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Analysis and comparisons of gene
expression changes in patient-
derived neurons from ROHHAD,
CCHS, and PWS
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Daniel Johnson4, Casey M. Rand5, Debra E. Weese-Mayer5,6

and Lawrence T. Reiter2,7,8*
1IPBS Program, Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN,
United States, 2Department of Neurology, University of Tennessee Health Science Center, Memphis, TN,
United States, 3Department of Pediatric Dentistry and Community Oral Health, University of Tennessee
Health Science Center, Memphis, TN, United States, 4Molecular Bioinformatics Core, University of
Tennessee Health Science Center, Memphis, TN, United States, 5Department of Pediatrics, Division of
Autonomic Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago and Stanley Manne Children’s
Research Institute, Chicago, IL, United States, 6Department of Pediatrics, Northwestern University
Feinberg School of Medicine, Chicago, IL, United States, 7Department of Pediatrics, University of
Tennessee Health Science Center, Memphis, TN, United States, 8Department of Anatomy and
Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States

Background: Rapid-onset obesity with hypothalamic dysfunction, hypoventilation,
and autonomic dysregulation (ROHHAD) syndrome is an ultra-rare
neurocristopathy with no known genetic or environmental etiology. Rapid-onset
obesity over a 3–12 month period with onset between ages 1.5–7 years of age
is followed by an unfolding constellation of symptoms including severe
hypoventilation that can lead to cardiorespiratory arrest in previously healthy
children if not identified early and intervention provided. Congenital Central
Hypoventilation syndrome (CCHS) and Prader-Willi syndrome (PWS) have
overlapping clinical features with ROHHAD and known genetic etiologies. Here
we compare patient neurons from three pediatric syndromes (ROHHAD, CCHS,
and PWS) and neurotypical control subjects to identify molecular overlap that
may explain the clinical similarities.
Methods: Dental pulp stem cells (DPSC) from neurotypical control, ROHHAD, and
CCHS subjects were differentiated into neuronal cultures for RNA sequencing
(RNAseq). Differential expression analysis identified transcripts variably regulated
in ROHHAD and CCHS vs. neurotypical control neurons. In addition, we used
previously published PWS transcript data to compare both groups to PWS
patient-derived DPSC neurons. Enrichment analysis was performed on RNAseq
data and downstream protein expression analysis was performed using
immunoblotting.
Results: We identified three transcripts differentially regulated in all three
syndromes vs. neurotypical control subjects. Gene ontology analysis on the
ROHHAD dataset revealed enrichments in several molecular pathways that may
contribute to disease pathology. Importantly, we found 58 transcripts
differentially expressed in both ROHHAD and CCHS patient neurons vs. control
neurons. Finally, we validated transcript level changes in expression of
ADORA2A, a gene encoding for an adenosine receptor, at the protein level in
CCHS neurons and found variable, although significant, changes in ROHHAD
neurons.
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Conclusions: The molecular overlap between CCHS and ROHHAD neurons suggests that
the clinical phenotypes in these syndromes likely arise from or affect similar
transcriptional pathways. Further, gene ontology analysis identified enrichments in ATPase
transmembrane transporters, acetylglucosaminyltransferases, and phagocytic vesicle
membrane proteins that may contribute to the ROHHAD phenotype. Finally, our data
imply that the rapid-onset obesity seen in both ROHHAD and PWS likely arise from
different molecular mechanisms. The data presented here describes important
preliminary findings that warrant further validation.
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1. Introduction

Rapid-onset Obesity with Hypothalamic dysfunction,

Hypoventilation, and Autonomic Dysregulation (ROHHAD) is a

devastating disorder that affects children primarily between the

ages of 1.5–7 years old with a rapid onset of symptoms (1–3).

ROHHAD is an ultra-rare neurocristopathy with only 200 cases

described or identified to date (3). The ROHHAD acronym

describes the typical order in which this disease unfolds.

Rapid-onset obesity, 20–30 pounds over a 3–12 month period, is

typically the first symptom that appears for ROHHAD patients

(3). This rapid-onset obesity is followed by hypothalamic issues

including altered salt/water balance, hypothyroidism, growth

hormone insufficiency, altered pubertal onset, and additional

hypothalamic symptoms (2). The autonomic nervous system

(ANS) dysfunction in ROHHAD includes gastrointestinal (GI)

dysfunction, ophthalmologic issues, thermal dysregulation, and

cardiac dysrhythmia (2). Nearly half of all ROHHAD patients will

present with a neural crest tumor, typically a ganglioneuroma or

ganglioneuroblastoma, but rarely a neuroblasoma (3). Alveolar

hypoventilation is the most devastating symptom, as it can have a

stealth onset and result in cardiorespiratory arrest, potentially

leading to severe morbidity or sudden death in previously healthy

children (1).

Currently there is no known genetic cause for ROHHAD. The

leading theories for the cause of ROHHAD are genetic, epigenetic

and autoimmune based (3–6). Potentially causative genes that have

roles in nervous system development have been investigated

including BDNF, ASCL1, NDN, ADCYAP1, OTP, PACAP, and

HTR1A (2, 7, 8). None of these genes could be correlated to

ROHHAD symptomology. Barclay et al. sequenced the exomes of

seven ROHHAD trios and found that no two subjects had the

same de novo variants (4). Monozygotic twins discordant for

ROHHAD were also sequenced with no genetic coding

differences noted (4). The authors suggest the possibility of

varying epigenomes between the identical female twins leading to

this discordance. The presence of anti-hypothalamus and anti-

pituitary antibodies in cerebrospinal fluid of ROHHAD patients

suggests a possible immune system mediated pathogenesis,

although only three case studies have been reported (6, 9).

Additionally, immunosuppressive drugs have been found to have

a positive effect on the neurological function of one ROHHAD

subject (10). To date, no underlying genetic or immunologic
02
etiology has been identified that can explain the ROHHAD

phenotype.

