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Objectives: Quantitative computed tomography (QCT) offers some promising
markers to quantify cystic fibrosis (CF)-lung disease. Air trapping may precede
irreversible bronchiectasis; therefore, the temporal interdependencies of functional
and structural lung disease need to be further investigated. We aim to quantify
airway dimensions and air trapping on chest CT of school-age children with mild
CF-lung disease over two years.
Methods: Fully-automatic software analyzed 144 serial spirometer-controlled chest
CT scans of 36 children (median 12.1 (10.2–13.8) years) with mild CF-lung disease
(median ppFEV1 98.5 (90.8–103.3) %) at baseline, 3, 12 and 24 months. The airway
wall percentage (WP5–10), bronchiectasis index (BEI), as well as severe air trapping
(A3) were calculated for the total lung and separately for all lobes. Mixed linear
models were calculated, considering the lobar distribution of WP5–10, BEI and A3
cross-sectionally and longitudinally.
Results: WP5–10 remained stable (P=0.248), and BEI changed from 0.41 (0.28–0.7) to
0.54 (0.36–0.88) (P= 0.156) and A3 from 2.26% to 4.35% (P=0.086) showing
variability over two years. ppFEV1 was also stable (P= 0.276). A robust mixed linear
model showed a cross-sectional, regional association between WP5–10 and A3 at
each timepoint (P < 0.001). Further, BEI showed no cross-sectional, but another
mixed model showed short-term longitudinal interdependencies with air trapping
(P= 0.003).
Abbreviations

A1–A3, air trapping indices; BEI, bronchiectasis index; BMI, body mass index; CF, cystic fibrosis; CFTR, cystic
fibrosis transmembrane conductance regulator; CT, computed tomography; E/I MLA, expiratory to inspiratory
ratio of mean lung attenuation; FEF25%–75%, forced expiratory flow between 25% and 75% of vital capacity;
FEV1, forced expiratory volume in one second; FVC, forced vital capacity; G, airway generation; HU,
Hounsfield units; LA, lumen area; MRSA, methicillin-resistant staphylococcus aureus; PA, pseudomonas
aeruginosa; ppFEV1, percent predicted forced expiratory volume in one second; ppFVC, percent predicted
forced vital capacity; QCT, quantitative CT; RLV, residual lung volume; RVC856−950, relative volume change
between −856 HU and −950 HU; TD, total diameter; TLV, total lung volume; WA, wall area; WP, wall
percentage (relative wall thickness); WT, wall thickness; YACTA, yet another CT analyzer.
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Conclusions: Robust linear/beta mixed models can still reveal interdependencies in medical
data with high variability that remain hidden with simpler statistical methods. We could
demonstrate cross-sectional, regional interdependencies between wall thickening and air
trapping. Further, we show short-term regional interdependencies between air trapping and
an increase in bronchiectasis. The data indicate that regional air trapping may precede the
development of bronchiectasis. Quantitative CT may capture subtle disease progression and
identify regional and temporal interdependencies of distinct manifestations of CF-lung disease.
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Introduction

Cystic fibrosis (CF) is a common life-limiting autosomal recessive

genetic disorder, and morbidity and mortality are caused mainly by

bronchiectasis, small airway obstruction, and progressive respiratory

impairment (1). Spirometry and the lung clearance index (LCI) are

important markers of disease severity and prognosis, delivering

quantitative markers on patient condition (2). However, high-

resolution chest CT is fast, accurate, highly available and radiation

exposure continues to go down with newer generations of devices. It

is more sensitive than spirometry for showing long-term disease

progression, can more easily be performed in younger children. LCI

is a rather time consuming technique and cannot replace CT for

bronchiectasis screening (3, 4). Furthermore, CT offers promising

markers (5–10) for the objective and automated measurement of

functional and actual structural lung changes. Airway wall thickening

and mucus plugging are early, potentially reversible airway changes

thought to be linked to the development of bronchiectasis (11–14).

Bronchiectasis develops early in the course of CF, being detectable in

infants as young as 10 weeks of age, and is persistent and progressive

(15). Functional and early structural lung disease are frequently

observed in newborns and infants by signs of air trapping in CT,

even in the absence of respiratory symptoms (15–17). Air trapping

may precede structural lung damage, but the temporal and regional

interdependencies of functional and structural lung disease have not

been well studied on imaging (15). Furthermore, only limited data is

available on the longitudinal changes of air trapping (8, 18), whereas

the quantitative information on airway changes is mainly limited to

cross-sectional observations (19).

