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Granulomatous inflammation
in inborn errors of immunity
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Ottavia M. Delmonte2*
1Department of Pulmonology, Section of Allergy-Immunology, Phoenix Children’s Hospital, Phoenix, AZ,
United States, 2Laboratory of Clinical Immunology and Microbiology, Immune Deficiency Genetics Section,
National Institutes of Health, Bethesda, MD, United States

Granulomas have been defined as inflammatory infiltrates formed by recruitment of
macrophages and T cells. The three-dimensional spherical structure typically
consists of a central core of tissue resident macrophages which may merge into
multinucleated giant cells surrounded by T cells at the periphery. Granulomas may
be triggered by infectious and non-infectious antigens. Cutaneous and visceral
granulomas are common in inborn errors of immunity (IEI), particularly among
patients with chronic granulomatous disease (CGD), combined immunodeficiency
(CID), and common variable immunodeficiency (CVID). The estimated prevalence of
granulomas in IEI ranges from 1%–4%. Infectious agents causing granulomas such
Mycobacteria and Coccidioides presenting atypically may be ‘sentinel’ presentations
for possible underlying immunodeficiency. Deep sequencing of granulomas in IEI
has revealed non-classical antigens such as wild-type and RA27/3 vaccine-strain
Rubella virus. Granulomas in IEI are associated with significant morbidity and
mortality. The heterogeneity of granuloma presentation in IEI presents challenges
for mechanistic approaches to treatment. In this review, we discuss the main
infectious triggers for granulomas in IEI and the major forms of IEI presenting with
‘idiopathic’ non-infectious granulomas. We also discuss models to study
granulomatous inflammation and the impact of deep-sequencing technology while
searching for infectious triggers of granulomatous inflammation. We summarize the
overarching goals of management and highlight the therapeutic options reported
for specific granuloma presentations in IEI.

KEYWORDS

granuloma - etiology, combined immune deficiency, GLILD, rubella (MMR) vaccine,
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Introduction

Granulomas represent the result of an immune response induced by an encounter between

antigen presenting cells (predominantly monocytes and macrophages) and T cells (both CD4 +

and CD8+ T cells) (1, 2). In this regard, granulomas offer an opportunity to explore an interface

between the innate and adaptive immune system. However, unlike lymph nodes there is no

prerequisite anatomic scaffold for granulomas to develop. Classically, granulomas in

mammals have been described as having a spherical structure consisting of a central core of

tissue resident macrophages which may merge into multinucleated giant cells surrounded by

T cells at the periphery (3). In some cases, the central core of the granulomas shows evidence

of necrosis (caseating granulomas), while other forms of granulomas do not show this feature
Abbreviations

AT, ataxia-telangiectasia; BCG, Bacille Calmette-Guérin; CGD, chronic granulomatous disease; CID, combined
immunodeficiency; CVID, common variable immunodeficiency; GLILD, granulomatous lung interstitial lung
disease; HCST, hematopoietic stem cell transplantation; IEI, inborn errors of immunity; iVDRVs,
immunodeficiency-related vaccine-derived rubella viruses; NTM, non-tuberculous mycobacteria; PLAID,
phospholipase C gamma 2–associated antibody deficiency and immune dysregulation; RuV, Rubella virus.
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(non-caseating granulomas). These two histological types are

exemplified by granulomas occurring in the course of

Mycobacterial infection and sarcoidosis, respectively (2, 4).

Granulomas may be triggered by infectious and non-infectious

antigens (5). Despite significant advances in imaging,

histopathology, antimicrobials, and immunomodulation,

granulomatous inflammation is a cause for morbidity and

mortality in both adults and pediatric patients, particularly as

described in common variable immunodeficiency (CVID) (6).

Inborn errors of immunity (IEIs) provide a unique insight into the

pathophysiology of granulomas and immune susceptibility to

specific pathogens that trigger granulomatous inflammation.

Tuberculous and non-tuberculous Mycobacterial infection (7) and

fungal infections (8) presenting with granulomas, for example, may

uncover new forms of IEI. Recently patients with disseminated

Coccidioidomycosis, a dimorphic fungal infection endemic to the

Southwestern United States, have helped to identify novel variants

in genes affecting the immune function and inform on fungal

pathogenesis (8). Rubella virus (including the attenuated live

vaccine strain) is usually well controlled by the immune system in

healthy individuals; however, it has been frequently identified in

granulomas of patients with various forms of combined

immunodeficiency (CID) (9) and has been associated with

significant morbidity and mortality in IEIs (10). In a section of this

review, we will highlight the current understanding of the role of

infectious agents mentioned and how they interface in the

development of granulomas in patients with IEIs.