Currently, ROHHAD is diagnosed based on clinical

presentation after a related syndrome, Congenital Central

Hypoventilation Syndrome (CCHS) is ruled out. Similar to

ROHHAD, CCHS is a rare neurocristopathy with approximately

3,000 cases identified since 1970 (3). CCHS subjects typically

present with hypoventilation from birth and all subjects require

ventilatory support (3, 11–13). Unlike ROHHAD, CCHS is

caused by a genetic lesion in PHOX2B, a transcription

factor, primarily from polyalanine repeat expansion mutations

(PARMs). The lengths of the PARM repeats correlate linearly

with severity of symptoms while a subset of CCHS patients

possessing non-PARMs in the PHOX2B gene present with more

severe CCHS phenotypes (3, 11). CCHS presents with both ANS

dysfunction and hypoventilation, however, there is no rapid-

onset obesity and only rarely hypothalamic dysfunction. In terms

of ANS dysregulation, CCHS and ROHHAD exhibit overlapping

symptoms including ophthalmologic issues, GI dysmotility, and

increased pain perception thresholds (11–13). Some CCHS

patients, typically with an NPARM mutation in PHOX2B, also

present with neural crest tumors. The overlapping phenotypes in

these syndromes imply a similar molecular etiology, although

formal molecular links between ROHHAD and CCHS have not

yet been identified.

Prader-Willi syndrome (PWS) is a hypothalamic disorder with

some overlapping phenotypic features to ROHHAD including the

rapid-onset obesity (14). PWS is caused by the loss of paternal

specific expression of the genes SNRPN, SNURF, SNORD116 and

MAGEL2 in the PWS critical region (15q11.2–q13.3) on the 15th

chromosome. Although the trajectory of the rapid-onset

childhood obesity in PWS is less steep than that seen in

ROHHAD, and the age at onset differs, the obesity is a defining

feature of PWS and is accompanied by extreme hyperphagia

(15). Autonomic and hypothalamic dysfunction are present in

both PWS and ROHHAD syndrome. Hypothalamic dysfunction

overlapping both syndromes includes hypothyroidism, growth

hormone insufficiency, and altered pubertal onset. Autonomic

dysfunction overlapping the two syndromes includes GI

dysmotility, ophthalmologic manifestations, elevated pain

threshold and thermal dysregulation (2, 3, 8, 15, 16). Due to

these overlapping clinical features, the PWS critical region has

been studied in a ROHHAD cohort. Using both next-generation
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sequencing and methylation sensitive assays of the paternally

expressed genes in the region, no variation or loss of

heterozygosity was found in the ROHHAD cohort for this region

of interest (14). Although no genes within the 15q11.2–q13.3

region were found to be perturbed in ROHHAD, the similarities

between these syndromes leave open the possibility that the same

molecular pathways are co-regulated and warrants further gene

expression studies in patient-derived neurons.

To understand the molecular overlap among ROHHAD,

CCHS, and PWS, we performed RNA sequencing (RNAseq) on

neurons derived from dental pulp stem cells (DPSC) collected

from ROHHAD and CCHS individuals as well as neurotypical

controls. DPSC are multipotent stem cells of neural crest origin

and have been differentiated to a variety of cell types including

chondrocytes, adipocytes, and neurons (17–19). DPSC have been

found to recapitulate the epigenetic environment of embryonic

stem cells more accurately than induced pluripotent stem cells

and are obtainable without the need for invasive biopsies or viral

reprogramming (20, 21). Many groups have differentiated DPSC

to neuronal lineages showing morphological, transcriptional, and

functional characteristics of terminally differentiated neurons

(22–36). Our group and others have had success modeling

neurogenetic syndromes using these stem cells differentiated to

neuronal cultures (37–41). Using this unique patient-derived

stem cell model, we have observed molecular signatures and

cellular phenotypes of various syndromes in primary neurons

including Prader-Willi, Angelman, and Duplication 15q

syndromes (42–44). Here we utilize this system to differentiate

patient-derived DPSC lines to neuronal cultures for RNAseq in

order to identify the molecular similarities and find genotype/

phenotype correlations among ROHHAD, CCHS and PWS.

Early diagnosis and clinical intervention is critical for ROHHAD

patients, so identifying molecular markers distinguishing

ROHHAD from clinically related syndromes is as important as

identifying the molecular commonalities between these

syndromes with known genetic lesions.
2. Materials and methods

2.1. Obtaining teeth for DPSC cultures

Neurotypical control teeth were obtained through the

Department of Pediatric Dentistry and Community Oral Health

at the University of Tennessee Health Science Center (UTHSC).

Teeth from children with ROHHAD and CCHS were collected

remotely by the caregivers of these subjects after confirmation of

the underlying diagnosis. All subjects provided informed consent

for tooth collection (IRB#2009-13905 at Lurie Children’s

Hospital). All 6 ROHHAD subjects have received a ROHHAD

diagnosis. 8 of 11 patients were evaluated clinically at Lurie

Children’s Hospital and their diagnoses confirmed with CCHS-

related PHOX2B mutations in CCHS subjects (n = 5) and with

clinical phenotyping in ROHHAD subjects (n = 3). The excised

deciduous teeth were broken to reveal the pulp, cells cultured

and cell lines frozen during early passages for our DPSC
Frontiers in Pediatrics 03
Repository as previously described (21). The DPSC Repository