The present study was conducted on 36 school-age CF subjects

with a mild disease course to study QCT parameters on four

consecutive time points over two years to address the following

issues: (1) longitudinal development of airway parameters,

bronchiectasis and air trapping over two years, (2) cross-sectional

interdependencies between airway parameters, bronchiectasis and air

trapping on a lobar level, and (3) longitudinal interdependencies of

airway parameters, bronchiectasis, and air trapping over two years.
Materials and methods

Subjects

36 school-age children with CF underwent serial chest CT scans

and lung function testing at baseline, 3, 12, and 24 months. The
02
subjects were tested as part of a joint Novartis Pharmaceutical -

Cystic Fibrosis Therapeutics Development Network Consortium

study in 2007–2011 before the availability of cystic fibrosis

transmembrane conductance regulator (CFTR) modulator therapy,

evaluating the natural progression of lung disease. The subjects

were diagnosed with mild CF lung disease defined at enrollment

and baseline testing (% predicted forced vital capacity (ppFVC)

>80%, forced expiratory volume in 1 s (ppFEV1)≥75%, Table 1)

(8). This study was conducted before the widespread use of the

lung clearance index as a clinically useful lung function outcome

measure in CF, which was therefore not included. Study subjects

were clinically stable at testing day and had not received neither

oral nor intravenous antibiotics for a minimum of 28 days before

the study. Full details of recruitment, inclusion and exclusion

criteria and institutional review board approval declaration are

summarized in the online supplement.
Spirometry

Spirometry was obtained in the standing position for pulmonary

function measurements. Pulmonary function measurements (FVC,

FEV1, and FEF25%–75%) were expressed as percent predicted based

on normal prediction equations derived from the Global Lung

Function Initiative (GLI-2012) predictive equations for spirometric

measurements subsequently generated from the ERS Global Lung

function task force (20).
Computed tomography

Chest CT scans and pulmonary function testing were obtained

on the same day. Chest CT scans were obtained with spirometer-

controlled acquisition using a spiral CT scanner at two CF centers.

A low-dose volumetric CT protocol was utilized with paired

inspiratory and expiratory scans. Further details are provided

within the online supplement.
Image assessment

The fully automated software YACTA (version 2.8.5.36)

segmented and analyzed the airway tree, lungs and individual lobes

on inspiratory and expiratory CT images. User interaction or

manual correction of the segmentations was not required.
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TABLE 1 Patient demographics. Patient demographics (body mass index (BMI)) and spirometric data (forced vital capacity (FVC), forced expiratory volume in
1s (FEV1) and, forced expiratory flow at 25 and 75% of the lung volume (FEF25%–75%) are given at baseline, 3 months, 12 months, and 24 months. Percentage
values refer to predicted volumes. Infection status for PA (Pseudomonas aeruginosa) and MRSA (chronic methicillin-resistant Staphylococcus aureus) is also
shown.

Baseline 3 months 12 months 24 months P-value

Number of subjects 36

Male/female 16/20

Sweat Cl Value 100 (90.8–109.3)

Homozygous F508del 23

Age (y) 12.1 (10.2–13.8) 12.3 (10.4–14) 13.1 (11.2–14.8) 14.1 (12.3–15.8) <0.001

Weight (kg) 41.25 (31.2–49.5) 42.6 (32.25–50.2) 45.7 (35–52.5) 47.9 (41.4–57.8) <0.001

Height (cm) 147.5 (137.4–154.5) 150.4 (138.5–156) 151.7 (141.8–159) 155.5 (146.6–162) <0.001

BMI (kg/m2) 18.4 (17.1–20.2) 18.7 (17.6–20.3) 19.3 (17.6–20.6) 19.9 (18.3–21.3) <0.001

BMI (%P) 54.2 (40.2–73.9) 59.6 (41.2–73.6) 63.4 (44–81) 75.3 (58.3–84) <0.001

FVC (l) 2.75 (2.1–3.2) 2.8 (2.1–3.4) 2.9 (2.4–3.7) 3.3 (2.7–4) <0.001

ppFVC 99.9 (93.7–106.4) 100.3 (92.5–105.6) 98 (90.7–106.6) 104.5 (94.1–110.7) 0.506

FEV1 (l/s) 2.3 (1.8–2.8) 2.3 (1.7–2.9) 2.4 (1.9–3) 2.7 (2.1–3.2) <0.001

ppFEV1 98.5 (90.8–103.3) 94.3 (83.9–103.3) 94.3 (86.3–101.5) 97.7 (90.5–102.9) 0.276

FEF25-75 (l/s) 2.6 (1.8–3.4) 2.6 (1.8–3.4) 2.6 (2–3.6) 2.8 (2–3.7) 0.015

ppFEF25%–75% 90 (77.5–109.1) 89.2 (63.1–104.3) 82.5 (66.9–102.7) 90.2 (67–97.9) 0.092

PA negative PA positive 31 (86.1%) 5 (13.9%) 30 (83.3%) 6 (16.7%) 29 (80.6%) 7 (19.4%) 28 (77.8%) 8 (22.2%) 0.714

MRSA negative MRSA positive 27 (75.0%) 9 (25.0%) 31 (86.1%) 5 (13.9%) 30 (83.3%) 6 (16.7%) 28 (77.8%) 8 (22.2%) 0.456
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Segmentation results were visually inspected by a reader with more

than 5 years in chest radiology.

Beside the total lung volume (TLV) and the residual lung volume

(RLV), the following previously described air trapping parameters were

calculated on the basis of the lung parenchyma segmentation

automatically: (1) RVC856–950 which is defined as the relative volume

change between the expiratory and inspiratory lung volumes with

attenuation between −856 and −950 HU divided by the total lung

volume without emphysema. The index ranges from −1.0 to 0,

greater values (closer to zero) mean more air trapping (21). (2) E/I

MLA which is the expiratory to inspiratory ratio of mean lung

attenuation with a range from 0 to 1.0, greater values mean more

air trapping (21). (3) A1-A3 which use three patient specific

thresholds for the definition of air trapping. A1 represents defects

on the basis of liberal criteria (mild air-trapping), while A3 represent

defects on the basis of stringent criteria as published previously

(severe air-trapping). The size of the defect areas is expressed as a

percentage of the analysed lung parenchyma region (22).

