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Assessing the association of the newborn metabolic state with severity of
subsequent respiratory tract infection may provide important insights on
infection pathogenesis. In this multi-site birth cohort study, we identified
newborn metabolites associated with lower respiratory tract infection (LRTI) in
the first year of life in a discovery cohort and assessed for replication in two
independent cohorts. Increased citrulline concentration was associated with
decreased odds of LRTI (discovery cohort: aOR 0.83 [95% CI 0.70–0.99], p=
0.04; replication cohorts: aOR 0.58 [95% CI 0.28–1.22], p=0.15). While our
findings require further replication and investigation of mechanisms of action,
they identify a novel target for LRTI prevention and treatment.
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Introduction

Lower respiratory tract infections (LRTIs) are the leading cause of mortality in young

children worldwide (1). While children with underlying conditions, such as prematurity,
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congenital heart disease, and chronic lung disease, are at highest

risk of severe LRTI, the majority of these events, including

hospitalizations, occur in previously healthy children (2, 3). In

the first year of life, LRTIs are primarily caused by respiratory

viral pathogens, most commonly respiratory syncytial virus

(RSV) (4). With the exception of antiviral agents for influenza

and SARS-CoV-2, most infections are not currently vaccine

preventable and treatment is only supportive care (5). A very

small subset of premature infants with significant pulmonary

and cardiac conditions may qualify for RSV

immunoprophylaxis (6). Despite the significant public health

burden of LRTIs, effective treatment and prevention strategies

are lacking for most infants (5).

Energy metabolism is a highly regulated process which plays

an important role in susceptibility to viral infections (7). As

viruses rely upon energy produced by host cell metabolism to

replicate, metabolic pathways influence virulence (7, 8).

Immune cells also depend upon nutrients produced through

cellular metabolism to recognize and respond to pathogens

(9). Immune responses are impaired in individuals with

metabolic disorders, allowing viruses to further compromise

the immune system and enhance metabolic dysfunction (10,

11). Therefore, assessing the association between the

variability in normal metabolism and viral infection severity

may provide important insights on LRTI pathogenesis, may

aid in the identification of those at risk, and identify new

pathways that may modify immune regulation that could be

targeted for prevention and treatment. Our objective was to

test the association of metabolites measured at birth with risk

of LRTI during the first year of life using targeted metabolic

data from newborn screening (NBS) programs.
Materials and methods

Study design, populations, and
data collection

This multi-site cohort study included three birth cohorts

from the NIH Environmental influences on Child Health

Outcomes (ECHO) Children’s Respiratory and Environmental

Workgroup (CREW) consortium (12). We utilized a

population-based birth cohort which was the largest of the

three cohorts (INSPIRE, n = 1949) for the discovery phase and

the smaller cohorts (MAAP, n = 141; WISC, n = 270) to

replicate findings. We included enrolled infants with at least

one year of follow-up whom we linked with NBS blood

metabolic data, including targeted measurement of amino

acids, free carnitine, and acylcarnitines. Each state’s public

health department is responsible for deciding which

conditions, and corresponding metabolites, are included on

the NBS panel based on evidence of net benefit of screening,

availability of effective treatments, and screening capability of
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the state. Most states screen for the panel of conditions

recommended by the U.S. Health Resources & Services

Administration, using the same methodology (13), while some

states additionally screen for newer conditions (14, 15).