Furthermore, various IEIs present with granulomas of presumed

non-infectious origin involving skin and other organs. The overall

prevalence of presumed non-infections granulomas in patients with

IEI is estimated to be 1 to 4% with the highest prevalence being

among CVID, CID, and CGD (11). In a retrospective single center

pediatric study from Turkey, among 82 patients with granulomas

who underwent immunological evaluation, 62 carried a diagnosis

of IEI. CID was the most common diagnosis and

hypogammaglobulinemia was present in 50% of the subjects (12).

Granulomas have also been described in autoinflammatory diseases

and primary atopic disorders (13).

In this review we will discuss updates in understanding IEIs and

variants affecting host defense and predisposing to presumably non-

infectious granulomas. The focus of the review will center on non-

infectious granulomatous inflammation in CVID, CID, CGD and

autoinflammatory disorders. We will highlight the role of

infectious agents such mycobacteria and Coccidioides as ‘sentinel’

granulomatous infectious to assist with further workup of possible

underlying immunodeficiency. Further, we explore the recent data

pertaining to the identification of Rubella virus vaccine-strain in

IEI granulomas and discuss how this discovery could shed further

mechanistic insights into granuloma pathogenesis.
Granulomatous inflammation in CVID

CVID is a clinical diagnosis characterized by severe and/or

recurrent oto-sino-pulmonary infections, low serum

immunoglobulins and impaired vaccine responses (14, 15). Non-

infectious complications of CVID, more than infectious history are
Frontiers in Pediatrics 02
associated with decreased CVID survival (6). Granulomas in lungs,

liver, spleen, lymph nodes and skin were identified in 46 CVID

patients within a cohort of 473 subjects (9.7%) (6). A systematic

review by van Stigt et al. (16) showed that 50% of CVID patients

with granulomatous disease displays extrapulmonary

granulomatous manifestation. Granulomatous and lymphocytic

interstitial lung disease (GLILD) instead occurs in around 20%–

30% of CVID patients (17). GLILD is a clinical, radiologic and

pathologic entity characterized by lymphocytic infiltration and/or

granuloma of the lung whenever other infectious causes have been

excluded. Risk factors for GLILD include history of cytopenias,

female gender, age between 20 and 50 years, concomitant

hypersplenism and polyarthritis (17, 18). It is associated with

increased risk for non-Hodgkin’s lymphoma (19). Dysregulated B

cells, with increased expression of B cell activating factor (BAFF),

which upregulates IFN-γ signaling, have been reported in CVID

with interstitial lung diseases (20). A recent study identified

increased numbers of CD14 + CD16- monocytes and memory T

cells, and prominent inflammation in peripheral blood of CVID

patients with non-infectious complications. Further, the same

patients had higher serum levels of IFN-γ, IL-6, IL-18, TNF and T-

cell activation markers in peripheral blood (21). These

abnormalities improved with T-cell-targeted therapy (21). While

the study included various CVID patients with non-infectious

complications and not only granulomas, it highlighted the role of

T cell dysregulation in the pathogenesis of inflammatory

manifestations associated with CVID. Screening high-resolution

computerized tomogram (HRCT) is recommended for all CVID

patients and should be repeated after 4–5 years if initial screening

is unremarkable (22). Further, annual spirometry and 6 min-walk

test are considered a cost-effective approach to identify patients

who may rapidly progress to GLILD. Immunoglobulin replacement

should be targeted to reach and maintain a trough IgG level

>1000 mg/dl (22, 23). Increasingly, symptomatic patients may be

treated with oral glucocorticoids even though the clinical response

to this treatment has shown to be poor (24). Glucocorticoid-

sparing agents such as weekly Rituximab 375 mg/m2 for 4 weeks

repeated every 4 months for 3–4 courses (25), azathioprine 1–

2 mg/kg/day or mycophenolate mofetil 250–1000 mg twice daily

can be also considered (25). With such treatment, remission of

extrapulmonary granulomas affecting the skin, liver and lymph

nodes has been reported in 86% of patients (16). Anti-TNF-α

therapy has been successful to treat extrapulmonary granulomas in

CVID (16, 26).
Combined immunodeficiencies and
granulomatous inflammation

The study of combined immunodeficiencies provides

mechanistic insights into the pathophysiologic role of adaptive

immune cells in granuloma formation (27, 28). Hypomorphic RAG

mutations, for example, offer an interesting model to understand

granulomatous inflammation. The RAG 1/2 heterotetramer is

crucial for the VDJ recombination process and for the generation

of a diverse repertoire of antigen-specific T-and B-cell receptors

(28). The severity of the clinical phenotype correlates with residual
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RAG1/2 catalytic activity and may range from severe combined