Segmentation of the airway tree was used to determine the

following parameters automatically: (4) Bronchiectasis index (BEI)

for the whole airway tree and for the individual lobes. The BEI

calculation is based on the fact that the lumen of bronchi decreases

with increasing generation number (airway tapering). Tapering of

the airways is checked - if this is not the case, an error value is

calculated, these error values are summed up for individual lobes

or the entire lung. This approach is described in more detail in (7).

(5) The basic geometry of the airways is described by the

parameters total diameter (TD), wall thickness (WT), lumen area

(LA), and wall percentage (WP = 100*WA/(LA +WA)) (Figure 1).
Frontiers in Pediatrics 03
These were determined generation-based in the trachea (G1), main

stem (G2), lobar (G3), segmental (G4), and the aggregated

subsegmental bronchi (G5–10), the aggregated values were also

calculated by lobe for G5–10. The primary location for airway

disease in CF are usually the small airways defined as airways with

an internal diameter below 2 mm, generally reflecting the 4th to

the 14th generation of branching (23). Boon et al. made this

observation by performing a morphometric analysis of explanted

end-stage CF lungs, which showed extensive changes in the

conducting airways, mainly from the 6th airway generation

onward, describing dilatation and obstructions in up to 50% of the

airways per generation (24). Therefore, we aggregated the airways

generations 5th to 10th in our analysis, creating more resilient

results due to the considerably higher amount of data and

depicting the airway pathologies’ primary location.

Further details are provided within the online supplement.
Statistical analysis

Results were summarized as the median and interquartile ranges

for continuous variables and by absolute and relative frequencies for

binary variables. Time-dependent changes in demographics, lung

volume, air trapping, and airway parameters were assessed by

Friedman Tests for continuous and by McNemar Tests for binary

variables. The Wilcoxon-Mann-Whitney-U-Test is used to compare

A3 values of patients with chronic infection with patients without.

Pearson correlation coefficient was used for correlations and rated

as suggested by Karlik (25). Robust linear/beta mixed models were
frontiersin.org
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FIGURE 1

Left side shows a segmented airway tree including labeling of the pulmonary lobes, trachea highlighted in green, right main in red, left main in dark blue, right
upper lobe in yellow (transparent), middle lobe in green and right lower lobe in orange, left upper lobe in light blue, lingula in dark red, and left lower lobe in
pink. In the right upper lobe an orthogonal slice through an generation 6 airway is shown, on such slices, all airways of the whole segmented airway tree are
measured. Right side shows the magnification of the orthogonal slice shown on the left side, inner (green) and outer (red) wall borders are displayed.
Calculated airway parameters are given below. LA refers to the area within the green inner wall border. WA refers to the area between the green inner
and red outer wall border. The other parameters are calculated from these values.

Weinheimer et al. 10.3389/fped.2023.1068103
calculated to study the regional relationship of airway structure and

air trapping at single-timepoints. A second model was used to

study the longitudinal interdependencies between airway changes

and air trapping over two years. Since this is an explorative study,

all P-values are descriptive. Further details are provided within the

online supplement.
Results

School-age children with mild CF retain
normal spirometry over two years

Patient demographics, such as weight, height, and BMI,

increased substantially over two years (P < 0.001). Spirometric

pulmonary function test values (FVC, FEV1, and FEF25%–75%)

also increased significantly (P < 0.001), whereas predicted values

(ppFVC, ppFEV1, and ppFEF25%–75%) did not deteriorate

(P = 0.092–0.506) (Table 1). All airway parameters (BEI, TD5–10,

WT5–10, LA5–10, WP5–10) were weakly (r = −0.06 to −0.27), and
most of the air trapping parameters were moderately correlated

with ppFEV1 (r = −0.26 to −0.35). All parameters were correlated

across all time points and lung lobes. The lobe-based correlations

showed no substantial differences (Figure 2 and Supplementary

Figures S1A–G). The infection status regarding Pseudomonas

aeruginosa (PA) and methicillin-resistant Staphylococcus aureus

(MRSA) did not change considerably (Table 1 and

Supplementary Table S1).
Frontiers in Pediatrics 04
Changing airway dimensions partially reflect
patient growth

Longitudinal analysis of airway parameters and bronchiectasis was

performed. For the total lung, the aggregated subsegmental airway

parameters TD5–10, WT5–10, and LA5–10 increased (P < 0.05–0.001),

whereas WP5–10 remained stable between baseline and 24 months (P =

0.248). The intra-individual course of airway parameters between time

points showed substantial variability with a mean range of 12.47% for

WP5–10 (Figure 3 and Table 2). BEI as a growth-independent

measurement of disease severity changed over two years from 0.41 to

0.54 (P = 0.156). Airway tree segmentation and BEI values are shown

for a representative example in Figure 4. Lobe-based airway analysis

showed similar results for TD5–10 and LA5–10. BEI and WT5–10

increased in all lung lobes, except in the RML, where it decreased 0.16

to 0.12 and from 0.68 mm to 0.66 mm (P = 0.172, P = 0.540). WP5–10
showed a slight decrease in all lung lobes, except in the LLi, where it

increased from 51.61% to 53.31% (P = 0.220). The intra-individual

course also showed substantial variability in all lobes (Supplementary

Figure S2 and Supplementary Table S2).
Air trapping is variable over time

The longitudinal development of air trapping was analyzed. TLV

and RLV increased over two years (P < 0.001), this also applies to all

individual lobes. However, the air trapping parameters RVC856–950

and E/I MLA did not change substantially. The air trapping
frontiersin.org
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FIGURE 2