and molecular studies on DPSC-derived neurons were approved

by the UTHSC institutional review board prior to conducting

research (IRB #10-00878-XP).
2.2. Generation of dental pulp stem cell
cultures

DPSC used in this study were isolated and cultured according

to our previously described protocol and cell lines stored in the

DPSC Repository (21). Briefly, the dental pulp was removed

from inside the tooth cavity and minced. Following removal, the

pulp was digested with 3 mg/ml Dispase II and 4 mg/ml

Collagenase I for 1 h. Cells were then seeded on poly-D-Lysine

coated 12-well plates with DMEM/F12 1:1, 10% fetal bovine

serum (FBS), 10% newborn calf serum (NCS), and 100 U/ml

penicillin and 100 ug/ml streptomycin (Pen/Strep) (Fisher

Scientific, Waltham, MA). Once confluent (80%) cultures were

passaged using TrypLETM Express. Only early passage cells

(≤passage 4) were used for subsequent neuronal differentiation

and molecular studies.
2.3. Neuronal differentiation

DPSC lines were seeded at 20,000 cells/cm2 on poly-D-lysine

coated flasks with DMEM/F12 1:1, 10% fetal bovine serum

(FBS), 10% newborn calf serum (NCS), with 100 U/ml penicillin

and 100 ug/ml streptomycin (Pen/Strep). At 80% confluence, the

neuronal differentiation protocol was followed as previously

published in Kiraly et al., 2009 (37) with an extended maturation

phase (4 weeks vs. 7 days) (21). Briefly, DPSC were placed in

10 μM 5-azacytidine (Acros Scientific, Geel, Belgium) in DMEM/

F12 containing 2.5% FBS and 10 ng/ml bFGF (Fisher Scientific,

Waltham, MA) for 48 h. Following epigenetic reprogramming,

neuronal differentiation was induced by exposing the cells to

250 μM IBMX, 50 μM forskolin, 200 nM TPA, 1 mM db-cAMP

(Santa Cruz, Dallas, TX), 10 ng/ml bFGF (Invitrogen, Carlsbad,

CA), 10 ng/ml NGF (Invitrogen, Carlsbad, CA), 30 ng/ml NT-3

(Peprotech, Rocky Hill, NJ), and 1% insulin-transferrin-sodium

selenite premix (ITS) (Fisher Scientific, Waltham, MA) in

DMEM/F12 for 3 days. At the end of the neural induction

period, neuronal maturation was performed by maintaining the

cells in Neurobasal A media (Fisher Scientific, Waltham, MA)

with 1 mM db-cAMP, 2% B27, 1% N2 supplement, 30 ng/ml

NT-3, and 1X Glutamax (Fisher Scientific, Waltham, MA) for 28

days.
2.4. RNA sequencing of DPSC-neurons

After neuronal maturation for 28 days, total RNA was collected

from the DPSC-neurons using the Zymo Directzol RNA extraction

kit (Zymo, Irvine, CA). Prior to sequencing, RNA was assayed for

integrity and quality using the Agilent Bioanalyzer 6000 pico chip
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(Agilent, Santa Clara, CA). Only RNA with an RNA Integrity

Number (RIN) ≥9.0 was used for RNAseq studies. Library

preparation and RNAseq was performed by Novogene (NovaSeq

6000 PE150) (Sacramento, CA) using the Illumina platform and

paired end reads. 20 M paired-end reads per sample were collected.
TABLE 1 Overlapping clinical phenotypes of ROHHAD, CCHS, and PWS.
Data for ROHHAD and CCHS taken from Ceccherini, I., et al. (2022).
“Developmental disorders affecting the respiratory system: CCHS and
ROHHAD.” Handb Clin Neurol 189: 53–9. PWS data taken from Barclay,
S. F., et al. (2018). “ROHHAD and Prader-Willi syndrome (PWS): clinical
and genetic comparison.” Orphanet J Rare Dis 13(1): 124. Rapid-onset
obesity with hypothalamic dysfunction, hypoventilation, and autonomic
dysfunction (ROHHAD), Congenital Central Hypoventilation syndrome
(CCHS).

Clinical Observation ROHHAD CCHS PWS
Obesity Yes No Yes

Hypoventilation Yes Yes Sometimes
2.5. RNAseq analysis

FASTQ files from Novogene were analyzed for quality and

trimmed using FASTQC. All reads were trimmed to remove

nucleotides with Phred scores <Q20. The trimmed FASTQ files

were aligned to the human genome reference library hg19 using

RNASTAR (45). Once aligned, the SAM files were collected and

mined for read count information of each gene present in the

reference file. Read counts were normalized using Counts per

Million (CPM) method across groups for the entire experiment.

Principle component analysis and Pearson’s coefficient plots were

performed on the normalized transcriptome profile. A lmfit and

voom was used to perform differential expression analysis (45).

All genes that fail to yield a p-value ≤0.05 and a fold change

greater than 1.5 were removed. Benjamini and Hochberg false

discovery rate (FDR) was performed on this trimmed gene list.

All genes that failed to yield an FDR rate of ≤0.05 were

removed. The PWS RNAseq dataset used here is from our

previously published work (44) and accessible through the GEO

database (GEO#: GSE178687). To generate Venn diagrams the

final list of significantly differentially expressed genes were

uploaded into an online Venn diagram tool (http://

bioinformatics.psb.ugent.be/webtools/Venn/). Heatmaps were

created using the ClustVis web tool (46). Additionally, the targets

were loaded into the web based enrichment analysis tool, Gene

Ontology Enrichment Analysis and Visualization Tool (GOrilla)

to identify enriched gene ontology (GO) terms (47). The GOrilla

software takes the full list of transcripts ranked by False

Discovery Rate (FDR) and identifies GO terms that appear

densely at the top of the ranked list. GOrilla assigns an

enrichment score based on the total number of genes in the

dataset (N), the total number of genes associated with a specific

GO term (B), the number of genes in the top of the dataset (n),

and the number of genes in the intersection (b). The enrichment

score is calculated by the formula: (b/n)/(B/N).
Hypothalamic dysfunction Yes Rarely Yes

