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Background:Mitochondria have long been considered a potential target in cancer
therapy because malignant cells are known for their altered energy production.
However, there is a lack of comprehensive research on the involvement of
mitochondria-associated proteins (MAPs) in neuroblastoma (NB), and their
potential as therapeutic targets is yet to be fully explored.
Methods: MAP genes were defined based on the protein-coding genes with
mitochondrial localization. The mRNA expression patterns and dynamics of MAP
genes associated with NB were investigated by integrating publicly available
transcriptional profiles at the cellular and tissue levels. Multivariate Cox
regression analysis was conducted to reveal the association of MAP genes with
the overall survival (OS) and clinical subgroups of NB patients. The single-cell
RNA-seq dataset and gene dependency screening datasets were analyzed to
reveal the therapeutic potential of targeting MAP genes.
Results: We compiled a total of 1,712 MAP genes. We found the global and cell
type-specific mRNA expression changes of the MAP genes associated with NB
status and survival. Our analyses revealed a group of MAP gene signatures
independent of MYCN-amplification status associated with NB outcome. We
provided computational evidence with selected MAP genes showing good
performance in predicting long-term prognosis. By analyzing gene dependency
of the MAP genes in NB cell lines and ex vivo human primary T cells, we
demonstrated the therapeutic potential of targeting several MAP genes in NB
tumors.
Conclusions: Collectively, our study provides evidence for the MAP genes as
extended candidates in NB tumor stratification and staging, prognostic
prediction, and targeted drug development.
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Background

Childhood neuroblastoma (NB), one of the most common

extracranial solid tumors in children, accounts for approximately

6%∼10% of all childhood cancers (1). Although NB has been

revealed to arise from the precursor cells of the sympathetic

nervous system and adrenal medulla (2, 3), the clinical course of

NB is highly heterogeneous, which poses a challenge for NB

therapy, particularly for high-risk patients whose long-term

survival is below 50%. Advances in our understanding of the

relevant clinical and biological features have made it possible to

more accurately stratify tumor risk and improve NB treatment

(4). A unified clinical consensus on NB treatment recommends

combining multiple molecular markers (5).

The understanding of NB development, risk classification, and

tumor staging have been improved through many tumor genetic

analyses, which revealed the importance of segmental

chromosomal alterations (SCAs) and specific genetic variants.

Different SCAs have been found, including loss of 1p (6), 3p (7),

4p (6), 6q (8), and 11q (9), and gain of 1q (10), 2p (11), and 17q

(12). The specific genetic variants associated with the outcome of

NB patients include amplification of MYCN (13), DDX1 (14),

NAG (15), and ALX (16), and mutations in genes CASC15,

BARD1, CHEK2, LMO1, LIN28B, AXIN2, BRCA1, TP53,

SMARCA4, and CDK1NB (17). Despite such genetic findings,

only a few have been applied in clinical practice. MYCN

amplification is one of the most studied in predicting the

prognosis of NB patients. High-throughput technologies

advanced translational research in clinical oncology by allowing

us to explore the NB at different molecular levels. Gene

expression signatures derived from the transcriptomes associated

with NB subgroups can better characterize tumors’ molecular

profile and heterogeneity. In addition, integrating different gene

expression datasets can result in better NB patient stratification

compared to using these datasets individually (18).

Cancer cells are partially characterized by reprogrammed

energy generation; Therefore, studying mitochondrial-related

gene expression and regulation is of particular significance for

revealing NB prognosis and developing a potential target in

cancer therapy. However, a comprehensive assessment of the role

of mitochondria-associated proteins (MAPs) in NB has yet to be

conducted. Here, by integrating publicly available high-

throughput transcriptional profiles at the bulk tissue-level and

single cell-level resolutions, we systematically analyzed the MAP

gene expression dynamics in NB. We found the global and cell-

type-specific mRNA expression changes of the MAP genes

associated with NB status and OS. Our analyses revealed MAP

gene signatures independent of MYCN-amplification status

associated with the clinical outcome of NB patients. We provided

computational evidence for selected MAP genes showing good

performance in predicting long-term prognosis. By analyzing

gene dependency or essentiality for cell proliferation and survival

of these MAP genes in NB cell lines and human primary T cells,

we demonstrated the therapeutic potential of targeting several

MAP genes in NB tumors. Collectively, our study shows that

MAP genes could be potential candidates for staging tumors,
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predicting the prognosis of NB, and developing targeted drugs