Our primary exposures were metabolite concentrations at

birth. Metabolic data for newborns were obtained from the

NBS programs at the Tennessee Department of Health,

Michigan Department of Health and Human Services, and

Wisconsin State Laboratory of Hygiene. Data were provided

for infants who did not screen positive for any inherited

disorder [i.e., metabolite concentrations were within the

normal range, representing >99% of infants in the US (16)] to

reduce the risk of potential participant identification and

remove skewed metabolite profiles due to inborn errors of

metabolism. These data were then linked with demographic

and clinical data from each of the cohorts. Metabolites

measured in each cohort are listed in Supplementary

Table S1. Our primary outcome, LRTI, was ascertained by

parental report, physician diagnosis, or medical record

documentation of bronchiolitis or pneumonia at any time

during the first year of life and defined at age one-year

dichotomously as LRTI yes or no. Data collection for

ascertainment of the primary outcome within each cohort is

summarized in Supplementary Table S2. Demographic and

clinical characteristics were ascertained from questionnaires

administered during the first year of life.
Patient consent statement

The protocol and informed consent documents were

approved by the Vanderbilt University Medical Center, Henry

Ford Health System, University of Wisconsin, Tennessee

Department of Health, Michigan Department of Health and

Human Services, and Wisconsin Department of Health

Services Institutional Review Boards. Written informed

consent or parent’s/guardian’s permission was obtained, along

with child assent as appropriate, for CREW participation and

for participation in specific cohorts.
Statistical analysis

We compared demographic and clinical characteristics

between the cohorts using Kruskal-Wallis or Pearson χ2 test,

as appropriate. Our a priori statistical plan utilized a

common, pre-specified two-stage procedure (17) to identify

LRTI-related metabolites in the discovery cohort

(Supplementary Figure S1). In the first stage, we used elastic

net to identify leading metabolites associated with LRTI in the

first year of life. Elastic net is a penalized regression method

for selecting groups of correlated metabolites while

performing variable selection and continuous shrinkage (18).
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We included all metabolites in one logistic regression model,

which helped reduce the multiple metabolite testing burden.

Although there was some skewness and zero values,

metabolite concentrations were generally well distributed

(normally) (Supplementary Figure S2). As having normal

distributions is not an assumption of logistic regression, we

utilized raw, untransformed metabolite concentrations in the

analyses.

In the second stage, we evaluated the selected metabolites in

a multivariable logistic regression model simultaneously, while

adjusting for a priori selected demographic and clinical

characteristics previously shown to be associated with

metabolism or infant LRTI. We calculated each metabolite’s

adjusted odds ratio for an interquartile range [IQR] difference

increase in its concentration. For each metabolite that

remained significantly associated with LRTI after the second

stage (p < 0.05), we tested its association with LRTI in the

replication cohorts using meta-analyzed logistic regression. In

the replication analysis, our regression power was limited by

sparse LRTI events. To avoid overfitting, we decided a priori

to limit covariate adjustment to infant sex (estimated power

in replication cohorts: 6%–25%; see Supplementary Material

for details on power calculation).

To provide additional insight into pathways involved in

severity of RSV infection, we performed a sub-analysis

assessing the association between each metabolite identified in

the primary analysis and severity of RSV infection. We
FIGURE 1

Flow diagram of study populations. Discovery cohort: INSPIRE, Infant Susce
Replication cohorts: MAAP, Microbes, Allergy, Asthma and Pets study and W
have been missing due to refusal of newborn screening, metabolite concen
population included in the RSV sub-analysis (n= 912 INSPIRE infants) stemm
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performed this analysis among a subset of infants in the

discovery cohort with either RSV upper respiratory tract

infection (URTI, less severe) or RSV LRTI (more severe)

identified through biweekly surveillance during RSV season

and serology at one year. We used multivariable logistic

regression, adjusting for the same covariates included in stage

two of the primary analysis, to assess the association. Data

analyses were performed using R software, versions 3.6.1 and

4.0.4 (R Foundation for Statistical Computing, Vienna,

Austria). Additional information on methodology can be

found in the Supplementary Material.
Results

Our final study populations included 1,746 (INSPIRE,

discovery cohort), 134 (MAAP, replication cohort), and 222

(WISC, replication cohort) infants after linking NBS

metabolic data to >90% of infants (Figure 1). Demographic

and clinical characteristics and NBS metabolite concentrations

for the study populations are shown in Table 1 and

Supplementary Table S3.

During the first year of life, 25%, 5%, and 3% of INSPIRE,

MAAP, and WISC infants reported having an LRTI,

respectively. The relationships between the identified set of 15

leading metabolites and covariates and the log odds of LRTI

in infancy and the pairwise correlations between the leading
ptibility to Pulmonary Infections and Asthma following RSV Exposure;
ISC, Wisconsin Infant Study Cohort. *Newborn screening data may

trations outside the normal range, or incomplete linkage. **The study
ed from this box. This figure was created with BioRender.com.

frontiersin.org

https://doi.org/10.3389/fped.2022.979777
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


TABLE 1 Demographic and clinical characteristics of the study
populations with linked newborn screening data and non-missing
outcome data.