Hypothyroidism Sometimes Rarely Sometimes

Growth hormone insufficiency Yes Rarely Yes

Altered pubertal onset Sometimes No Sometimes

Autonomic dysfunction Yes Yes Yes

Bradycardia Sometimes Sometimes No

Gastrointestinal dysfunction Yes Yes Sometimes

Hirschsprung disease No Often No

Neural crest tumors Yes Sometimes No

Ophthalmologic manifestations Yes Yes Yes

Altered pain perception Yes Yes Yes

Thermal dysregulation Yes Yes Yes

Seizures Sometimes Sometimes Sometimes

Neonatal hypotonia No Sometimes Yes

Neurocognitive delay Rarely Variable Yes
2.6. Western blots

Protein was collected from 4-week mature neuronal cultures

using N-PER Protein Extraction Reagent (Fisher Scientific,

Waltham, MA) supplemented with a protease inhibitor cocktail

(Fisher Scientific, Waltham, MA). Samples were resolved on a

4%–12% Bis-Tris gel run at a constant 125 V for 3 h, then

transferred for 23 min onto a PVDF membrane using Genscript

eBlot machine (L00686). Membranes were blocked at room

temperature for 1.5 h in TBS-T with 5% nonfat milk and

incubated at 4°C overnight in primary antibodies at 1:2,000.

Primary antibodies used: α-ADORA2A (ProteinTech, 51092-1-AP)
Frontiers in Pediatrics 04
and α-PHACTR1 (ProteinTech, 23446-1-AP), and loading control

α-GAPDH (Santa Cruz, sc-47724). Following overnight incubation

with primary antibodies, three 25-minute washes with TBS-T were

performed and membranes were incubated with secondary

antibodies for 30 min at room temperature. Secondary antibodies

used: HRP-conjugated α-rabbit (Cell Signaling, 7074P2) at 1:5,000

dilution and HRP-conjugated α-mouse (Cell Signaling, 7076P2) at

1:10,000 dilution. Following secondary antibody incubation, three

25-minute washes in TBS-T were performed followed by a final

25-minute wash in TBS. Pierce ECL Western (Fisher Scientific,

Waltham, MA) reagents were used for GAPDH exposure.

SuperSignal West Atto Ultimate Sensitivity ECL (Fisher Scientific,

Waltham, MA) reagents were used to develop the ADORA2A and

PHACTR1 membranes. Developed films were then digitized as

non-compressed.tiff files using a V600 Epson scanner. Files were

processed using ImageJ Fiji using the gel quantification plugin.

The mean control sample measurements were used to normalize

each lane for ADORA2A and GAPDH blots respectively.

ADORA2A was then normalized against GAPDH for final protein

fold change values. These values were then analyzed in Prism

software (GraphPad).
3. Results

3.1. Molecular and phenotypic overlap
between ROHHAD, CCHS, and PWS

Table 1 lists the defining ROHHAD features and the presence

or absence of these in CCHS and PWS. The rapid-onset obesity,

although a less steep trajectory in PWS and differing age at
frontiersin.org
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onset, is present in both ROHHAD and PWS. Additionally, PWS

and ROHHAD share hypothalamic dysfunction including growth

hormone insufficiency, hypothyroidism, and altered pubertal

onset (precocious in ROHHAD but delayed in PWS). ROHHAD

and CCHS share the hypoventilation phenotype which is the

most severe symptom in both syndromes as well as neural crest

tumors in a subset of individuals. All three syndromes display

ANS dysregulation including gastrointestinal issues and

ophthalmologic manifestations.

To understand the molecular similarities and differences

among these three syndromes, RNA sequencing (RNAseq)

analysis was performed on DPSC-derived neuronal cultures from

neurotypical controls (n = 3) and subjects with ROHHAD (n = 3)

or CCHS (n = 2). Throughout this work, we use the term

transcript to describe gene-level expression differences. Table 2

lists the GUIDs and clinical characteristics for each subject used

in the molecular studies (RNAseq and western blots). For the

PWS dataset, we used our previously published RNAseq data

from DPSC-neurons (GSE178687) (44). Differential gene

expression analysis for each of the syndromes vs. the

neurotypical control subjects were analyzed by the UTHSC

Bioinformatics Core and significantly (p-value ≤0.05, FDR ≤0.05,
Fold change ≥1.5 or ≤0.5) differentially expressed transcripts

were identified. Using this list of significantly different transcripts

vs. control neurons as well as our previously published RNAseq

data from PWS neurons vs. control (n = 4) (44), we created a

Venn diagram (Figure 1A). Venn analysis shows ROHHAD

neurons have their own unique signature, but also share

molecular commonalities with CCHS and PWS. In addition, our

data shows that these syndromes share three significantly

differentially expressed transcripts vs. control. These transcripts

are FOXK1, ZNF18, and FBH1. The normalized RNAseq

expression for these shared transcripts across syndromes is

shown in Figure 1B. The RNAseq data for each experiment was

normalized to the average of the neurotypical control samples in

the corresponding experiments. FOXK1 and ZNF18 are both

transcriptional regulators. FBH1 is critical for repairing stalled or

damaged replication forks during DNA replication. Broadly,

these results indicate very little overlap among all three

syndromes, but significant overlap between CCHS and
TABLE 2 Subjects included in molecular experiments listed by GUID (https://nd
3 ROHHAD subjects, we have limited clinical data. PHOX2B expansion numb
tumor: GN (ganglioneuroma) or NB (neuroblastoma).