for the disease.
Methods

Collection and processing of datasets

Dataset 1: cell line-based bulk RNA-seq data, obtained from

the Gene Expression Omnibus (GEO) database (19) under

accession number GSE89413 (20). This dataset is comprised of

39 commonly used NB cell lines and the other two control

samples: the hTERT-immortalized retinal pigmented epithelial

cell RPE-1, which is widely used as a non-neuroblastoma control,

and the cells from the pooled fetal brain, which can serve as a

non-neuroblastoma neural-cell derived control.

Fragments Per Kilobase of transcript per Million mapped reads

(FPKM) values were downloaded and converted to TPM, short for

transcripts-per-million, following the formula: TPMi = FPKMi/

Sum(FPKMj)*10
6, where i denotes the i-th gene and j denotes

the j-th subject. We further excluded low-expressed genes with

the averaged TPM≤ 3 across all the samples. Log2-transformed

(TPM + 1) values were used and further normalized with the

normalize.quantile function in the “preprocessCore” (v1.50.0)

package. Differential expression analysis based on the linear

model by weighted least squares was conducted with the “limma”

package (25), and genes with the adjusted P values < 0.05 were

identified to be differentially expressed.

Dataset 2: primary NB tissue-based bulk RNA-seq data from

the RNA Sequencing Quality Control (SEQC) cohort,

downloaded from the GEO under accession number GSE49711

and GSE62564 (21). This dataset contained gene expression

profiles of 498 NB patients and the corresponding clinical

information, including MYCN status, clinical risk level (high or

low), disease stage according to International Neuroblastoma

Staging System (INSS) (1, 2, 3, 4, and 4S) (22), the occurrence of

a tumor progression event (yes = 1; no = 0), and occurrence of

death from the disease (yes = 1; no = 0).

In this project, gene expression was quantified using log base 2

of the number of bases aligned in the gene, divided by the number

of terabases aligned in known genes and by the length of the gene

(21). We directly downloaded this gene expression matrix. 1,259

MAP genes were included. Principle component analyses (PCA)

of the MAP gene expression matrix subset were conducted and

visualized with the functions from the “FactoMineR” (v2.4) and

“factoextra” (v.1.0.7) packages. Differential expression analyses

were conducted between subgroups for each clinical parameter

with the “limma” package.

Dataset 3: single-cell RNA-seq (scRNA-seq) dataset of NB

tissues, downloaded from the GEO under accession number

GSE137804 (2). Raw counts of single cells were obtained. We

first excluded low-quality cells with less than 500 genes detected

and more than 10% of genes derived from the mitochondrial

genome. The filtered gene expression matrix was then

normalized with Seurat’s NormalizeData function (23), in which

feature counts for each cell were divided by the total counts for
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that cell, multiplied by the scale factor (10,000), and then subjected

to natural-log transformation using log1p. Highly variable genes

were identified and used for the subsequent PCA, which was

performed using graph-based clustering and visualized using

t-Distributed Stochastic Neighbor Embedding (t-SNE) or

Uniform Manifold Approximation and Projection (UMAP) with

the RunTSNE and RunUMAP functions. We integrated the cells

from each NB tumor with Seurat’s FindIntegrationAnchors and

IntegrateData functions.

Dataset 4: MAP gene dependency of cell viability dataset,

downloaded from the Dependency Map (DepMap) portal

(v21Q3, https://depmap.org/portal/) (24), one of the largest

collections of CRISPR screening studies in 1,054 kinds of human

cancer cells from 30 lineages. Genome-wide gene dependency

scores were quantified using CERES method by adjusting copy

number amplification effect, where the scores of 0 and −1
represent the median effects of nonessential genes and common

core essential genes, respectively (25). In this study, we used a

cutoff of −0.5 to define cellular dependency and essentiality of

the MAP genes in 31 cell lines belonging to the NB lineage.