Correlation heat map of airway parameters and air trapping. Age, BMI, spirometric data FEV1 and ppFEV1, airway parameters (BEI, TD5−10, WT5−10, LA5−10,
WP5−10), lung volumes (TLV, RLV) and air trapping parameters (RVC856-950, E/I MLA, A1-3) were correlated across all time points and lung lobes. Dark red shows
strong positive correlations and dark blue shows strong negative. ***P < 0.001; **P < 0.01; *P < 0.05. 95% confidence interval in brackets. Benjamini-Hochberg
method was used for adjustment for multiple testing (26). Correlation heat maps for the individual lobes are shown in Supplementary Figures S1A–G.

FIGURE 3

QCT measures over two years, the thin lines connect the values of the individual patients (N= 36) over time, the thick lines connect the median values. (A) The
airway parameter bronchiectasis index (BEI) changed over two years from 0.41 to 0.54 (P= 0.156). (B) WP5−10 remained stable between baseline and 24
months (P= 0.248). (C) The air trapping parameter (A3) showed high variability at all time points, but increased the median A3 from 2.26% to 4.35% (P= 0.086).

Weinheimer et al. 10.3389/fped.2023.1068103
parameters A1-A3 showed the largest variation Where A1and A2 did

not change significantly, A3 changed over two years from 2.26% to

4.35% (P = 0.086) (Table 2, Supplementary Table S3). However, the

intra-individual course of air trapping parameters between time points

shows substantial variability for the total lung with a mean range of

66.25% for A1, 47.34% for A2, and 21.05% for A3 (Figure 3). Air

trapping segmentation and quantification values are shown for a

representative examples in Figure 4 and Supplementary Figure S3.

The individual lung lobes also showed differences in air trapping

severity. The extent of severe air trapping (A3) at baseline varied,

starting with 7.45% in the RML, compared to 0.88% in the RUL.

Furthermore, the development of A3 was highly variable regarding
Frontiers in Pediatrics 05
individual lung lobes (Supplementary Figure S2 and Supplementary

Table S3). The infection status of Pseudomonas aeruginosa (PA) and

methicillin-resistant Staphylococcus aureus (MRSA) was not linked to

changes in air trapping (Supplementary Table S1).
Contribution of age to airway parameters
and air trapping

Single-time point correlations between, age, airway changes and

air trapping were performed using Pearson’s correlation coefficient.

The airway parameters TD5–10, LA5–10, and WP5–10 correlated
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TABLE 2 Temporal development of airway and air trapping parameters. Airway parameters (BEI, TD, WT, LA, and WP), TLV, RLV and air trapping parameters
(RVC856-950, E/I MLA, A1-3) were calculated for the whole lung at baseline, 3 months, 12 months, and 24 months. Airway parameters refer to the
subsegmental airways generations 5th-10th.

Lung Baseline 3 months 12 months 24 months P-value

Airways

BEI (−) 0.41 (0.28−0.7) 0.39 (0.29−0.77) 0.49 (0.32−0.7) 0.54 (0.36−0.88) 0.156

TD5−10 (mm) 5.04 (4.63−5.46) 4.96 (4.75−5.39) 5.15 (4.73−5.59) 5.35 (4.82−5.78) <0.001

WT5−10 (mm) 0.77 (0.72−0.89) 0.78 (0.69−0.91) 0.84 (0.72−0.96) 0.84 (0.74−0.95) 0.028

LA5−10 (mm2) 9.99 (8.41−11.96) 10.21 (8.11−12.08) 10.9 (8.94−11.98) 11.36 (9.7−12.85) 0.001

WP5−10 (%) 49.41 (45.48−54.65) 47.69 (46.01−52.3) 50.59 (46.69−55.06) 49.41 (47.17−55.81) 0.248

Parenchyma

TLV (cm3) 3740 (2986−4480) 3824 (3053−4549) 4052 (3249−4695) 4265 (3663−5217) <0.001

RLV (cm³) 1262 (853−1505) 1165 (923−1558) 1336 (1003−1769) 1394 (1040−2086) <0.001

RVC856−950 −0.63 (−0.69 to −0.53) −0.62 (−0.68 to −0.54) −0.62 (−0.71 to −0.47) −0.63 (−0.7 to −0.53) 0.667

E/I MLA 0.64 (0.59−0.7) 0.66 (0.61−0.71) 0.68 (0.62−0.7) 0.67 (0.6−0.73) 0.982

A1 (%) 20.48 (11.78−37.9) 24.43 (14.39−34.99) 28.78 (18.59−38.04) 25.1 (14.97−42.08) 0.721

A2 (%) 8.8 (3.91−20.1) 11 (4.39−18.84) 14.05 (6.73−18.96) 12.96 (7.19−21.5) 0.257

A3 (%) 2.26 (1.11−6.47) 2.37 (1.13−4) 4.15 (1.91−6.24) 4.35 (1.84−7.47) 0.086
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weakly (r = 0.28, r = 0.35, r = –0.28), BEI very weakly (r = 0.19), and

WT5–10 negligible with age (Figure 2). Lobe-based correlations

showed no substantial differences (Supplementary Figures S1A–G).