immunodeficiency (SCID) in null RAG 1/2 variants with absent T

or B lymphocyte to a less severe phenotype with milder infections,

autoimmunity, and granulomas (CID-G/AI) typically with a later

onset in life (27). The latter group of patients display preservation

of circulating T cells (albeit in reduced numbers and with a

predominance of memory cells), and often have normal levels of

immunoglobulins and variable response to immunization. High

throughput sequencing analysis revealed significant abnormalities

of TCR beta repertoire, especially in T regulatory cells, and of BCR

repertoire, supporting the notion that relatively higher levels of

RAG protein function may allow for partial preservation of the

diversity of TCR and BCR repertoires, which however are enriched

in self-reactive specificities that may be possibly implicated in

granuloma pathogenesis (29). Granulomas in RAG deficiency

infiltrate the skin, bones and/or internal organs (30, 31) and can

lead to significant morbidity and physical disfiguration (32). In a

cohort of 85 patients with RAG deficiency, 30 patients had CID-G/

AI phenotype with 15/30 displaying granulomas. Of note, most of

these patients had concomitant autoimmunity, with autoimmune

cytopenias being the most prevalent autoimmune manifestation

(33). In another series of 68 patients with CID-G/AI,

granulomatous lesions were identified in 35% of patients with the

most common location being lungs and skin but also multiple

other tissues (liver, spleen, bone marrow, oropharynx, gut, testis,

pancreas); usually more than one site was involved in the same

individual (34). In contrast with what reported in CVID, patients

with RAG deficiency showed to be refractory to glucocorticoids

and biologics (i.e., anti-TNF) requiring allogeneic hematopoietic

stem cell transplantation (HSCT) which appears to be the only

definitive management for granulomatous inflammation in this

disease (33, 35).

Skin and visceral granulomas have been described in several

other IEIs with predominance of DNA repair defects including

ataxia telangiectasia [AT], Artemis deficiency, Nijmegen-breakage

syndrome [NBS], PRKCD deficiency (36, 37) and ligase IV

deficiency (38–41) (Table 1). Cutaneous non-infectious granulomas

have been extensively described in AT (Table 1) (42). Rarely,

patients with AT have had granulomas detected in bones and

joints (43). Granulomas are typically observed in AT patients with

elevated IgM (44). In a cohort of 44 AT patients, those with

granulomas had significantly decreased naïve CD8 T cells in

peripheral blood (43). A skewed T cell repertoire has also been

reported in AT patients with granulomas (45). IVIG, topical and

systemic glucocorticoids, tacrolimus, TNF-α inhibitors have been

used with variable success however a patient who underwent

allogeneic hematopoietic stem cell transplantation (HCT) had

complete remission from granulomas (43).

The recent identification of RA27/3 Rubella virus (RuV) vaccine

strain in some patients has led to the inquiry as to whether RuV

antigens may play a causative role for granuloma formation in CID

(10, 38). It is unclear as to whether the virus triggers

granulomatous inflammation or the impaired host defense allows

viral persistence in M2 skewed macrophages and neutrophils (38,

46, 47). Infiltrative granulomas have been described also in TAP1

and TAP2 deficiency (48–52). Recently, 2 cases from Iran of TAP

2 deficiency presenting with granulomas for more than 2 decades
Frontiers in Pediatrics 03
before the genetic diagnosis were described. Three relatives of the

probands that carried the same homozygous mutation had no

clinical manifestation of disease supporting variable expressivity

and multifactorial pathogenesis of granulomatous formations (50).