Dataset 5: Genome-wide CRISPR screens in primary human

T cells for identifying gene targets that regulate T cell

proliferation in response to T cell receptor stimulation. The

sgRNAs targeting specific genes were defined to be regulators of

T cell proliferation by calculating the abundance-based rank

difference between the highly dividing cells and non-dividing

cells (26).
MAP gene collection

The MAP genes were extracted and combined from the

MitoCarta (v3.0; https://www.broadinstitute.org/mitocarta) (27)

and the human protein atlas (HPA; https://www.proteinatlas.org/)

databases (28). Specifically, the MitoCarta3.0 is an inventory of

1,136 human and 1,140 mouse genes encoding proteins with

support of mitochondrial localization, now with sub-mitochondrial

compartment and pathway annotations; the cell atlas of the HPA

project contains 1,156 genes which have been shown to localize to

mitochondria.
Mapping MAP genes to MitoPathways

According to the MitoCarta database, MAP genes were

annotated to eight major Mitochondrial Pathways

(MitoPathways), including mitochondrial central dogma, protein

import and sorting, protein homeostasis, oxidative

phosphorylation (OXPHOS), metabolism, small molecule

transport, signaling, and mitochondrial dynamics and

surveillance (29). For the MAP genes exclusively in the HPA

database, we conducted Gene Ontology (GO)-based gene-level

semantic similarity analysis with the GOSemSim package

(v2.14.2) (30). Each of these genes was annotated to the

MitoPathway with the highest similarity score with the clusterSim

function by comparing the target genes to those annotated in
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BMA”. The genes annotated to >3 sub-pathways were excluded

from our annotation pipeline. We obtained a total of 1,191 MAP

genes annotated to the eight MitoPathways.
Collection of putative target genes of MYC
transcription factor

This gene set was downloaded from the Gene Set Enrichment

Analysis website (https://www.gsea-msigdb.org/) (31) with the

standard gene set name of DANG_MYC_TARGETS_UP, which

was defined by the genes upregulated by MYC and whose

promoters are bound by MYC, according to MYC target Gene

Database. This gene set contains 144 members mapped to 130

genes.
Pan-cancer analysis of MAP genes

The mRNA expression data sets generated by The Cancer

Genome Atlas (TCGA) project (32) were downloaded using the

UCSCXenaTools package (33). Sample barcode was annotated

with the TCGAutils package (34). We used the Level-3 gene

expression data sets from 21 cancer types, including the LUAD

(Lung Adenocarcinoma), ACC (Adrenocortical Cancer), CHOL

(Bile Duct Cancer), BLCA (Bladder Cancer), BRCA (Breast

invasive carcinoma), CESC (Cervical Cancer), COAD (Colon

adenocarcinoma), ESCA (Esophageal cancer), GBM

(Glioblastoma), KIRC (Kidney Clear Cell Carcinoma), KIRP

(Kidney Papillary Cell Carcinoma), LUSC (Lung Squamous Cell

Carcinoma), SKCM (Melanoma), LIHC (Liver Cancer), LGG

(Lower Grade Glioma), OV(Ovarian Cancer), UVM (Ocular

melanomas), PAAD (Pancreatic Cancer), PRAD (Prostate

Cancer), STAD (Stomach Cancer), and THCA (Thyroid Cancer).

Because normal samples from the TCGA project are typically

limited in the number for many cancer types, we used normal

expression data from the GTEx project (https://www.gtexportal.

org/). For GTEx datasets, we downloaded the “gene expression

RNAseq—TOIL RSEM expected_count” matrix from the Xena

project. GTEx samples were grouped according to the tissues

corresponding to the TCGA cancers. Gene IDs and symbols were

mapped and converted with the “org.Hs.eg.db” package (35). All

the gene expression RNAseq datasets from Xena were generated

with a same data processing pipeline to create a consistent meta-

analysis of different datasets free of computational batch effects

(36). Differential gene expression analyses were conducted with

the “limma” package, and survival analyses were conducted with

the GEPIA webserver (37).
Functional enrichment analyses

We employed different methods for functional enrichment

analysis based on the different gene lists we were concerned with

as indicated in our manuscript. Gene-set enrichment analysis
frontiersin.org
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(GSEA) is a computational method that determines whether an

a priori-defined set of genes shows statistically significant,

concordant differences between two conditions. For dataset 1, we

tested the enrichment of each MitoPathway gene set using the

ranked MAP genes based on their mRNA fold changes values.