GUID Experiment Diagnosis Sex

GRDRMK467CLT RNAseq ROHHAD F

GRDRJR976DWY RNAseq ROHHAD M

GRDRPN312JYM RNAseq/Western Blot ROHHAD M

NIH-INVYZ061FERBJ Western Blot ROHHAD F

GRDRUD154GNH Western Blot ROHHAD M

GRDRGZ805WLY Western Blot ROHHAD M

GRDRHC489JUK RNAseq CCHS (20/33) M

GRDRPU870HZG RNAseq/Western Blot CCHS (20/25) F

GRDRHC22YV2 Western Blot CCHS (20/26) F

GRDRWX199GXE Western Blot CCHS (20/27) F

NIH-INVLG921GKWXE Western Blot CCHS (20/33) M
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ROHHAD gene expression signatures. It should be noted that,

although each experiment was normalized to neurotypical

control expression, the PWS experiment occurred separately and,

as such, batch effects may be present.
3.2. Gene ontology enrichment in receptor,
acetylglucosaminyltransferase and immune-
mediated processes in ROHHAD neurons

RNAseq analysis identified 225 genes to be significantly

differentially expressed in ROHHAD vs. control neurons. Using

GOrilla enrichment analysis, we found significant gene ontology

(GO) enrichments in these data. GOrilla enrichments are

presented in Figure 2A. The top enrichments (enrichment score

≥5) were ATPase transmembrane transporter activity

(ATP6V1G2, ABCB9, TAPBP, ABCD4 and TCIRG1),

acetylglucosaminyltransferase activity (MGAT1, GCNT3, LFNG

and B3GALNT1) and phagocytic vesicle membrane (HLA-A,

TAPBP, PIKFYVE and TCIRG1). A heatmap of the genes found

in these enrichments across each subject sequenced is shown in

Figure 2B. Most of these genes have significantly reduced

expression vs. control, while three show increased expression.

Gene functions are listed in Supplementary Table S1 (48).

Several of the genes identified in the enrichment categories relate

to immune system processes and neuroinflammatory syndromes.

These enrichment studies on ROHHAD specific neuronal gene

expression indicate that at least three molecular pathways may

contribute to disease etiology: ATPase transmembrane

transporters, acetylglucosaminyltransferases, and phagocytic

vesical membrane proteins.
3.3. Molecular overlap between PWS and
ROHHAD May not be related to rapid-onset
obesity

The RNAseq data collected in this experiment compared with

our previously published RNAseq data (44) revealed six genes that

are significantly different in both PWS and ROHHAD vs. control.
a.nih.gov/general-query.html) with corresponding clinical phenotypes. For
er listed in parentheses. Age of onset listed in years. Type of neural crest

Age
of

Onset

Ventilatory
Support

Seizures Cardiac
Arrest

Neural
Crest
Tumor

4 Awake/Asleep Yes No Yes (GN)

6 Asleep Yes No No

1.5 Asleep No No No

4 Asleep Yes No Yes (GN)

2.6 Asleep No No No

3.5 Asleep No No No

Neonate Asleep Yes No No

Neonate Asleep Yes No No

Neonate Awake/Asleep Yes Yes No

Neonate Awake/Asleep Yes No No

Neonate Awake/Asleep No No Yes (NB)
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FIGURE 1

ROHHAD, CCHS, and PWS neurons share 3 differentially regulated genes vs. control neurons. (A) Venn diagram of the significantly differentially expressed
transcripts (p-value ≤ 0.05, FDR≤ 0.05, fold-change ≤0.5 or ≥1.5) vs. control for ROHHAD, CCHS, and PWS. Three transcripts were identified as
differentially regulated vs. control subjects in all 3 syndromes, while 55 differentially expressed transcripts were shared between ROHHAD and CCHS
vs. control. (B) Average RNAseq expression for each group across the three 3 genes shared by ROHHAD, CCHS and PWS vs. controls. Expression was
normalized to the average of the control expression in each study. The dashed red line indicates control expression level. PWS data were gathered
from our previous RNAseq experiment (44). Significance determined during RNAseq data analysis (p-value≤ 0.05 and FDR≤ 0.05). * = p-value ≤ 0.05,
** = p-value ≤ 0.01, *** = p-value≤ 0.005. Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation
(ROHHAD), Congenital Central Hypoventilation Syndrome (CCHS), Prader-Willi Syndrome (PWS).

FIGURE 2

Enrichment analysis of ranked gene expression differences between ROHHAD and control neurons shows significant enrichment in phagocytic vesicle
membrane, acetylglucosaminyltransferase activity and transmembrane transporter activity. (A) GOrilla enrichment analysis was used to determine the
gene ontology (GO) enrichments in our Control vs. ROHHAD dataset (47). GOrilla analysis identified 3 GO categories (enrichment score≥ 5) that are
significantly enriched (p-value≤ 0.05) at the top of our ranked gene list. (B) A heatmap was created using the RNAseq expression counts for each
ROHHAD and control individual for genes identified in each of the enrichment categories using ClustVis (46).
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The Venn diagram in Figure 1A shows this overlap. Three of the

six genes found in this intersection are unique to PWS and

ROHHAD and are not significantly different in the CCHS vs.

control dataset. These genes are ID1, CNN3, and OAZ3. To

compare expression across two datasets, the RNAseq data for

ROHHAD and PWS subjects was normalized to the average

control expression of the transcript in each dataset. This

normalized expression was used to create bar graphs for each
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gene (Supplementary Figure S1). For ID1, PWS and ROHHAD

neurons show differing expression trends vs. control. In PWS,

ID1 expression is significantly higher, while in ROHHAD

expression is significantly lower. One of the primary reasons for

comparing PWS to ROHHAD in this experiment was to see if

any of the overlapping genes were related to the rapid-onset

obesity phenotype seen in each syndrome. The three overlapping

genes in our dataset do not currently have any links to an
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obesity pathogenesis. ID1 is a transcriptional regulator. OAZ3 plays

a role in cell proliferation and maintenance. CNN3 is involved in

cytoskeletal function and is actin-binding. These results suggest

that the obesity in ROHHAD may not share a molecular

pathway with PWS and may be distinct in origin. Further

validation of this hypothesis in other relevant cell types will be

necessary to confirm the independent obesogenic pathology in

PWS and ROHHAD.
3.4. Gene expression analysis reveals shared
molecular signature between ROHHAD and
CCHS neurons

The Venn diagram in Figure 3A shows that there are 58 genes

significantly differentially expressed in both ROHHAD and CCHS

vs. control. Using the mean RNAseq counts per group, a heatmap

was created using ClustVis (46). The heatmap (Figure 3B)

indicates that most of these genes are significantly decreased vs.

control in both ROHHAD and CCHS. Eight of these genes show

higher expression in ROHHAD and CCHS vs. control. For all

genes identified in this overlap, the expression trend vs. control

is the same for both ROHHAD and CCHS. A list of these genes

and their function is listed in Supplementary Table S2 (48).