Out of 17 cases of TAP2 deficiency reported in the literature, 30%

manifested with skin granulomas. Immunomodulatory or

immunosuppressant medications are not recommended in this

disease because they may cause granuloma exacerbation (50). Data

regarding HCT in MHC-I deficiency is limited; one subject

displayed persistent regression of skin granulomas 15 years after

HCT (53). Cartilage hair hypoplasia patients have granulomas

among their clinical manifestations as well (41, 54–56). Rubella

virus-associated granulomas have also been described in 21 IEI

patients having cytotoxicity defects with significant frequency in

MUNC13–4 and RAB27A (Griscelli syndrome type 2) deficiency

(57). Of note, GLILD has also been described in Griscelli

Syndrome type 2 (58). These data suggest that impaired T cell

function allows persistence of macrophages to perpetuate

granulomatous inflammation.
Inflammatory granulomas in phagocytic
disorders

CGD is the archetypal IEI for granulomatous inflammation (59,

60). The disorder is characterized by defects in NADPH oxidase due

to mutations in 6 known genes – CYBB, CYBA, NCF1, NCF2, NCF4,

and CYBC1 (59). Granulomatous lesions are observed in both

autosomal recessive forms (61) and in X-linked forms of CGD

(62). Most granulomas in CGD are secondary to infections by

organisms predisposing to granuloma formation. The infectious

susceptibility and natural history of CGD is described extensively

in other reviews (59, 60). However, granulomas of presumed non-

infectious origin and post-infectious hyperinflammatory

granulomatous inflammation are also prevalent in CGD (63). In a

cohort of 71 patients with CGD around 10% suffered from post-

infectious granulomas in multiple organs (64). Moreover, in a

single center study on inflammatory complications of CGD in 98

patients from France, histological analysis showed presence of

granulomatous formation (liver, skin, testes, and ocular) in 22 of

44 patients analyzed. This hyperinflammatory state is often

associated with chronic colitis (65), granulomatous cystitis (66) and

infections including Staphylococcal liver abscesses or Nocardia

infection (67, 68). In these cases, systemic glucocorticoids are co-

administered with empiric antimicrobials (68). It appears that

hyperinflammation in CGD is triggered by an infectious antigen,

however it is often perpetuated due to dysregulation in immune

function – particularly defective neutrophil apoptosis (69), skewed

NF-κB signaling (70), impaired leukotriene B4 and C5a

degradation (71), and upregulation of pro-inflammatory cytokines

TNF-α, IL-1β, IL-8, IL-17, IL-6 and G-CSF (72–75).

Hyperinflammatory foci, including abscesses, lymphadenitis or

granulomas often require surgical excision (76).

Granulomas caused by Mycobacterium tuberculosis and non-

tuberculous mycobacteria (NTM) are significantly prevalent in IEIs

due to phagocytic disorders, and T cell signaling disorders

including defects in IFN-γ/Il-12 signaling (7, 77). In endemic areas
frontiersin.org
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TABLE 1 Well-described inborn errors of immunity (IEIs) presenting with non-infectious granuloma – presentation, immunophenotype and reported
therapies.

Type Skin
granulomas

Non
cutaneous
granulomas

Age of
presentation

(approximative)

Immunologic
Findings

Treatment
(effect)

References

CVID Non-caseating,
tuberculoid,
necrobiotic
granuloma with
perineural
invasion

Face, lip, buccal
mucosa, nose,
cheek, limbs,
shoulders,
trunk, buttocks,
hands, feet

Lungs, lymph
nodes, liver,
spleen and
conjunctiva

Childhood -
adulthood

Hypogammaglobinemia IVIG, Anti- TNF-α,
systemic
glucocorticoids

(Aghamohammadi
et al., s.d.; Harp et al.,
2015; Nanda et al.,
2014; Stigt, A.C.,
et al. 2020)

CID-G/AI
(RAG1/2
deficiency)

Sarcoidal,
necrotizing
vasculitis,
pyoderma
gangrenosum,
palisades
granulomatous
dermatitis

Diffuse Lung, soft tissue,
liver, spleen,
tongue, gut, testis,
bone marrow,
adenoids,
pancreas, lymph
nodes,
oropharynx,
granulomatous-
lymphocytic
interstitial lung
disease.

Infancy - adulthood
(2 −40y).

Mainly T cell lymphopenia.
Hypogammaglobulinemia.

Systemic
Corticosteroid,
cyclosporine,
infliximab (partial
remission), surgery,
HSCT (remission)

(Schuetz et al., 2008),
(Delmonte et al.,
2018), (De Ravin
et al., 2010),
(Henderson et al.,
2013), (Avila et al.,
2010), (Walter et al.,
2015), (Sharapova
et al., 2013),
(Patiroglu et al.,
2014), (Buchbinder
et al., 2015), (Min
et al., 2021), (Farmer
et al., 2019), (Geier
et al., 2020), (Van
Horn et al., 2018)

Artemis
deficiency

Necrotizing
granuloma

Extremities,
nose.

– Infancy (5y – 7 y) Hypogammaglobulinemia, T
cell lymphopenia

HSCT (Baumann et al.,
2022; de Jager et al.,
2008; IJspeert et al.,
2011)

PRKCD
deficiency

Non-Langerhans
cell histiocytosis.
epithelioid
granulomas

Face and
extremities,
limb, elbow

Splenic
granuloma

Infancy - childhood
(6 mo, 9y)

T and B cell lymphopenia,
hypogammaglobulinemia.

IVIG, HSCT (Esenboga et al.,
2018; Mathieu et al.,
2015)

Ataxia-
telangiectasia

Palisading,
epithelioid,
tuberculoid,
necrotizing and
non-necrotizing
granuloma;
Necrobiotic
granulomatous
inflammation
(granuloma
annulare);
granulomatous
acne rosacea.