INSPIRE
N (%)

MAAP
N (%)

WISC
N (%)

Sample size 1746 134 222

Infant sex

Male 920 (53) 64 (48) 109 (49)

Female 826 (47) 70 (52) 113 (51)

Missing 0 (0) 0 (0) 0 (0)

Infant race/ethnicity

Non-Hispanic White 1,120 (64) 76 (57) 212 (95)a

Non-Hispanic Black 313 (18) 13 (10) 2 (1)

Hispanic 148 (8) 7 (5) 2 (1)

Other 165 (9) 38 (28) 6 (3)

Missing 0 (0) 0 (0) 0 (0)

Gestational age (weeks)b 39 (1) 39 (1) 39 (1)a

Missing 0 (0) 0 (0) 0 (0)

Birthweight (grams)b 3,442 (461) 3,484
(500)

3,408
(518)

Missing 0 (0) 0 (0) 0 (0)

Mode of delivery

Vaginal 1,202 (69) 92 (69) 177 (80)a

Cesarean 544 (31) 42 (31) 45 (20)

Missing 0 (0) 0 (0) 0 (0)

Maternal smoking during pregnancy 294 (17) 8 (6) 4 (2)a

Missing 0 (0) 1 (1) 5 (2)

Secondhand smoke exposure during
the first year of life

586 (34) 2 (1)a –

Missing 0 (0) 4 (3) 222 (100)

Daycare attendance during the first
year of life

580 (33) 97 (72) 160 (72)a

Missing 20 (1) 14 (10) 0 (0)

Maternal asthma 344 (20) 42 (31) 42 (19)a

Missing 1 (0) 0 (0) 3 (1)

Paternal asthma 275 (16) 23 (17) 22 (10)a

Missing 102 (6) 9 (7) 2 (1)

Maternal allergic rhinitis 413 (24) 36 (27) 67 (30)

Missing 1 (0) 1 (1) 2 (1)

Ever breastfed 1,402 (80) 111 (83) 209 (94)a

Missing 11 (1) 1 (1) 4 (2)

Maternal education

Less than high school 130 (7) 4 (3) 0 (0)a

High school diploma/GED 464 (27) 16 (12) 12 (5)

Some college 523 (30) 39 (29) 59 (27)

College degree or more 629 (36) 74 (55) 146 (66)

Missing 0 (0) 1 (1) 5 (2)

Maternal marital status

Single 700 (40) 17 (13) 8 (4)a

Married 1,010 (58) 116 (87) 205 (92)

(continued)

TABLE 1 Continued

INSPIRE
N (%)

MAAP
N (%)

WISC
N (%)

Divorced/separated 36 (2) 1 (1) 3 (1)

Missing 0 (0) 0 (0) 6 (3)

Residence during the first six months of life

Urban 1,335 (76) 134 (100) 0 (0)a

Rural 396 (23) 0 (0) 222 (100)

Missing 15 (1) 0 (0) 0 (0)

Living siblings –

0 603 (35) 65 (29)

1 545 (31) 77 (35)

≥ 2 598 (34) 79 (36)

Missing 0 (0) 134 (100) 1 (0)

Year of birth

2012 760 (44) N/A N/Aa

2013 986 (56) N/A 4 (2)

2014 N/A 31 (23) 22 (10)

2015 N/A 74 (55) 69 (31)

2016 N/A 29 (22) 53 (24)

2017 N/A N/A 19 (9)

2018 N/A N/A 39 (18)

2019 N/A N/A 16 (7)

Missing 0 (0) 0 (0) 0 (0)

Age at infant enrollment (months)b 2 (2) 0 (0)c 0 (0)a,c

Missing 0 (0) 0 (0) 0 (0)

GED, general educational development; N/A, not applicable (i.e., year was

outside of study enrollment window).

– Data not collected.
aP < 0.05 for the comparison between cohorts (in which data were collected)

using Kruskal-Wallis or Pearson χ2 test, as appropriate.
bData are expressed as mean (standard deviation).
cInfants were enrolled at birth.

Snyder et al. 10.3389/fped.2022.979777
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metabolites are depicted in Supplementary Figure S3,

Supplementary Table S4, and Supplementary Figure S4.