Several of the genes identified encode for proteins that have

functions related to neuronal development, including ADAM8,

KAT6B and ADIRF. Additionally, ASCC1, COL13A1, SYTL3,

TANGO2, PHACTR1, and ADORA2A encode proteins that have

functions related to ROHHAD and CCHS phenotypes. These

expression studies have revealed molecular overlap between

ROHHAD and CCHS neurons vs. neurotypical controls. This

implies that similar or the same pathways may be disturbed in

both syndromes leading to shared phenotypic characteristics.
FIGURE 3

ROHHAD and CCHS share 58 differentially expressed genes vs. neurotypical
expressed transcripts (p-value≤ 0.05, FDR≤ 0.05, fold-change ≤0.5 or ≥1.
differentially expressed in ROHHAD and CCHS neurons vs. control neurons. H
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3.5. ADORA2A protein does not consistently
change in ROHHAD but shows reduction in
CCHS with increasing PHOX2B PARM
number

One gene that changed at the transcript level in neurons and

could play a role in both ROHHAD and CCHS is the ADORA2A

gene, which encodes an adenosine receptor. ADORA2A is a

strong candidate for validation due to its link to Parkinson

disease and functional overlap with CCHS phenotypes. We used

western blot analysis of ADORA2A protein in ROHHAD and

CCHS DPSC-derived neurons vs. neurotypical controls to verify

that changes in gene expression are reflected at the protein level

(Figure 4A). There was no consistency amongst ROHHAD

individuals for ADORA2A protein regulation (Figure 4B). Two

individuals, 5WLY and ERBJ, showed reduction (∼55% and

∼85%) in ADORA2A levels compared to the average control

groups. One individual, 4GNH, showed an increase (∼132%) in

ADORA2A. The remaining ROHHAD individual, 2JYM,

displayed ADORA2A protein expression close to control levels.

CCHS individuals exhibited a decrease in ADORA2A protein

expression that correlated to an increase in PARM number. The

20/25 PARM individual (0HZG) showed a reduction (∼51%) in

ADORA2A protein. Whereas the 20/26 (2YV2) individual

showed a reduction of 23%. The PARM 20/27 (9GXE) and 20/33

(KWXE) individuals showed a reduction (∼62%) of ADORA2A

protein, both raw expression values for these two samples were

>2 standard deviations from the average control expression value

(Figure 4C). Supplementary Figure S2 shows an additional

ADORA2A western blot using a 10% Bis-Tris gel and

nitrocellulose membrane performed prior to the optimized blot

shown in Figure 4. Sample TP312 was replaced with sample

TP195 in Figure 4. We also examined another protein of
control subjects. (A) Venn diagram created using the list of differentially
5) vs. control subjects. (B) Heatmap of the 58 overlapping transcripts
eatmap was created using ClustVis (46).
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FIGURE 4

Western blot analysis of ADORA2A reveals differential expression in ROHHAD and CCHS neurons. (A) ECL western blot of ADORA2A in Control, ROHHAD,
and CCHS groups. An average of all four controls was used for normalization and comparison to each of the four individual ROHHAD and the four
individual CCHS cell lines. The graphs were scaled differently for ROHHAD vs. CCHS comparisons, but the same control samples and averages were
used in B and C. (B) Quantification of ADORA2A protein in ROHHAD individuals. Standard deviation values (σ) are derived from the average of the
control samples (n= 4). 5WLY and ERBJ show a reduction in ADORA2 protein, 4GNH shows a nominal increase in protein expression and 2JYM
remains near control expression. (C) ADORA2A quantification in CCHS individuals. 0HZG (20/25) and 2YV2 (20/26) show a reduction in ADORA2A
expression. 9GXE (20/27) and KWXE (20/33) show a dramatic reduction in signal >2 standard deviations from the control average value.
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interest, PHACTR1, however, it showed no consistency amongst

controls, ROHHAD, and CCHS DPSC-derived neuron lines

(Supplementary Figure S3). These studies may indicate a

possible trend between decreasing ADORA2A expression and

more severe CCHS genotypes (i.e., PARMS ≥20/27). Further

validation in a larger cohort of CCHS subjects with varying

PARM mutations will be necessary to confirm PHOX2B-

mediated regulation of ADORA2A.
4. Discussion

Uncovering the molecular commonalities and differences

among these three syndromes is a crucial next step for

identifying therapeutics and biomarkers specific to ROHHAD.

Here, we used our unique model system, DPSC-derived neurons,

to investigate molecular perturbations in these syndromes vs.

neurotypical children and identify unique and overlapping
Frontiers in Pediatrics 08
transcriptional signatures. Previously, we used DPSC

neuronal cultures to investigate neurogenetic syndromes

including Prader-Willi, Angelman, and Duplication 15q

syndrome (42–44). In this study, using RNAseq from individuals

with ROHHAD, CCHS, and neurotypical children, we identified

differentially expressed transcripts with shared expression

between ROHHAD and CCHS. We then used previously

published RNAseq data from PWS DPSC-derived neuronal

cultures to compare these syndromes to PWS subjects (44). We

identified gene ontology enrichments in ROHHAD neurons,

three transcripts that are differentially expressed in all three

syndromes vs. neurotypical control neurons and 58 transcripts

that are differentially expressed in both ROHHAD and CCHS

neurons.