Gene Ontology (GO) term analysis was performed by comparing

the gene set of interest to a reference set of genes that have been

annotated with GO terms. GSEA and GEO term analyses were

performed with the runGSA and runGSAhyper functions,

respectively, which were embedded in the piano package (38).
Cox regression-based survival analyses and
important gene/feature selection

A univariate Cox regression analysis was performed to reveal

the association between the genes and the OS of NB with the

“survival” package (v3.1.12) in the R environment. The genes

with log-rank P < 0.05 were considered to be the prognosis-

related genes and further subjected to a feature selection

procedure. The mRNA expression levels of the tested genes in

Cox regression analysis were separated into “high” and “low”

groups based on the ranking of the genes across all the patients.

A Lasso regression within a framework of five-fold cross-

validation was conducted to reduce the variable dimension and

select essential genes related to prognosis. The rated genes were

further subjected to a multivariate Cox regression analysis. Cox

regression and Lasso regression analyses were conducted with the

“glmnet” package (v4.1–2) (39). The model assessment was

performed using the time-dependent ROC analysis with the

“timeROC” package (v0.4)(40).
Results

MAP mRNAs express differently in NB cell
lines from normal cell types

At the beginning of our study, we compiled a list of 1,712 MAP

genes by integrating the HPA and the MitoCarta3.0 databases (see

Methods). Using publicly available bulk RNA-Seq data containing

39 NB cell lines and two types of normal cells (Dataset 1,

GSE89413; see Methods), clustering analyses based on the

mRNA abundance of top variant genes and MAP genes showed

a distinct separation between NB and normal cell types

(Figure 1A), suggesting a different pattern of global gene

expression in the NB cells and the ability of MAP genes to

characterize NB cell identity. To further assess the gene

expression alteration of these MAP genes in NB, we compared

their mRNA levels between NB cells and normal ones and found

143 MAP genes (adjusted P < 0.05; Supplementary Table S1)

showing significantly differential mRNA expression in NB cells

(Figure 1B). Based on the MitoPathway annotation (see

Methods), GSEA was performed to reveal the changes and

preference of molecular pathways in NB cells. We found several

gene sets that were significantly enriched (adjusted P < 0.1) by
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increased mRNA expression in NB cells, including the

mitochondrial central dogma, mitochondrial RNA metabolism,

translation, mitochondrial ribosome, mitochondrial DNA

maintenance, and oxidative phosphorylation (OXPHOS). In

contrary, the gene sets of vitamin A metabolism and ROS and

glutathione metabolism were enriched by repressed mRNA

expression in NB cells (Figure 1C). Of note, our differential

expression analysis of MAP genes revealed some known mRNA

expression biomarkers, such as LDHB (41), and HSPD1 (42),

whose upregulation was associated with NB tumor cell survival

and prognosis. We also noted 38 genes annotated in the

significantly changed pathways, including upregulation of

mitochondrial DNA encoding genes (MRPL50, MRPS23,

MRPL42, MRPL32, MRPL47, MRPL3, MRPL21, and MRPS21)

and downregulation of CEP89, AIFM2, and ZNFX1 in the NB

cell lines (Figure 1D). These results indicated that mitochondria-

related molecules undergo rewiring to create a supportive cellular

environment for NB cells to survive, thus demonstrating the

significance of monitoring the mRNA expression of MAP genes

in NB cells.
Characterizing MAP gene expression in
primary NB tumors in different clinical
subgroups

Although immortalized cell lines represent the most widely

used methods, they cannot reliably reflect the in vivo cellular

environment of tumors because human tumor tissues contain a

complex mixture of cell types and microenvironments (43).

Therefore, we examined MAP gene expression dynamics in

primary NB tumors using another publicly available bulk RNA-

Seq data from 498 subjects (Dataset 2, GSE49711; see Methods).