Age was moderately associated with an increase in TLV (r = 0.42).

RVC856–950 showed a weak (r =−0.28), and the other air trapping

parameters a very weak (r =−0.01 to –0.06) association with age.

On the total lung level, BEI had only very weak to weak correlations

with other airway parameters (r = 0.01 to –0.37). The only moderate

correlation was found between RVC856–950 and WT5–10, and WP5–10
(r = 0.5, r = 0.54) (Figure 2). The lobe-based correlations also showed

no other associations between the severity of airway changes and the

air trapping parameters (Supplementary Figures S1A–G).
Wall percentage and air trapping showed
cross-sectional interdependencies

A robust mixed linear model cross-correlated the airway and air

trapping parameters of all individual lung lobes and all four

examination time points to assess their regional relationship. The model

pointed out that all parameters were linked to age (P = 0.003, P < 0.001,

P = 0.014). Furthermore, WP5–10 was associated with the air trapping

parameter A3 since an increase in A3 was linked to an increase

in WP5–10 (P < 0.001). The examination time point also influenced

WP5–10 (P = 0.021, P = 0.026, P = 0.036), whereas BEI and LA5–10

showed no dependency (Table 3).
Bronchiectasis and air trapping showed
short-term longitudinal interdependencies

A robust mixed linear model analyzed longitudinal

interdependencies between airway and air trapping parameters in
Frontiers in Pediatrics 06
all lung lobes over two years. The model indicated that BEI was

only affected by age between baseline and 3 months (P = 0.007),

whereas LA5–10 was affected by age at all and WP5–10,

inconsistently at some time intervals. Furthermore, a higher BEI,

LA5–10, and WP5–10 at one examination time point seemed to be

associated with a higher value at all following time points

(P < 0.001). Lastly, BEI showed regional interdependencies with

severe A3 over a short time interval of 3 months (P = 0.003) but

not over longer time intervals of up to 2 years (P = 0.091) Table 4

and Supplementary Table S4).
Discussion

The present study was conducted on 36 school-age CF subjects

with a mild disease course to give contemporary insight into the

2-year natural history of functional and structural lung disease in

the absence of current CFTR modulatory therapy. We performed a

longitudinal analysis of airway parameters for the total lung and all

lung lobes as a first step. CF-lung disease is characterized by chronic

airway inflammation and infection, leading to airway wall thickening

and mucus plugging as early, potentially reversible airway changes

(13). We used the airway parameters total diameter (TD5–10), lumen

area (LA5–10), wall thickness (WT5–10), and wall percentage

(WP5–10), which should reflect dilatations and obstructions equally

well. We found a significant increase in TD5–10, WT5–10, and LA5–10

(P < 0.001–0.05), whereas the relative parameter WP5–10 remained

stable between baseline and 24 months (P = 0.248). Heterogeneity is

also a key feature of CF-lung disease. As expected, all airway

parameters showed substantial variability within the patient cohort

and between different lung lobes. For example, WP5–10 had an

interquartile range of 45.48%–54.65% at baseline, with minimum
frontiersin.org

https://doi.org/10.3389/fped.2023.1068103
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


FIGURE 4

Representative example of a 10-year-old female cystic fibrosis patient scanned with paired inspiratory-expiratory CT at baseline, and subsequently after 3, 12
and 24 months. The first column shows the inspiratory CT in coronal reconstruction and the second column the segmentation results of the airway tree
including labeling of the pulmonary lobes (trachea highlighted in green, right main in red, left main in dark blue, right upper lobe in yellow, middle lobe in
green and right lower lobe in orange, left upper lobe in light blue, lingula in red, and left lower lobe in pink). The third column shows the expiratory CT in
coronal reconstruction and the fourth column the results of air trapping quantification using the A1 (A1 includes A2 and A3) parameter. The quantitative
results TLV, BEI, RLV, A1, A2, A3 are given for each timepoint. BEI increased from 0.52 to 0.68, and A3 from 9.42% to 12.76% over tow years. The
corresponding ppFEV1 were 104% and 102%.
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and maximum values of 37.68% and 67.93%, respectively. A major

obstacle when interpreting this data is separating the effects of

growth and disease activity. However, we believe that WP5–10 as a

ratio in which both the numerator and the denominator grow with

age may be less affected by growth than the other parameters.

Bronchiectasis can be quantified using airway tapering, which

should in turn be a growth-independent measure. Kuo et al.

described the outer airway diameter to be reliable to diagnose

bronchiectasis when performing visual scoring (10), but in our

experience the inner airway diameter seemed more reliable (7).