Limbs, face,
trunk, buttocks;
trauma-prone
areas

Synovial (knee,
elbow, wrist),
lungs, spleen,
liver, larynx, bone
marrow, bone
(tibia)

Newborn -
adulthood (0–31 y)

Decreased IgG, IgA and IgE.
Normal/increased IgM,
marked decreased B cells
and naïve T cells. High AFP

IVIG (progression/
partial remission/
remission); Topical
corticosteroid,
systemic
corticosteroid,
tacrolimus,
intralesional
triamcinolone
injections, antibiotics,
prednisolone,
adalimumab,
infliximab, (partial/
transient); HSCT
(remission),
Isotretinoin [for
granulomatous acne
rosacea] (remission)

(Amirifar et al., 2020;
Cantarutti et al.,
2015; Chiam et al.,
2011; de Jager et al.,
2008; Fleck et al.,
1986; Folgori et al.,
2010; Joshi et al.,
1993; Mitra et al.,
2005, 2011; Paller
et al., 1991; Privette
et al., 2014; ŞentÜrk
et al., 1998; Shoimer
et al., 2016;
Szczawińka-
Popłonyk et al., 2020;
Woelke et al., 2018)

TAP1/TAP2
deficiency

Epithelioid
granuloma,
necrotizing
granulomatous
skin lesion

Extremities,
midface, legs,
other parts of
the body

Septal perforation
and cartilage
destruction

Infancy - adulthood
(3–26y)

Complete absence of HLA I
on CD8 + cells, low CD8+,
normal/increased CD19 +
and CD56 + .

Corticosteroids,
methotrexate,
clarithromycin (null/
partial improvement),
HSCT

(Darazam et al.,
2022; Gadola et al.,
2008; Konstantinou
et al., 2013; Law-
Ping-Man et al.,
2018; Moins-
Teisserenc et al.,
1999; Tsilifis et al.,
2021)

Cartilage
hair
hypoplasia

Sarcoidal,
tuberculoid,
epithelioid,
histiocytic
palisading

Limb
(monomelic),
nose, lips, chin,
cheeks, scalp,
buttocks.

Bone, nasal
septum, larynx,
lymph node,
spleen, Diffuse
(fetal) in skeletal

Fetal; infancy -
adolescence (1y – 13
y)

T cell lymphopenia, Low
IgG and IgA, Intermittent
neutropenia

Anti- TNF-α, (partial
remission), HSCT
(remission)

(Crahes et al., 2013;
Leclerc-Mercier et al.,
2019; McCann et al.,
2014; Moshous et al.,

(continued)
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TABLE 1 Continued

Type Skin
granulomas

Non
cutaneous
granulomas

Age of
presentation

(approximative)

Immunologic
Findings

Treatment
(effect)

References

(necrobiotic)
granuloma.

muscle,
myocardium,
pancreas, spleen,
bladder, liver,
uterus, thyroid,
lungs.

2011; Sathishkumar
et al., 2018)

CGD Non-caseating
granuloma

Diffuse;
granulomatous
acne

Gastrointestinal
tract, lung, eye,
testis, bladder

Infancy - adulthood – Corticosteroid,
isotretinoin, surgery,
HSCT

(Dunogué et al.,
2017; Magnani et al.,
2014)

Blau
Syndrome

Non-caseating
granuloma

Trunk,
extremities

Granulomatous
uveitis, hepatic
and renal
granulomatosis,
granulomatous
arteritis,
granulomatous
lymphadenitis,
Synovia

Childhood -
adolescence (3-12
years)

– Corticosteroid,
immunosuppressive
agents

(Jabs et al., 1985;
Sfriso et al., 2012;
Ting et al., s.d.)

PLAID Non-caseating
granuloma

Finger, nose,
ears, feet.

Soft palate and
larynx.

Birth - childhood. Low switched memory B-
cells. low or low-normal NK
cells. Low serum IgM, IgA.
poor antibody responses to
pneumococcal vaccines.
Positive ANA,

Spontaneous
disappearance is
described; cold
avoidance,
antihistamines,
antibiotic prophylaxis
and/or
immunoglobulin
replacement

(Milner, 2015;
Ombrello et al., 2012;
Shea et al., 2020)

CVID, common variable immunodeficiency; CID-G/AI, combined immunodeficiency with granulomas and/or autoimmunity; CGD, Chronic Granulomatous Disease; HSCT,

hematopoietic stem cell transplant; IVIG, Intravenous immunoglobulin; PLAID, PLCG2 associated antibody deficiency and immune dysregulation; TNF-α, tumor necrosis

factor alpha; y, years; mo, months.
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where the Bacille Calmette-Guérin (BCG) vaccine, containing live-

attenuated Mycobacterium bovis bacilli is administered, IEI patients

may present with localized granulomatous inflammation termed

BCG-itis or disseminated “BCG-osis” (77–79). This may be the

first presentation of CGD or SCID and may present challenges in

patient management if HSCT is considered since pre-transplant

infection and/or inflammation is associated with poor outcomes.