While several metabolites were moderately associated with

LRTI in infancy in adjusted analyses (C2, C3, C6-DC, and

SUAC; p < 0.1), citrulline was the only statistically significant

metabolite (Supplementary Figure S5). A 5 umol/l (IQR)

increase of citrulline concentration at birth was associated

with decreased odds of LRTI in infancy in the discovery

cohort (adjusted odds ratio [aOR] 0.83 [95% confidence

interval (CI) 0.70–0.99], p = 0.04) (Figure 2, panel A). When

assessed in the replication cohorts, the meta-analyzed effect

also showed an inverse relationship but was not statistically

significant [aOR 0.58 (95% CI 0.28–1.22), p = 0.15]

(Supplementary Table S5).

In the analysis restricted to INSPIRE infants who were

infected with RSV during infancy [n = 912 (176 with RSV

LRTI, 736 with RSV URTI)], we consistently observed an
frontiersin.org
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FIGURE 2

Association of citrulline concentration at birth with lower respiratory tract infection (LRTI) of all etiologies (panel A, n= 1746) and respiratory syncytial
virus (RSV) LRTI (panel B, n= 912) in infancy in the discovery cohort. The predicted probability (y-axis) in panel A was calculated using a multivariable
logistic regression model in the discovery cohort, INSPIRE, adjusting for infant sex, infant race/ethnicity, mode of delivery, maternal smoking during
pregnancy, ever breastfed, maternal asthma, living siblings, daycare attendance during the first year of life, and all other identified metabolites (C2, C3,
C5, C5:1, C6-DC, C10:1, C10:2, C16, C18:2, ASA, GLY, ORN, SUAC, and VAL). The predicted probability (y-axis) in panel B was calculated using a
multivariable logistic regression model in a subset of infants in INSPIRE with either RSV upper respiratory tract infection (URTI, less severe) or RSV
LRTI (more severe), adjusting for infant sex, infant race/ethnicity, mode of delivery, maternal smoking during pregnancy, ever breastfed, maternal
asthma, living siblings, and daycare attendance during the first year of life.

Snyder et al. 10.3389/fped.2022.979777
inverse relationship between citrulline concentration at birth

and odds of LRTI in infancy [aOR 0.74 (95% CI 0.60–0.91),

p = 0.005] (Figure 2, panel B).
Discussion

We observed a protective association of citrulline

concentration at birth on risk of LRTI in infancy, where

increased concentration (within the normal range) was

associated with decreased risk. This association persisted
Frontiers in Pediatrics 05
when assessed among a subset of infants who were infected

with RSV during the first year of life, identifying novel

metabolic pathways in early life that may be involved in

susceptibility to severe respiratory viral infection, including

RSV infection.

Energy metabolism is highly regulated to meet the demands

of the cell. Alterations in metabolic pathways have been linked

to cell death and dysfunction, reactive oxygen species

production, altered immune response, and enhanced

inflammation (19). Severe forms of metabolic dysregulation

(i.e., inborn errors of metabolism) are identified at birth
frontiersin.org
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through NBS. These disorders are caused by genetic mutations

leading to defective enzymes, cofactors, or transporters in

metabolic pathways, often resulting in toxic accumulation of

metabolite intermediates (20, 21). Respiratory manifestations,

particularly airway infections, are common among children

with inherited metabolic diseases (22), indicating that

dysregulation of energy metabolism may predispose children

to respiratory illness. Milder forms of metabolic dysregulation

have also been implicated in susceptibility to pulmonary

infections through impaired immune responses and increased

airway inflammation (23). For this reason, we assessed the

association between the variability in normal infant

metabolism and viral infection severity to provide novel

insights on LRTI pathogenesis, to aid in the identification of

those at risk, and identify new pathways that may modify

immune regulation that could be targeted for prevention and

treatment.

LRTIs are a major public health issue (1), and with the

exception of antiviral agents for influenza and SARS-CoV-

2, the only available infant treatment is supportive care (5).