For ROHHAD, CCHS, and PWS the three transcripts that are

significantly different between all three syndromes vs. control

neurons were FOXK1, FBH1, and ZNF18. All three genes play

roles in maintaining DNA integrity or transcriptional regulation.
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4.1. FOXK1

FOXK1 is crucial in regulating glucose metabolism and aerobic

glycolysis (49, 50). Compared to control neurons, ROHHAD,

CCHS, and PWS neurons all had reduced expression of FOXK1.

The reduction in expression in neurons from these three

syndromes may pertain to a delay in neurogenesis, a feature

shared among many developmental disorders. As stem cells

develop into neurons, they switch their primary metabolic

processes from glycolysis to mitochondrial respiration (51).

FOXK1 plays a key role in this process (50). Additionally,

FOXK1 has been associated with autism and delayed

development in several studies (52, 53).
4.2. FBH1

FBH1 plays a role in responding to stalled or damaged

replication forks. In response to DNA damage, FBH1 causes

DNA double-stranded breaks and induces cell death (54–56).

ROHHAD, CCHS, and PWS have increased FBH1 expression

compared to control neurons. The increased expression of FBH1

may be caused by or causative of increased DNA damage in

disease neurons. Studies have shown that FBH1 is required for

eliminating cells with excessive replicative stress (54).

Additionally, accumulation of damaged DNA has been directly

linked to neuronal death in other syndromes, such as

Alzheimer’s disease (57, 58).
4.3. ZNF18

ZNF18 is involved in regulating transcription through RNA

polymerase II. Although the function of this protein has not

been well characterized, mutations in this gene have been

associated with autism (59). This association may explain the

differing directionality in expression for ROHHAD and CCHS

vs. PWS, where the incidence of autism spectrum disorder is

higher (60, 61). Expression of ZNF18 in PWS neurons is

significantly decreased vs. control. In contrast, ZNF18 expression

is significantly increased in ROHHAD and CCHS neurons.

Enrichment analysis using the ranked list of differentially

expressed transcripts between ROHHAD vs. neurotypical control

neurons identified significant enrichments in the phagocytic vesicle

membrane compartment (GO:0045335), transmembrane transporter

activity (GO:0042626), and acetylglucosaminyltransferase activity

(GO:0008375). The four transcripts identified in the phagocytic

vesicle membrane enrichment were HLA-A, TAPBP, PIKFYVE

and TCIRG1. A phagocytic vesicle is an intracellular vesicle that

arises due to phagocytosis, a key cellular process for eliminating

cellular waste and maintaining cellular homeostasis (62). In

neurons, dysfunctional phagocytosis, either excessive or not

enough, is detrimental to neuronal development and health (63).

Excessive microglial phagocytosis of live neurons and synapses
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has been implicated in various neurodegenerative disorders

including Alzheimer’s and Parkinson’s disease (64, 65).

In ROHHAD neurons, there was an increased expression in the

HLA-A and PIKFYVE transcripts and decreased expression of the

TAPBP and TCIRG1 genes. HLA-A encodes the antigen-

presenting major histocompatibility complex class I, A. This

molecule plays a critical role in the immune system by

presenting peptides for recognition to cytotoxic T cells (48).

Inhibition of PIKFYVE, an endosomal kinase, was shown to

reduce excitotoxicity and restore lysosomal maturation, in a cell

model of Amyotrophic Lateral Sclerosis (66). Most transcripts

identified in the acetylglucosaminyltransferase activity enrichment

(MGAT1, GCNT3, LFNG and B3GALNT1) were decreased in the

ROHHAD neurons. Acetylglucosaminyltransferase activity is

crucial for glycosylation, an important and complex post

translational modification crucial for regulation of neuronal

intercellular signaling. In Drosophila melanogaster, Mgat1 null

mutants were found to have disrupted synaptogenesis and

signaling (67). Interestingly, MGAT1 variants are associated with

susceptibility to obesity (68). Decreased glycosylation activity is

associated with neuronal death and neurodegenerative disease (69).

All transcripts identified in the transmembrane transporter

activity category were decreased in the ROHHAD neurons.

Several of the protein products of these transcripts localize to

lysosomes. Neuronal lysosomes are crucial for degrading cellular

debris and maintaining neuronal integrity. All the enrichment

data taken together may allude to a dysfunction in clearing

cellular debris and leading to decreased neuronal health in

affected neurons or an immune mediated process related to

ROHHAD and the propensity for ROHHAD neural crest cells to

migrate and develop neural crest tumors in the body as DPSC

are of neural crest origin.

We identified three transcripts that were uniquely significantly

different between ROHHAD and PWS vs. control (ID1, CNN3, and

OAZ3). Although one of the primary commonalities between these

syndromes is childhood obesity, these three genes do not appear to

be related to obesity and two of these genes appear to have

opposing expression patterns vs. control neurons. Our molecular

findings indicate that while both ROHHAD and PWS subjects

present with childhood obesity, it is likely that the pathways

responsible for obesity in these disorders arise from distinct

molecular and perhaps even behavioral defects. Lending support

to this theory, PWS subjects are profoundly hyperphagic which is

not routinely an underlying cause of obesity in ROHHAD

patients (3).