Further, granulomatous lesions may only manifest after

engraftment and lead to significant morbidity (80, 81).

Very early onset IBD (VEO-IBD) includes a heterogenous group

of monogenic IEIs presenting with inflammatory (non-infectious)

bowel disease, occasionally with granulomas, prior to age 6 (82).

Commercial targeted gene panels for VEO-IBD typically test over

65 genes (83). Readers are referred to comprehensive reviews on

monogenic causes of VEO-IBD for further information (83, 84).
Disorders of autoinflammation and primary
atopic disorders

Autoinflammatory diseases encompass disorders of pathogenic

inflammation secondary to intrinsic immune pathway

hyperactivation (85). Autoinflammatory syndromes due to

hyperactivation of the NF-κB signaling pathway may be associated

with granuloma formation. These disorders are also typically

associated with exaggerated TNF activity. The major disorder
Frontiers in Pediatrics 05
associated with granulomas in this category is Blau syndrome due

autosomal dominant NOD2 pathogenic variants (86). NOD2

variants are also associated with susceptibility to Crohn’s disease,

characterized by non-caseating granulomas within the

gastrointestinal tract (87). Patients classically present within the

first decade of life with a combination of granulomatous dermatitis,

erythema nodosum, uveitis and polyarticular arthritis (86).

Granulomas infiltrating the liver and kidney have been described

in Blau Syndrome (88). Recently, a Japanese patient with a

pathogenic NOD2 variant was diagnosed with Blau syndrome

following BCG vaccination suggesting that infectious triggers may

play a role in granuloma formation of this disease (89).

Granulomatous inflammation has also been observed in autosomal

dominant RelA haploinsufficiency leading to NF-κB

hyperactivation (90). Systemic glucocorticoids are used as an initial

treatment however TNF-α inhibitors have shown significant

therapeutic benefit in both RelA haploinsufficiency and Blau

syndrome (91, 92).

Phospholipase C gamma 2–associated antibody deficiency and

immune dysregulation (PLAID) is a disorder of autoinflammation,

autoimmunity, immunodeficiency, and a primary atopic disorder

(93). Phospholipase C gamma 2 (PLCG2) hydrolyzes

phosphatidylinositol-4,5-bisphosphate into diacylglycerol and

inositol trisphosphate, triggering calcium release from the

endoplasmic reticulum to mediate cell activation (94). Heterozygous

pathogenic deletions in the autoinhibitory domain of PLCG2 cause a
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PLAID phenotype since it leads to constitutive activation of the

PLCG2 enzyme (95). Patients present with recurrent sinopulmonary

infections, urticaria triggered by evaporative cooling, granulomatous

dermatitis, hypogammaglobulinemia and various autoimmune

manifestations (93, 96). Cutaneous granulomatous lesions are

present in 25% of patients and among these subjects many

developed skin lesions on the nose, ears and fingers within the first

few days of life. These lesions may spontaneously resolve in the vast

majority of patients however sometimes they may persist and lead to

tissue damage and destruction of nasal and auricular cartilage (97).

Furthermore, in some cases granulomatous dermatitis may have a

later onset affect especially cold exposed areas (97). Histological

characteristics of granulomas in PLAID are similar to CVID with a

core of tissue resident macrophages including multinucleated giant

cells surrounded by a lymphocytic infiltrate. In this disease the most

likely pathogenetic trigger is the spontaneous activation of

neutrophil and monocytes by cold exposure (98). Treatment

includes cold avoidance, daily high dose nonsedating antihistamines,

antibiotic prophylaxis and/or immunoglobulin replacement (96).

The use of anti-inflammatory drugs or immunomodulators has not

shown significant clinical efficacy in PLAID (96).
Rubella-associated granulomatous
inflammation: a potential trigger for
significant IEI morbidity

As described previously, live-attenuated RuV RA27/3 vaccine

strain has been identified in cutaneous and visceral granulomas

in IEI patients (99) (Table 2). This finding highlights the

importance for thorough antigen screening in tissue biopsy

particularly since treatment of granulomas in IEI has classically
TABLE 2 Well-described pathogens identified in IEI granulomas.

Etiology Common site of
presentation

Types of IEI

Mycobacteria Skin, BCG vaccine site, lymph
nodes, bone, lung, bowel, liver,
adrenal, aorta, kidney, nerve,
muscle, testis, pericardium

MSMD (IL-12/IFN-y axis), anti
autoantibodies, NEMO deficienc

Rubella RA27/3
vaccine strain

Skin (face limbs, diffuse), lung,
spleen, kidney, lymph nodes,
bone marrow, and liver.