The BEI as a quantitative parameter has two advantages. Firstly,

unlike the other airway parameters, BEI should be less variable and

potentially less prone to changes during spontaneous

improvements under therapy because bronchiectasis represents

irreversible structural lung damage (18). Secondly, BEI can be

considered less growth-dependent, and does not require the
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adjacent vessel to be compared with, which is another parameter

introducing variability. Bronchiectasis are persistent and

progressive, developing early in the course of CF and being

detectable in infants as young as 10 weeks of age (15). In

preschool children, the extent and severity of bronchiectasis is

between 29.3%–61.5%, making the usefulness of a bronchiectasis

score as an outcome measure for CF lung disease questionable

(27, 28). However, in school-age children, bronchiectasis has a

prevalence of 60% to 80%, making it a more and more relevant

disease marker with increasing age. In our cohort, BEI changed

over two years from 0.41 to 0.54 (P = 0.156), which was also in line

with the literature (10). BEI also had a high regional heterogeneity

with inconsistent progress in different lobes. We observed the

highest increase in the RUL and RLL, which was partly in line

with previous publications that observed more severe abnormalities

and inflammation in the RUL (12, 16, 29). However, the highest
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TABLE 3 Linear model to predict changes in airway parameters
associated with air trapping. Patient and lung regions are random
effects. The fixed effects were age, A3, and the examination time point (3
months, 12 months, and 24 months), and the endpoints were the airways
parameters BEI, LA5−10, and WP5−10. The regression coefficient (EstE)
describes the influence of a fixed effect on the endpoints if it is increased
by one unit. The confidence interval (Cl) with its lower and upper limits
(LL – UL) and the standard error (SE) is also given.

EstE Cl (LL – UL) SE P-value

BEI

Age (y) 0.046 (0.018–0.073) 0.014 0.003

A3 (%) 0.003 (−0.002–0.008) 0.003 0.250

3 months 0.019 (−0.059–0.096) 0.039 0.639

12 months 0.015 (−0.068–0.098) 0.042 0.722

24 months 0.006 (−0.089–0.101) 0.049 0.902

LA5−10

Age (y) 0.598 (0.407–0.789) 0.098 <0.001

A3 (%) −0.006 (−0.034–0.021) 0.014 0.654

3 months 0.112 (−0.318–0.541) 0.219 0.614

12 months −0.016 (−0.487–0.455) 0.24 0.947

24 months −0.035 (−0.617–0.546) 0.297 0.906

WP5−10

Age (y) −0.042 (−0.07 to −0.014) 0.014 0.014

A3 (%) 0.004 (0.001–0.006) 0.001 <0.001

3 months −0.025 (−0.067–0.016) 0.021 0.021

12 months 0.04 (−0.01–0.09) 0.026 0.026

24 months 0.086 (0.015–0.157) 0.036 0.036

TABLE 4 Linear model to predict temporal development of airway
parameters. Patient and lung regions are random effects. The fixed effects
were age, A3, and the examination time point (3 months, 12 months, and
24 months), and the endpoints were the airways parameters BE, LA5−10,
and WP5−10. The regression coefficient (EstE) describes the influence on
the fixed effect the change between one time point and the following
time point. The confidence interval (Cl) with its lower and upper limits
(LL – UL) and the standard error (SE) is also given.

Est CI (LL – UL) SE P-value

BEI

Baseline and 3 months

Age (y) 0.043 (0.014–0.072) 0.015 0.007

A3 (%) 0.017 (0.007–0.028) 0.001 0.003

Baseline 0.403 (0.351–0.455) 0.027 <0.001

Baseline and 24 months

Age (y) 0.230 (−0.002–0.048) 0.013 0.086

A3 (%) 0.008 (−0.001–0.013) 0.005 0.091

Baseline 0.983 (0.925–1.041) 0.030 <0.001

LA5−10

Baseline and 3 months

Age (y) 0.357 (0.139–0.575) 0.111 0.003

A3 (%) 0.023 (−0.031–0.077) 0.028 0.413

Baseline 0.378 (0.285–0.471) 0.048 <0.001

Baseline and 24 months

Age (y) 0.293 (0.132–0.454) 0.082 0.001

A3 (%) 0.026 (−0.028–0.079) 0.027 0.356

Baseline 0.552 (0.443–0.660) 0.055 <0.001

WP5−10

Baseline and 3 months

Age (y) −0.782 (−1.332– −0.233) 0.28 0.009

A3 (%) 0.013 (−0.088– 0.114) 0.052 0.796

Baseline 0.404 (0.292–0.517) 0.057 <0.001

Baseline and 24 months

Age (y) −0.992 (−1.466– −0.519) 0.242 <0.001

A3 (%) 0.1 (−0.021–0.221) 0.062 0.114

Baseline 0.386 (0.261–0.511) 0.064 <0.001
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BEI was found in the RLL. In summary, we showed that TD5–10,

LA5–10, WT5–10, and WP5–10 most likely reflect a combination of

growth and small airway disease with airway wall thickening and

mucus plugging as early potentially reversible airway pathologies.

The BEI, on the other hand, represents more irreversible structural

lung damage. The lobe-based analysis also showed substantial

variability between different lung lobes, again emphasizing the

need for a quantitative assessment of regional disease activity.