Interestingly, clustering analysis based on the MAP genes showed

that NB tumors were grouped by MYCN status, progression

events, high risk, or death from NB (Figure 2A), indicating that

MAP gene expression were associated with amplified MYCN,

tumor progression, higher clinical risk and higher risk of death

of NB tumors. In contrast, we found a weak classification effect

of the INSS stage information in NB tumors (Figure 2A),

suggesting a weak correlation between global expression of MAP

mRNAs and the four-level ordinal scale in the INSS stage, which

was further excluded from our following analyses.

Differential gene expression analysis (DEA) was performed

between subgroups for each of the remaining four parameters. A

total of 1,149 MAP genes (Supplementary Table S2) were

identified to be differentially expressed by combining the DEA

results, where approximately 61% were shared by all four

parameters, and 86% were shared by at least two parameters

(Figure 2B), indicating that these clinical parameters have largely

common molecular basis. This result was consistent with the

clinical relevance between these parameters, as shown by

overlapping the 239 NB tissues positive in high risk, progression

occurrence, MYCN status, or death of the disease (Figure 2C). In

order to thoroughly uncover these molecular changes, we

employed hierarchical clustering analysis of NB tumors according
frontiersin.org
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FIGURE 1

MAP mRNA expression changes in NB cell lines. (A). Multidimensional scaling plots of distances between gene expression profiles using the top 1,000
genes with the largest standard deviations between samples (left) or using all the MAP genes (right). Red colored labels indicate NB cell lines, black
colored labels indicate the control samples. (B). Volcano plot of MAP gene expression changes in NB cell lines. (C). Bar plot of significant
MitoPathways by GSEA analyses. Logarithmic adjusted P values are compared and plotted. Red bars indicate MitoPathways enriched by gene
expression upregulation, and cyan bars indicate that enriched by gene expression downregulation. (D). Heatmap of normalized mRNA levels of
highlighted MAP genes from significant pathways in NB cell lines and normal samples.
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to these four parameters and MAP genes with high fold changes

(>2-fold). The analysis revealed NB subgroups and subgroup-

specific MAP mRNA change signatures. Notably, our analysis

highlighted two groups of MAP genes: G1 group (62 genes),

which showed increased expression in concordance with MYCN

amplification; and G2 group (14 genes), which was uniquely

associated with NB tumors without MYCN amplification but

with high clinical risk (Figure 2D). Because MYCN encodes the

Myc oncogenic transcription factor, we compared the G1 genes

to those putative Myc target genes that can be up-regulated by

Myc and whose promoters are bound by Myc (see Methods), we

found only three genes (CKS2, APEX1, HSPD1) shared between

these two gene sets, indicating that the genetic regulatory

networks underlying the genesis of NB are much more

complicated than those related to the Myc regulatory network.

We noted that our analysis based on the primary NB tissues

reproduced some known markers for NB prognosis and high-

risk, including CKS2 that was considered a prognostic marker of

various tumors (44), PDK1 that could provide significant hints

for high-risk NB patients (45), and PIF1, one Myc-target gene,
Frontiers in Pediatrics 05
that could significantly repress tumor upon knockdown (46). We

also compared the differential gene sets obtained from the bulk

RNA-seq data of cell lines and primary tissues and found only

ten common genes in these two groups, including DGKA,

HSPD1, MTHFD2, LDHB, PAICS, SUV39H2, UNG, NT5DC5,

and DHFR (Figure 2E), which indicated the importance of using

tissue data to validate cell line-based data. Collectively, these

results demonstrated that MAP genes also altered their

expression pattern in primary NB tissues and showed a clinical

potential to stratify NB patients.
MAP genes exert cell type-specific mRNA
expression in NB tumor microenvironment
(TME)

Because tumor tissues are a complex mixture of cell types, we

next asked whether the expression changes of these MAP genes are

specific to certain cell types in NB TME or not. Therefore, we

investigated 160,839 single-cell transcriptomes from 16 NB
frontiersin.org
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FIGURE 2