AT, ADA-SCID and CID
(predominant). Also observed in
X-SCID, RAG1/2 deficiency, NB
DiGeorge Syndrome, CHH, Arte
deficiency, MHC II deficiency, M
Walker syndrome, McKusic synd
TAP1 deficiency, WHIM syndro
Coronin 1A deficiency.

Coccidioides
spp.

Disseminated infection IL-12/IFN-γ and STAT3 signalin
pathways disregulation; CID due
CTPS1 biallelic variants. Impaire
α signaling due to CLECL7A, PL
variants; Impaired Hydrogen per
production due to monoallelic D
DUOXA1 variant

AT, ataxia-telangiectasia; CID, Combined immunodeficiency; CHH, Cartilage hair hyp

histocompatibility complex; MSMD, Mendelian Susceptibility to mycobacterial disease

SCID, Severe combined immunodeficiency; XLA, X-Linked agammaglobulinemia.
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focused on use of immunosuppression. The RuV antigen and/or

RNA has been identified in at least 66 IEI cases -predominantly

cases of AT and CID, and defects of cytotoxicity, but much

rarer in primary antibody deficiencies (10, 57). Of note, varicella

zoster vaccine, mumps and RuV vaccine strain were all

identified in granulomas of a patient with late onset

hypomorphic RAG2 deficiency (100). The causal role for RuV in

granulomas remains to be defined. Recently, both wild-type

and vaccine strain RuV has been isolated from

cutaneous granulomas of 4 presumed immunocompetent

adults (9, 101). However, laboratory evaluation in these

patients did reveal immunologic abnormalities including

lower CD8+ T cells, lower T-cell mitogen responses, reversed

ratio of CD8 + to CD4+ T cells, and/or low serum

immunoglobulins (101).

Viral genome sequencing has revealed multiple nucleotide and

amino acid substitutions in the RA27/3 vaccine strain identified in

IEI granulomas. These vaccine strains have been termed

immunodeficiency-related vaccine-derived rubella viruses (iVDRVs)

(47). In IEI patients iVDRVs persist within M2 macrophages,

neutrophils, and epidermal keratinocytes (34). It is thought that

long-term iVDRV reservoir stems from neutrophils and

macrophages residing in the bone marrow (46, 47). Further natural

history and mechanistic studies are required to further characterize

whether iVDRV is causing granulomas in IEIs. Impaired CD8 T

cell repertoire could be a plausible mechanistic insight since CD8

T cell memory is critical for Rubella virus control, and CD8 T cell

repertoire decreases with age (102, 103). To date no significant

clinical improvement for RuV-associated granulomas has been

derived by pharmacotherapy and HSCT remains the only definitive

management if indicated by the clinical severity of the underlying

IEI (10).
Common therapy used References

IFN-y
y, SCID

Depending on the species, a
combination of first and second line
antitubercular drugs, antibiotics and
surgery. (Wi, 2019)

(Abramowsky et al., 1993;
Dolezalova, Karolina et al.,
2022; O’Connell et al., 2012;
Süleyman et al., 2022; Xu et al.,
2019)

CVID,
S, XLA,
mis
arden-
rome,
me,

Nitazoxanide, local corticosteroid (no
improvement); IVIG (moderate
improvement), rapamycin, rituximab,
infliximab, interleukin-2 (moderate
effect); HSCT (remission).

(Browne et al., 2022; Murguia-
Favela et al., 2019; Perelygina
et al., 2020; Shoimer et al.,
2016)

g
to
d TNF-
CG2
oxyde
UOX1/

Antymicotic drugs (fluconazole), IVIG. (Hsu et al., 2022; Krase et al.,
2022; Odio et al., 2017)

oplasia; IFN-γ, interferon gamma; IVIG, intravenous immunoglobulin; MHC, Major

; NBS, Nijmegen-Breakage Syndrome; HSCT, hematopoietic stem cell transplant;

frontiersin.org

https://doi.org/10.3389/fped.2023.1110115
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Sacco et al. 10.3389/fped.2023.1110115
Coccidioides – an endemic fungus causing
granulomatous inflammation increasingly
identified in IEI

Coccidioidomycosis, known as Valley Fever, is caused by the

pathogenic fungus Coccidioides, endemic to the Southwestern

United States (104, 105). Symptomatic illness occurs in around

30% of those infected with disseminated disease in <1% (104, 106).