Quantitative air trapping is a CT outcome measure that has

promise in detecting early regional small and large airway

obstruction before global lung function decline and progressive

structural lung disease occurs. Currently, no specific air trapping

parameter is considered a gold standard. Therefore, we tested the

most commonly used air trapping parameters RVC856–950 and E/I

MLA, which are normally used in adults, and the parameters

A1-A3, which are adjusted for use in pediatric patients (22).

RVC856–950 had a weak (r =−0.28) association with age and did not

increase over two years. The use of fixed thresholds makes the

parameter vulnerable to growth-related changes in lung density. This

dependency might be especially problematic in the first years of life

when lung density decreases linearly, approximating adult levels

during adolescence (30, 31). On the other hand, E/I MLA and

A1-A3 seemed not to be associated with age (r =−0.06; r =−0.01 to

−0.03) since both parameters are less influenced by growth-related
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changes due to the way they are calculated. E/I MLA is the

expiratory to inspiratory ratio of mean lung attenuation (21) and,

A1-A3 is defined by using three dynamic thresholds (22),

compensating for ages related changes in lung density. Accordingly,

RVC856–950 correlated weakly with the other air trapping parameters

(r = 0.07 to 0.17), whereas the E/I MLA and A1-A3 showed strong

or very strong correlations with each other (r = 0.72 to 0.94). E/I

MLA did not change substantially over two years, indicating that E/I

MLA and RVC856–950 might not be sensitive enough to detect subtle

changes in air trapping in school-age children. Therefore, we

decided to focus on A1-A3. Indeed we found that A3 representing
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severe air trapping increased from 2.26% to 4.35% (P = 0.086), this

parameter seems to be best suited for our patient collective.

Next, we analyzed cross-sectional interdependencies between

airway parameters and air trapping at each timepoint to gain

further insight into CF lung disease. Airway wall thickening and

“trapped gas” behind closed airways showed associations in other

lung diseases like bronchial asthma (32). We expected that the

same associations exist in CF since airway inflammation also leads

to airway wall thickening and airway obstruction. The assumption

is strengthened by regional variations in wall percentage (WP5–10)

and air trapping (A3), as observed in steps one and two.

Furthermore, we also expected cross-sectional interdependencies

between bronchiectasis and air trapping since in patients with CF,

bronchiectasis are detected in 30% and air-trapping in 45% with

CT (33). We believe that our study collective is predestined for

showing connections between bronchiectasis and air trapping since

only patients with mild CF-lung disease were included, making it

likely to catch the development of irreversible lung changes at an

early stage. Therefore, we applied a robust mixed linear model to

consider the regional heterogeneity of CF by integrating lobe-based

information to predict changes in BEI, LA5–10, and WP5–10
associated with age, air trapping, and the examination time point

3-month, 12-month, and 24-month. For our model we chose BEI,

LA5–10, and WP5–10 as a reduced set of airway parameter input

variables. The reasoning behind it was that pathological airway wall

thickening might be best represented by WP5–10 since the

parameter is less influenced by growth. Furthermore, all airway

parameters had low correlations with ppFEV1, while WP5–10 was

the most promising (r =−0.27). LA5–10 was chosen since the

remaining parameters were strongly correlated with and are partly

computationally derived from each other (e.g., TD - WT = LA).

Importantly, the model showed that A3 was significantly

associated with higher WP5–10 (P < 0.001), implying that narrowing

of peripheral airways and a thickening of the airway walls by mucus

or inflammation is regionally connected to functional airway disease

at a given timepoint. However, a higher A3 was not significantly

associated with higher BEI (P = 0.250), indicating that bronchiectasis

may not be cross-sectionally linked to regional air trapping at this

stage of disease. As expected, BEI had a significant association with

increasing age, representing irreversible bronchiectasis progression

over time (P = 0.003). Therefore, especially structural changes of CF-

lung disease like bronchiectasis might get better detected at 12- and

24-months. Age was also associated with higher LA5–10 (P < 0.001)

and lower WP5–10 (P = 0.014). Higher LA5–10 was most likely

attributed to growth and the lower WP5–10 with older age possibly

reflects age-related structural changes of the airways (34, 35).

However, this makes it more likely that the increasing WP5–10 in

areas with air trapping are linked to pathology. The associations

between LA5–10, WP5–10 and the study time points were

inconsistent. The later time points, 12-months, and 24-months were

associated with decreased LA5–10 and increased in WP5–10, while we

found opposing tendencies at 3-month. This observation might be

explained by the short observation period, where the high variability

of CF-lung disease has a significantly greater influence than on

longer observation periods.

Taken together, we could demonstrate a cross-sectional

association between severe air trapping (A3) and WP5–10,
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indicating that measurable airway wall thickening is regionally

linked to air trapping. Further, our model could not confirm a

statistically significant regional association between air trapping

and bronchiectasis.

Finally, we applied a second linear model to analyze the

longitudinal interdependencies between airway changes and air

trapping also by lobe over two years. Our model showed that age

alone did not predict an increase in BEI, but higher BEI at baseline

predicted higher BEI in the follow-up examinations. Furthermore,

A3 was associated with higher BEI only between baseline and three

months, indicating that more severe quantitative air trapping was

predictive for developing bronchiectasis during the next three

months. This observation suggested that there might be an

association between BEI and A3 but only in a close temporal

context but not over two years. Tepper et al. made the same

observation in their study, finding no clearly identifiable pre-stages

for the development of bronchiectasis in a two year timeframe (14).