RSV is the most common respiratory viral etiology of

severe LRTIs (4). RSV prevention products (i.e., RSV

immunoprophylaxis) are currently primarily available in

high income countries for a small subset of high-risk

infants (24). However, most infant RSV-related deaths

occur in low and middle income countries (25), and over

70% of RSV-related hospitalizations occur in term infants

without known comorbidities (26). There are no maternal

or infant RSV vaccines currently approved, although many

are in clinical trials (27, 28). Citrulline is a readily available

dietary supplement and supplementation has been shown to

be both safe and well tolerated in infants (29). Although

citrulline is primarily used for treating urea cycle defects,

there is accumulating evidence to suggest that citrulline

supplementation may have a wider therapeutic role (30),

particularly for lung diseases (31). Our findings may have

important clinical application and provide sufficient

evidence to further understand the protective effect of

citrulline on LRTI in experimental models. While we

focused on citrulline (per our a priori statistical plan), the

metabolites C2, C3, C6-DC, and SUAC showed modest

associations with LRTI, and therefore, may also be of

interest in future studies.

The role of citrulline in the regulation of immune

function is increasingly being recognized. Citrulline is a

nutritionally non-essential amino acid which plays an

important role in arginine biosynthesis, the nitric oxide

cycle, and the urea cycle (32). The metabolism of citrulline

is unique in that it is not used by the intestine or taken up

by the liver and, thus, bypasses splanchnic extraction (33).

Impaired conversion of citrulline to arginine in

argininosuccinate synthetase deficiency has been shown to

result in impaired immunity, increased infection
Frontiers in Pediatrics 06
susceptibility, and decreased nitric oxide production in

experimental models (34–36). Children who are critically ill

have low plasma citrulline concentration, which is strongly

correlated with severity of inflammation (37). L-citrulline

supplementation has been shown to enhance T-cell function by

promoting IL-10 and TGF-β1 production in infant rats (36).

Citrulline and Lactobacillus probiotic supplementation have

been found to have a synergistic, protective effect against

pathogen adhesion (i.e., the first step of pathogen infection) in

the intestinal tract, and, thus, may be beneficial for improving

immunity (38). Citrulline-generating and utilizing enzymes have

also been reported to increase in lung myeloid populations

during infection, enhancing host defense (39). It is plausible

that citrulline’s role in the development of the host immune

response is one pathway through which increased citrulline

concentration at birth could protect against risk of LRTI in

infancy. While citrulline is a precursor for arginine, we did not

observe a significant association between arginine and LRTI in

infancy. This may be due to the distinct role of citrulline in

immune modulation and nitric oxide synthesis (36, 40).

Our study has many strengths, including our use of routinely

collected and uniformly measured newborn metabolic data and

birth cohorts in the ECHO-CREW consortium, including a

population-based birth cohort of term, healthy infants for

discovery and two additional study cohorts for replication.

Although our replication analyses were not statistically

significant, they were very small in comparison with the

discovery cohort. Despite this, we demonstrated consistent

effect sizes and directionality in independent cohorts from

diverse populations, which increases the validity of our

findings. As our replication cohorts were small, the non-

significant finding may be due to low power.

There are some limitations to our study. Replication cohorts

were challenging to find, and LRTI was not uniformly

ascertained among the three study populations, which likely

accounted for the large difference in LRTI incidence. As the

INSPIRE cohort was designed to include surveillance for acute

respiratory illnesses and respiratory tract infections during

infancy, the incidence of LRTI in this population was similar

to previously reported population-based estimates (41). LRTI

was likely rare among infants in our two replication cohorts

because there was no protocol to track these illnesses.

However, this would result in misclassification among those

considered as having no LRTI and would drive findings

towards the null, which suggests our replication results are

conservative. Additionally, while the discovery cohort was a

population-based birth cohort representative of the region

from which participants were recruited, overall, the cohorts

included in this study were primarily of non-Hispanic

ethnicity, which may limit the generalizability of our findings.

As the etiologic viral agent of acute respiratory illnesses was

not captured in our replication cohorts, we were unable to

replicate the association between citrulline concentration at
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birth and LRTI during the first year of life among infants with

RSV infection in these cohorts.
Conclusions

We identified a protective association of newborn citrulline

concentration on risk of LRTI during the first year of life. Our

findings allow us to speculate on this amino acid’s mechanistic

role and importance during pregnancy or early infancy on later

LRTI risk and identify an available novel target for LRTI

prevention and possibly treatment, where none currently exist

for most infants. These data provide support for further

investigation of the mechanisms underlying this relationship

with a goal toward clinical translation.
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