Characterizing MAP gene expression in primary NB tumors in different clinical subgroups. (A) Principal component analysis (PCA) plots of the top two PCs
showing clustering relationship of 498 primary NB tumors by MYCN status, progression events, higher clinical risk, death from NB and INSS stages. (B)
Venn diagram of differential MAP genes by comparing subgroups in four clinical parameters. (C) Venn diagram of NB tumors positive in four clinical
parameters. (D) Heatmap of mRNA levels of top differential MAP genes (>2-fold) in NB tumors. Rows indicate MAP genes and columns indicate NB
patients, both clustered by hierarchical clustering method. Clinical annotations for each patient are shown on the top of the heatmap. Two groups of
MAP genes are highlighted and named as G1 and G2, shown on the right of the heatmap. (E) Venn diagram of MAP genes in G1, G2 and differential
ones in the bulk cell line dataset.
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tissues (Dataset 3, GSE137804; see Methods). Cell identity was

defined according to the original study (2), including eight major

cell types: neuroendocrine cells (tumor cell), T cells, myeloid

cells, B cells, Schwann stromal cells, fibroblasts, plasmacytoid

dendritic cells (pDCs), and endothelium cells (Figure 3A).

Comparing mRNA expression profiles between different cell

types revealed 106 MAP genes showing diverged mRNA levels

(adjusted P < 0.05; Supplementary Table S3). We identified 27

genes, which showed increasing mRNA levels specifically in

tumor cells (Figures 3B,C). Comparing the percentage of cells

with identified expression of these genes revealed that 22 out of

27 genes were mainly enriched in tumor cells (Figure 3C). We
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noted several mtDNA encoding genes, including MT-CO1, MT-

CO2, MT-ND2, and MT-ND4, and nuclear DNA encoding genes

but showing important roles in mitochondrial biogenesis,

including DUT and SOX4. Accordingly, we inferred that

mitochondrial production of NB tumor cells is accelerated. As

expected, we observed a high abundance of short read counts

mapping to mitochondrial DNA genes in tumor cells even after

the removal of low-quality cells (Figure 3D; see Methods).

To uncover the relevant molecular functions involved in the

complex ecosystem, we conducted gene co-expression analysis

between the MAP and non-MAP genes across all of the single

cells. We found 248 non-MAP genes showing a significant high
frontiersin.org
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FIGURE 3

Exploring cell type-specific expression changes of MAP genes in NB TME. (A) UMAP projection of the single cell dataset colored according to cell type
identity. Mye, myeloid cells; endo, endothelium cells; schwan, Schwann stromal cells; pDC, plasmacytoid dendritic cells; Bcell, B cells; Tcell, T cells; fibro,
fibroblasts. (B) Heatmap of differential MAP genes in each cell type. (C) Scatter plot of the percentage of cells with detected expression of differential MAP
genes in tumor and non-tumor cell types. Point size indicates the degree of gene expression foldchanges, point colors indicate up-regulation (red) and
down-regulation (cyan) in the tumor cells. (D) boxplots of the percentage of shorted reads aligned to mtDNAs in each cell type. (E) Heatmap of 284 genes
showing high correlation with MAP genes by pairwise gene expression correlation analysis across all the cells. (PCC > 0.4 or <−0.4). (F) Barplot of
significant enriched GO terms by the top correlated genes with MAP genes.
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correlation with MAP genes with Pearson correlation coefficient

(PCC) > 0.4 or <−0.4 (Figure 3E). GO term analysis revealed

that these correlated non-MAP genes were mainly from cell

cycle-related cellular pathways (adjusted P < 0.05), such as mitotic

nuclear division and chromosome segregation terms (Figure 3F).

Taken together, our analyses suggested that MAP genes exert cell

type-specific expression changes in NB tumors and possibly

underlie the malignancy characteristics of tumor cells, such as an

enhanced cell proliferation capacity than those non-tumor cells.
MAP genes can predict the clinical outcome
of NB patients

Combining the DEA results from each dataset, we totally

identified 1,301 differentially expressed MAP genes associated

with NB tumors or clinical subtypes, accounting for

approximately 76% of all MAP genes. Most of these differential

MAP genes had a high mRNA expression abundance in primary

NB tissues (Figure 4A). Univariant Cox proportional hazard

regression modeling revealed 880 MAP genes showing significant

association with the overall survival (OS) of NB patients (P <
Frontiers in Pediatrics 07
0.05). Out of these genes, 542 were identified to be risk factors

with higher mRNA levels in NB tumors, with the estimated

hazard ratio (HR) ranging from 1.48 to 17.03 (Figure 4A).

