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Background: To investigate the effect of the distribution and expression of
interstitial cells of Cajal (ICCs) and platelet-derived growth factor receptor-α
positive (PDGFRα+) cells in different colon segments on colonic motility in
children with Hirschsprung disease (HSCR).
Methods: Smooth muscles of the narrow and dilated segments of the colon
were obtained from 16 pediatric patients with HSCR. The proximal margin
was set as the control section. The mRNA and protein expressions of c-Kit,
PDGFRα, ANO1, and SK3 channels were examined. Circular smooth muscle
strips of the colon were prepared for performing electrophysiology
experiments using electric field stimulation (EFS) and intervention from
different drugs (TTX, NPPB, Apamin, L-NAME, and CyPPA).
Results: ThemRNAandproteinexpressionsofc-Kit, ANO1,PDGFRα, andSK3were
much lower in thenarrowsegment than those in thedilatedandproximal segments
of thecolon.Thenarrowsegment showedaconsiderablyspontaneouscontraction
of the muscle strip. After the EFS, the relaxation response decreased from the
proximal to the narrow segment, whereas the contraction response increased.
TTX blocking did not cause any significant changes in the narrow segment. In
contrast, when NPPB, Apamin, L-NAME, and CyPPAwere used to intervene in the
muscle strips, the proximal segment showed a more sensitive inhibitory or
excitatory response than the narrow segment.
Conclusions:Downregulation of the ICCs and PDGFRα+ cells from the proximal to
narrowsegmentmayberesponsible for thedysmotilityof thecoloninpediatricHSCR.
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Introduction

Hirschsprung disease (HSCR) is a gut motility disorder characterized by congenital

aganglionosis that affects the distal bowel (1). The incidence rate of this life-threatening

disease is approximately 1/5,000 in neonates, presenting with delaying the passage of

meconium, intractable constipation, and abdominal distension (2, 3). The primary
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TABLE 1 Clinical data of pediatric patients with HSCR.

Date Sex Age Total length
(cm)

Surgical
procedure

17.4.12 M 3m 25 Soave

17.5.16 M 3m 25 Soave

17.5.23 M 7m 30 Soave

17.5.3 M 3y 30 Soave

17.5.31 M 7m 18 Soave

17.7.17 M 8m 25 Soave

17.9.4 F 6m 25 Soave

17.9.13 M 2y 29 Soave

17.10.30 F 1y 38 Soave

17.11.2 F 1y 28 Soave

17.11.16 F 3m 20 Soave

17.12.12 M 2y 32 Soave

17.12.21 M 1y 25 Soave

18.1.12 M 1y 30 Soave

18.3.5 M 1y 32 Soave

18.4.2 F 1y 25 Soave

M, male; F, female; m, month; y, year.
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treatment for HSCR involves a radical pull-through operation

(4). However, recent studies have reported several

postoperative colonic dysmotility complications such as

constipation, soiling, and recurrent enterocolitis at long-term

follow-ups (5–9). However, the mechanism of colonic

dysmotility is still not completely understood.

Normal gut motility depends on the coordinated interaction

of the enteric nervous system (ENS) with smooth muscle cells

(SMCs), interstitial cells of Cajal (ICCs), and platelet-derived

growth factor receptor-α positive (PDGFRα+) cells, which

constitute the SIP syncytium, regulate the alimentary tract by

propagating electrical signals through its smooth muscle layers

and gap junctions (10, 11). Puri et al. showed that the

distribution of PDGFRα+ cells of the distal bowel decreased

in HSCR (12, 13). In a previous study, we showed the

downregulation of the c-Kit and calcium-activated chloride

channel anoctamin 1 (ANO1) in ICCs and the upregulation

of SK3 channels in PDGFRα+ cells using a partial colon

obstruction (PCO) mouse model (14). However, the

mechanism through which the ENS regulates SIP syncytium

in colonic motility at different segments in pediatric HSCR

has been rarely reported.

In this study, we investigate changes in the mRNA and

protein expressions of ICCs/ANO1 and PDGFRα+ cells/SK3

in different segments of the colon in HSCR. Using the

electrophysiological method, we hypothesize that the

regulatory imbalance between the ENS and the SIP syncytium

of the different colonic segments may be responsible for colon

dysmotility.
Materials and methods

Specimen collection

The study conformed with the Declaration of Helsinki and

was approved by the Ethics Committee of Xin Hua Hospital

Affiliated with Shanghai Jiao Tong University School of

Medicine (approval number: XHEC-D-2018-1052). Written

informed consent was obtained from the parents and/or legal

guardians of all study participants. The long-segment and

total colonic aganglionosis as well as those accompanied with

associated syndromes or other malformations were excluded

from this study. Finally, 16 pediatric patients with the full

extent of the resected colonic specimens were selected; their

clinical data are shown in Table 1. The specimens were

dissected into the narrow, dilated, and proximal segments.