Known risk factors for disseminated disease include secondary

immunodeficiency due AIDS, chemotherapy, solid organ-and

hematopoietic stem cell transplantation, and immunomodulatory

biologics (107). Only 14 patients with disseminated

coccidioidomycosis (DCM) had been reported in the literature

having mutations impairing immune function – 12 within the IL-

12/IFN-γ and STAT3 signaling pathways (107–109) and a 5-year-

old male with CTPS1 deficiency - a disorder of impaired

lymphocyte proliferation (110). A recent publication of a largely

adult DCM cohort described mutations in CLECL7A and PLCG2

which impaired TNF-α signaling, and heterozygous variants in

DUOX1 and DUOXA1 which impaired hydrogen peroxide

production (8). A query of the USIDNET database containing

information on 5,485 IEI patients in the United States identified 10

patients with a history of Coccidioidomycosis (111). Patients with

persistent presumed non-infections granulomatous inflammation

can go undiagnosed for coccidioidomycosis (112). In IEI and

immunocompromised patients, serology and immunofixation has

poor sensitivity thus the diagnosis must be ruled out by tissue

biopsy (113, 114). Identification of Coccidiodes by tissue biopsy is

thus of increasing importance in IEI patients within the

Southwestern United states particularly in those where the use of

immunomodulators as therapeutics is being considered.
Diagnostic workup and management of
granulomas in IEI

A detailed understanding of the etiology, or at least the

inflammatory process of an underlying granuloma is key to direct

treatment. For this, obtaining a tissue biopsy for histology and

culture is imperative. Apart from acid-fast staining for

Mycobacteria, and Giemsa staining for fungal etiology, cultures

should be prolonged enough to detect possible fastidious

organisms. In some cases where biopsy may not be obtained or

cultures remain negative, cell-free DNA testing can help identify

less common organisms (115) to enable targeted antimicrobial

therapy. Antimicrobial target genes have been identified in

granulomas of sarcoidosis patients (116). Cytokine gene expression

in granulomas can be quantified using techniques such as

RNAScope® (117). Complete surgical excision should be considered

whenever granulomas may cause anatomic obstruction or if there

is insufficient response to pharmacotherapy. Identification of an

underlying pathogen warrants guideline-directed antimicrobial

therapy. In the case of antimicrobial therapeutics, this is best done

in liaison with infectious disease specialists and tailored to the

presumed pathogen based on the underlying IEI. Recombinant

interferon-gamma (IFNγ) has been used to aid pathogen clearance
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in IEIs mycobacterial disease, CGD and Coccidioidomycosis. In the

case of immunomodulation, there is a longstanding knowledge of

using systemic glucocorticoids for inflammatory granulomas in

CGD (59, 118). Nitazoxanide, an antiparasitic drug with antiviral

properties has been used in IEIs with RuV-associated granulomas

(119). Use of oral nitazoxanide was associated with decreased

Rubella virus antigen or elimination from granulomas; however,

this treatment did not translate into clinically meaningful outcomes

(38, 119). Several patients with RuV-associated granulomas

underwent allogeneic HCT (120) Patients with lower co-morbid

disorders had improved outcomes which suggests that early

detection and characterization of RuV-associated granulomas has a

bearing on patient outcomes (120).
Perspectives and futures directions

The advancement of minimally invasive surgical procedures has

facilitated obtaining tissue biopsy to characterize granulomas in IEI.

Further, histopathologic staining and genetic sequencing can help

characterize the inflammatory milieux and possible pathogenic

triggers for granulomatous inflammation. This has both

prognostic and therapeutic implications, particularly since empiric

use of immune suppressive agents can worsen underlying latent

infections. The granuloma structure has been described in the

mammalian superorder Archonta (including primates) and

Laurasiatheria (including carnivores and ungulates) (121).

Granulomatous inflammation in preceding animals such as fish

does not reflect the complex architecture seen in primates (122).

Non-human primates remain a well characterized model of

Tuberculosis-induced granulomas however studies are hindered

by length of time needed for granuloma formation and

requirement of biosafety level 3 laboratories (123). Mouse models

of tuberculous granulomas further do not mirror the granuloma

architecture seen in humans (124). Inoculation of iVDRV in

hypomorphic models of Rag1-mutant mice (125) was

unsuccessful in eliciting granulomatous inflammation (126). A

heterozygous Stat4-mutant mouse model shows predisposition to

disseminated Coccidioidomycosis however lung histology is

characterized by lymphocyte infiltration rather than

granulomatous inflammation (109, 127). In vitro human

granuloma models have been developed to circumvent the

difficulties of studying granulomatous inflammation in animal

models (128). An in vitro human granuloma model may help

characterize mechanisms in granuloma formation as has been

observed in various IEI from a clinically phenotypic standpoint.

IEIs provide a fascinating template to characterize the

heterogeneity and kinetics of granulomatous inflammation.

Further characterization of granulomas in IEI can facilitate

development of diagnostics and targeted therapeutics for more

common granulomatous disorders such as sarcoidosis.
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