We next examined whether these OS-related MAP genes were

redundant and to what extent these genes could predict the

prognosis of NB. Pearson correlation analysis of the OS-related

MAP genes showed that around 27% of all pairwise genes

showed a significant correlation in the NB cohort with the

absolute values of PCC > 0.3 (Figure 4B), which was a challenge

to multivariate regression modeling because of the possible

multicollinearity problem. Therefore, we conducted a multivariate

regression analysis following an informative feature selection

procedure. The feature selection was conducted from 147

differential MAP genes shared by at least two datasets and

associated with NB OS. To minimize the adverse impacts raised

by overfitting or selection bias, we rated the importance of these

genes for clinical outcomes of the patients, dead or censored in

our data, using Lasso regression within a framework of 5-fold

cross-validation (see Methods). By doing so, we narrowed the

long gene list down to 15 (Figure 4C). We constructed a 15-gene

model to predict the death event in a time-dependent way with

the accuracy ranging from 0.8765 to 0.9678, which was
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FIGURE 4

MAP genes can predict clinical outcome of NB patients and exert additive effects. (A) Dot plot of expression levels in the bulk tissue dataset of differential
MAP genes combining all three datasets (bottom); barplot of the differential MAP genes by ranking the hazzard ratio values obtained by univariant Cox
proportional hazard regression analyses (middle); annotation differential MAP genes in the single cell dataset and bulk cell line dataset (top). Red bars in
the middle panel indicate significant association with overall survival (P < 0.05). (B) Histogram of Pearson correlation coefficient between all pairwise of
MAP genes by comparing their mRNA level in all samples in the bulk tissue dataset. (C) Line plot of ranked standard importance of selected MAP genes by
a Lasso regression analysis. (D,E) Line plots of the estimated AUC under the time-dependent ROC at each time point with the two-gene model (D) and the
full-gene model (E).
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significantly higher than that of the 2-gene model based on the top

2 important genes (PGM2L1, CKS2) (t-test, P < 2.2e-16;

Figures 4D,E). Moreover, the accuracy of the 2-gene model

decreased sharply over time in comparison with the 15-gene

model, especially for survival predictions after 4,000 days. We

also compared our 15-gene model to those proposed in previous

studies: The first one is a three-gene model, including CKB, DST,

and DUT; and the second one is a six-gene model, including

CYLD, JAK1, APC, ERH, CNBP, and BAX. In our used NB

cohort dataset, we didn’t find the expression of DST and APC.

Therefore, we compared our 15-gene model to the two-gene

model (CKB, and DUT) and the five-gene model (CYLD, JAK1,

ERH, CNBP, and BAX). Our 15-gene model perform better than

these two models (Supplementary Figures S1, S2). These results

together demonstrated that our 15-gene model can accurately

predict NB prognosis.
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MAP genes are essential for cancer cells but
not for the proliferation of ex vivo human
primary T cells

Because our study revealed that NB cells tend to aberrantly

increase mitochondrial synthesis, we next evaluated the potential

of targeting MAP genes in NB therapy by analyzing gene

dependency assay based on genome-wide CRISPR screening

(Dataset 4, see Methods), which is an informative and powerful

tool for identifying the gene that are critical for the survival and

proliferation of cancer cells. We found a total of 544 MAP genes

that were essential for at least one NB cell line, out of which 278

showed higher degree of essentialities that repressed cell survival

upon knockout in at least 10 cell lines (Figures 5A,B).