Therefore, our data might support the hypothesis made by Tepper

et al., that the development of bronchiectasis is frequently an acute

process and not caused by a slow continuous progressive transition,

indicating that there are two possible phenotypes: one for rapid

progression of bronchiectasis and one for more slowly developing

bronchiectasis (14). The severity of A3 at baseline does not seem to

predict the size of LA5–10 at 3-, 12-, and 24 months, while A3 at

baseline was associated with an increase of WP5–10 at 12 months,

but not for the other time points. We observed that higher values of

the airway parameter LA5–10 at baseline independently predicts

higher values of LA5–10 in all the following CT examinations, which

might be attributable to growth since larger children at baseline will

retain relatively larger airways follow-up exams. We observed the

same for WP5–10 where higher values at baseline also independently

predict higher WP5–10 at follow-up; however, age and WP5–10 were

inconsistently associated. This implies that older children are more

likely to have increased disease severity as measured by relative wall

thickening in the following CT examinations, which partly matches

with the observation by Mott et al. that wall thickening is not

always reversible (17).

Collectively, we could strengthen the assumption that development

of bronchiectasis might be an acute process by detecting regional

interdependencies between severe air trapping and an increase in

bronchiectasis over a short time interval of 3 months but not over

longer time intervals of up to 2 years. However, the model failed to

show a general dependency between bronchiectasis and air trapping

which is consistent with previous findings that bronchiectasis can

develop within two years without visible pre-stages (14). Therefore,

bronchiectasis and air trapping are co-existent in many patients

which was also reported by Boon et al., who correlated

multidetector computed tomography and micro-CT with thin

section histology on explanted end-stage CF lungs, describing a wide

variability between patients with predominance of large

bronchiectasis with pronounced destruction in some patients, and

hyperinflation with small airways obstruction in other patients (24).

Our study has some limitations. First, our study did not evaluate

emerging physiologic lung function measures, such as the lung

clearance index, which has also been shown to be a more sensitive

measure than spirometry in CF clinical studies (36, 37). In a study

in 60 school-aged children, LCI and CT scoring had similar
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sensitivity to detect CF lung disease, and in some instances, both

provided complementary information for detection of the

underlying disease (36). Second, in most cases of our cohort, we

assume that a stable full inspiratory and end-expiratory breath-

hold was achieved due to spirometer-controlled CT. This

assumption is supported by a mean lung volume change <5%

between single acquisitions, which is also less than the 10%

recommended by Madani et al. (38). But it is obvious that the level

of inspiration and expiration certainly influences the presented

QCT results. As expected, the total lung volume (TLV) was

moderately associated with age in our patient cohort, increasing by

approximately 14% over two years. Some authors normalize for

lung volume since quantitative lung parameters, and airway

dimensions depend on height, body weight, and gender (39–41).

Nevertheless, we waived normalization because we believe it may

have confounded our results. The majority of studies normalizing

for lung volume included adults with mature lungs, whereas

growth is an inherent factor in school-age children. Growth also

influences the number of airways detected by CT since chest CT

resolution is an essential determinant for the smallest structures

that can still be observed. CT measurements are consistently

accurate and reproducible in airway diameters down to

approximately 2 mm (42, 43), meaning that small intrapulmonary

airways of higher generations are below the resolution limit.

Therefore, it seems possible that the number of detectable airways

is also affected by the size of the patient, which might influence

airways analysis in a patient cohort with growing lungs. Third,

mucus plugging was identified as an indicator for bronchiectasis 6

years later and as a potential pre-stage of bronchiectasis (14, 44).

In our study mucus plugging is only indirectly represented by

LA5–10 and also WP5–10 in cases where a mucus layer covers the

airway surface without complete obstruction, then LA5–10 decreases

and WP5–10 increases. If an airway is completely closed by mucus,

airway segmentation fails and no airway parameters can be

determined at all. To our knowledge, no QCT marker for mucus

plugging is available.

In summary, we could demonstrate that QCT is feasible to

detected subtle airway and parenchymal changes in school-age

children with mild CF lung disease. Despite the difficulty of

distinguishing growth from disease-related changes, we detected a

trend to increasing severe air-trapping and bronchiectasis over two

years. By fitting the regional and temporal information of

CF-related changes into two mixed linear models, we could

demonstrate cross-sectional, regional interdependencies between

wall thickening and severe air trapping. Furthermore, we could

detect regional interdependencies between severe air trapping and

an increase in bronchiectasis over a short time interval of 3

months but not over longer time intervals of up to 2 years,

indicating that air trapping might precede the development of

bronchiectasis as an acute process. Therefore, we believe that

disease quantification with QCT should include airway parameters

and air trapping, since both are important and only partially

linked markers for disease severity.

We were able to show that automated evaluation offers distinct

advantages in providing fast, efficient, reproducible and comparable

detailed longitudinal data, much more difficult with direct human

observation resp. scoring. Knowledge of the natural course of the
Frontiers in Pediatrics 10
disease is important in order to better understand and assess the

effect of current CFTR modulatory therapy or other new drugs.
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