trial investigating the impact of aerobic and resistance

exercise training on physiological and cognitive outcomes in people

with a Fontan circulation. Participants will be recruited across eight

quaternary CHD centres in Australia and will include people with a

Fontan circulation aged 10–55 years, who are a minimum of 6

months post-Fontan completion; broader inclusion and exclusion

criteria are described by Tran et al. (2022). The protocol includes a

range of outcome measures that aims to contribute to our

knowledge surrounding the associations and risk factors contributing

to cardiorespiratory fitness, cognitive functioning, psychosocial

outcomes, and overall quality of life in people with Fontan

physiology. This includes a detailed evaluation of aerobic exercise

capacity, respiratory muscle and lung function, musculoskeletal

fitness, body composition, habitual physical activity levels, dietary

intake and nutritional status, peripheral venous pressure, endothelial

function, neurohormonal activation, metabolites, cardiac function,

cognitive and psychosocial functioning, quality of life, and sleep. A

subset of participants with Fontan physiology will undergo

neuroimaging, including structural and diffusion weighted brain

MRI and measurement of cerebral blood flow.
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For adolescents and adults (≥16 years), the protocol includes a

three-arm blinded randomisation to either (i) traditional fitness

facility-based exercise training, (ii) telehealth exercise training, or

(iii) waitlist control. Investigation into the efficacy of a telehealth-

based cognitive intervention is a key advantage of the F-FIT

protocol. Socioeconomic status and geographic remoteness are

associated with worse cognitive outcomes in adolescents and

adults living with a Fontan circulation (2) and these individuals

may have additional barriers to accessing appropriate heath care.

Exercise may be a cost-effective life-long therapeutic management

strategy for this cohort, which is a particularly important

consideration given the high financial burden associated with

Fontan physiology (148).
Conclusion

Individuals with Fontan physiology are at heightened risk of

neurodevelopmental and cognitive dysfunction. Interventions

focused on improving these outcomes are needed. Exercise may be

a low-risk and broadly advantageous physical and cognitive

intervention strategy in this cohort and may protect and optimise

brain health across the life span. High quality experimental

research is required and should aim to include comprehensive

phenotyping and investigate optimum exercise “prescription”.

Scalable and accessible interventions that also facilitate behaviour

change are essential.
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