We next evaluated whether targeting these genes in clinical

therapeutics, if possible, can disturb the tumor-associated
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FIGURE 5

Characterizing MAP genes essential for cancer cells but not for ex vivo human primary T cells. (A) Simplified boxplots of all MAP genes ranked based on
the estimation of gene essentiality in NB cell lines. (B) Barplot of ranked MAP genes based on the gene essentiality scores (up panel), indications of overlap
with the DEGs identified in three datasets (middle panels), and indications of overlap with the MAPs identified in CRISP-Cas9 dataset derived from T cells
(bottom panel). (C) Selected MAP gene candidates overlapped between at least two dataset and the T cell dataset.
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immune microenvironment. We investigated the cellular effects of

targeting these genes on the T cells, which play the most important

roles in the anti-tumor immune response. Using a genome-wide

CRISPR-Cas9 screening data from the primary human T cells

(26) (Dataset 5; see Methods), we found that 50 of these MAP

genes would not inhibit T cell differentiation ex vivo (P > 0.05),

our of which 27 MAP genes were identified in at least two

datasets of Dataset 1–3 used in our study. Of note, our study

reproduced DUT to be a therapeutic candidate, which was

consistent with a previous study showing that targeted inhibition

of mitochondrial DNA transcription has shown an anti-tumor

effect in mice containing human ovarian carcinoma and

colorectal cancer cell xenografts (47). These collective results

were suggestive of the potential of targeting MAP genes in NB

therapeutics.
Pan-Cancer analysis of MAP genes

To explore whether some MAPs are always overexpressed or

underexpressed in many tumors, we also tested the expression

dynamics of these MAP genes in Pan-cancer datasets (see

Methods). We performed DEA by comparing the TCGA mRNA

expression dataset to the normal tissue expression data from the

GTEx. We found that each type of TCGA tumors contained an

average of 1,212 differential MAP genes (adjusted P < 0.05;

Supplementary Figure S3). Of note, approximately 85% of these

differential MAP genes were shared in more than 14 cancer

types (Supplementary Figure S4). We further found 104

differential MAP genes with high-fold change (>2 fold) and

high-frequency (>14 types) in human cancers (Supplementary

Figure S5). Interestingly, these MAP genes mainly exhibit two
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patterns: 43 MAP genes are mainly upregulated in the majority

of cancers, and the other genes are mainly downregulated in the

majority of cancers. Overlapping these MAP genes with NB-

associated differential MAP genes, we found some shared genes

including SOX4, CKS2, SUV39H2, DARS2, PYCR1, and PMAIP1.

These results collectively demonstrated the significance of

studying MAP genes in human pan-cancers.
Discussion

A feasible targeted therapy in NB is still urgently needed,

especially for patients with high-risk tumors. Because an

expanded set of targets would offer additional therapeutic

opportunities (26), in-depth and careful reanalysis of publicly

available NB-related gene expression profiles at different

dimensions will be helpful in identifying potential targets for new

treatments. In this study, we conducted a comprehensive and

integrated bioinformatics analysis on publicly accessible gene

expression data from neuroblastoma (NB) cell lines and primary

tissues at both the tissue and single cell level. Our results support

the use of MAP genes as potential markers for categorizing and

determining the stage of NB tumors, predicting outcomes, and

guiding the development of targeted treatments.

With the advance in the development of research techniques in

life science, genetic and molecular biomarkers have been frequently

examined for risk stratification and prognosis prediction in NB. For

instance, the outcome of NB patients has been revealed to be

associated with varying molecular signatures, including genetic

mutations of specific genes (48), the methylation status of RB1

and TDGF1 (49), detectable circulating tumor DNAs in blood

biopsy (50), and altered mRNA expression levels of specific gene
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lists (51–54). In this study, it was found that 542 mitochondria-

related protein-encoding genes were associated with the elevated

HR of NB patients, which reduced the OS with higher mRNA

levels. In addition, this adverse effect on the OS can be addictive.

Targeting mitochondria with activation of the cell death

machinery in cancer cells by inhibiting tumor-specific alterations

of the mitochondrial metabolism or by stimulating mitochondrial

membrane permeabilization has long been thought to be a

promising therapeutic approach (55, 56). Targeting mitochondria

of cancer cells requires precise delivery of the drugs to the

subcellular localizations, which poses challenges for the choice of

targets and the design of drug molecules. Our study presented

candidates by employing integration of tumor-associated mRNA

expression changes at the bulk tissue and single cell resolutions,

which extends the choice of molecular targets for targeting

mitochondria strategies.
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