Of note, we identified 58 significantly differentially expressed

transcripts vs. neurotypical controls in common between CCHS

and ROHHAD, all following similar expression patterns [i.e.,

both syndromes show either increased or decreased expression

for the same gene vs. control (see Figure 3B)]. Within the 58

genes, we did not find any significant gene ontology

enrichments, however, we did identify transcripts that correlate

with neuronal processes and the phenotypes observed in both

ROHHAD and CCHS, including ASCC1, COL13A1, TANGO2,

and PHACTR1.
frontiersin.org

https://doi.org/10.3389/fped.2023.1090084
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Victor et al. 10.3389/fped.2023.1090084
4.4. ASCC1

ASCC1, a gene encoding for a transcriptional regulator, was

found to be significantly increased in ROHHAD and CCHS

neurons. This transcript has been associated with several

congenital neuromuscular diseases including spinal muscular

atrophy (70–72).
4.5. COL13A1

COL13A1, which encodes an extracellular synaptic protein that

is required for neuromuscular junction synapse function, was

significantly decreased in ROHHAD and CCHS neurons.

Mutations in this gene are associated with a spectrum of

myasthenic diseases that result in breathing difficulties and

apneas (73–75).
4.6. TANGO2

TANGO2 mutations and deficiency are associated with a

variety of symptoms including hypothyroidism, metabolic and

cardiac dysfunction, and rhabdomyolysis (76–79). This gene was

found to be significantly decreased in our dataset for both

ROHHAD and CCHS vs. control neurons.
4.7. PHACTR1

PHACTR1 encodes a phosphatase and actin regulatory protein

that plays a role in neuronal migration and dendritic arborization.

Although we did see a reduction in PHACTR1 protein by western

blot in several of the ROHHAD and CCHS subjects

(Supplementary Figure S3) in accordance with our RNAseq

data, this result was variable from individual to individual.

An adenosine receptor gene, ADORA2A, was also found to be

decreased in the ROHHAD and CCHS neurons vs. neurotypical

controls. ADORA2A encodes a member of a G-protein coupled

receptor family that functions by increasing cAMP levels using

adenosine as its primary agonist and is associated with

Parkinson’s disease (80, 81). Physiologically, ADORA2A aides in

regulation of cardiac rhythm and circulation, cerebral and

renal blood flow, immune function, pain regulation and sleep.

In Adora2a−/− mice, Adora2a specifically modulates the

antiadrenergic effects of the Adora1 receptor (82). Treatment

with isoproterenol, a β-adrenergic molecule agonist, in WT and

Adora2a−/− mice both showed antiadrenergic responses, with

Adora2a−/− mice exhibiting a ∼40% increase in antiadrenergic

response. These findings supplement prior work showing

decreased heart rate (HR) in Adora2a−/− mice and an increase in

HR for Adora1−/− mice (83). Previous clinical studies on

ROHHAD patients show that some cases may present with

bradycardia, a low resting heart rate (84). The observed

reduction of ADORA2A protein levels in two ROHHAD

individuals may be able to explain this clinical feature.
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ADORA2A is thought to provide a protective effect against the

development of pulmonary hypertension (85), another clinical

phenotype that presents in some ROHHAD individuals

consequent to recurrent low oxygen due to inadequately

managed hypoventilation (5, 86). Our findings that CCHS

individuals have decreasing ADORA2A protein expression with

increasing PHOX2B PARM number suggests that ADORA2A

regulation may be dependent on proper PHOX2B activity. In

fact, two PHOX2B transcription factor binding sites can be found

in or near the promoter of the ADORA2A gene (Supplementary

Figure S4). The variance seen in the ROHHAD subjects for

ADORA2A protein expression, as well as PHACTR1, is likely

due to the spectrum of ROHHAD symptomology that unfolds

across time and with varying severity. Further studies will be

needed to establish that PHOX2B can directly regulate

ADORA2A gene expression levels, which could be an important

finding in both ROHHAD and CCHS.

The results presented here represent the first study using

primary ROHHAD and CCHS neurons and showing molecular

correlation between CCHS and ROHHAD pathogenesis.

Although groundbreaking, there are some limitations to the

interpretation of the data. As this is a rare syndrome, we were

limited in the amount of specimen used for both RNAseq and

western blot analysis. Further validation of these results in larger

cohorts of ROHHAD and CCHS subjects will be necessary to

confirm the results presented here. The PWS RNAseq data used

for comparison here came from a separate experiment and, as

such, batch effects may make comparing to the current study

problematic. Additionally, these are developmentally young

cortical-like neurons. However, the early neurodevelopmental

timeframe that this model represents provides evidence of

perturbed pathways seen even in immature neurons and provides

insight into disease pathogenesis that is present from early

neurodevelopment and may have significant downstream effects

on later developmental phenotypes.
5. Conclusions

ROHHAD is a complex ANS disorder with an unknown

genetic etiology. Although molecular, genetic, and clinical studies

have been performed on ROHHAD and CCHS patients before,

this is the first gene expression study on neurons derived from

these individuals. In addition, no molecular or cellular pathways

had previously been identified that reveal the underlying disease

etiology. Here we uncovered an enrichment in differentially

expressed transcripts related to phagocytic vesicle and receptor-

mediated processes in ROHHAD neurons and an overlapping

molecular signature between both ROHHAD and CCHS, a

related ANS hypoventilation disorder. This overlap includes

transcripts that control neurodevelopmental processes and

molecular pathways that may be perturbed leading to ROHHAD

pathology. We then validated the expression of a down-regulated

transcript, ADORA2A, at the protein level and found a reduction

in ADORA2A protein for CCHS neurons and several ROHHAD

subjects, although expression appears to vary more in the
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ROHHAD cohort. This variability in ROHHAD subjects likely

reflects the broad spectrum of ROHHAD symptoms, the

unfolding of the phenotype over time, and the unknown etiology

of the disease. The data presented here describes important

preliminary findings that warrant further validation in other

CCHS affected individuals. Continuing molecular studies and

correlation with clinical phenotypes will be essential to

uncovering the molecular pathways behind the various

ROHHAD symptoms and identifying biomarkers that can be

used to diagnose and treat ROHHAD early in the disease process.
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