The proximal segment contained normal ganglion cells, as

confirmed by hematoxylin-eosin staining, and was set as the

control group. The specimens were stored at 0°C in the Krebs

solution and transferred to the laboratory immediately before

the experiments.
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Protein extraction and Western blot
analysis

The colonic smooth muscle tissues were prepared by

mechanically removing the mucosa and submucosa layers. The

muscle tissue fragments were ground and homogenized in an

ice-cold radioimmunoprecipitation assay buffer (1:10; Beyotime

Chemical Co., Jiangsu, China) containing 1%

phenylmethylsulfonyl fluoride (PMSF; Beyotime Chemical Co.,

Jiangsu, China). The resulting soluble and insoluble fractions

were separated by centrifugation at 4°C at 12,000 rpm over

15 min. According to the manufacturer’s protocols, the

concentration of the supernatant was determined by the

bicinchoninic acid (BCA) protein assay method (Beyotime

Chemical Co., Jiangsu, China) with a standard curve generated

by using known concentrations of bovine serum albumin. The

samples were denatured at 100°C for 5 min. Equal amounts of

proteins (30 µl per lane) were separated by 10% or 8% sodium

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)

and subsequently transferred to polyvinylidene difluoride

(PVDF) membranes. After blocking with 5% non-fat milk in

0.1% Tris-buffered saline/Tween 20 (TBST) for 1 h, the PVDF

membranes were incubated overnight with primary antibodies

at 4°C. The primary antibodies used were anti-c-Kit (1: 500;

ab178527; Abcam, United States), anti-TMEM16A (1 : 500;

ab84915; Abcam, United States), anti-PDGFRα+ (1 : 1,000;
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3174; Cell Signaling Technology, United States), and anti-SK3

(1 : 500; ab192515; Abcam, United States). Anti-GAPDH (1 :

500; ab181602; Abcam, United States) was used as the loading

control for normalizing the expression of target proteins. The

primary antibodies were removed by TBST washing, and the

HRP-linked anti-mouse antibody (1 : 1,000; 7076; Cell Signaling

Technology, United States) or anti-rabbit antibody (1 : 1,000;

7074; Cell Signaling Technology, United States) was then used

as the secondary antibody in the PVDF membrane at room

temperature for 2 h. Subsequently, the membrane was

transferred to a chemiluminescence cassette for blot

visualization. Image J software (open-access software available

from http://imagej.nih.gov/ij/) was used for quantifying the

digital densitometry of the band intensity.
RNA isolation and quantitative reverse
transcription-PCR (qRT-PCR)

The total RNA from the colonic smooth muscle layers was

extracted from the narrow and dilated segments as well as from

the proximal segment using the RNA simple Total RNA Kit

(Tiangen, Beijing, China). First-strand cDNA was synthesized by

denaturation at 8°C for 3 min and then by annealing at 44°C for

60 min. It was then extracted from RNA at 92°C using the

PrimeScript RT Reagent Kit with gDNA Eraser (Takara, Dalian,

China). The qRT-PCR was performed by using the SYBR Green

I assay (Light Cycler 480 SYBR Green I Master Mix, Roche

Diagnostics, Mannheim, Germany). The initial denaturation was

performed at 95°C, after which 55 cycles of amplification were

carried out for each primer. Each cycle included denaturation at

95°C for 7 s, annealing at 55°C for 10 s, and extension at 72°C

for 15 s. The expression of the target genes relative to the

endogenous control GAPDH was calculated using the ΔCT

method. Gene-specific primers are listed in Table 2.
Preparation of muscle strips and
isometric force measurement

The colonic smooth muscle strips (approximately 8.0 mm ×

2.0 mm × 2.0 mm) were cut along the circular axis. A silk thread
TABLE 2 Gene primer sequences.

Name Forward primer sequence (5’–3

ANO1 ACTACCACGAGGATGACAAGC

c-Kit CGTTCTGCTCCTACTGCTTCG

PDGFRα+ TTGAAGGCAGGCACATTTACA

SK3 AAGCGGAGAAGCACGTTCATA

GAPDH CTGGGCTACACTGAGCACC
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was attached to both ends of the muscle strips. One end of the

strips was suspended along the circular axis in 10-mL organ

baths and immersed in warm (37°C) oxygenated (95% O2

and 5% CO2) Krebs solution, while the other end was fixed

on a muscle tension transducer (JZJ01, range 30 g). The

mechanical activity of the strips was recorded using an

isometric force transducer (RM624°C, Chengdu, China)

connected to an amplifier. To avoid the unnecessary clamp

and pull of the colon tissue during the operation, the Krebs

solution was replaced every 20 min. A tension of 3 mN was

applied for equilibration for at least 1 h to restore the

contractile activity after full relaxation. As a result, the strips

displayed spontaneous contractions. The experiments included

the following steps: (1) The electric field stimulation (EFS)

was used to induce smooth muscle contraction, with the

following parameters: constant voltage, 50 V; pulse width,

0.5 ms; continuous stimulation time, 20 s; and stimulation

frequencies, 6, 9, and 12 Hz. (2) After the first electrical

stimulation, the muscle strips were restored to the baseline,

and TTX (a neuron blocker that acts as an exogenous

inhibitor), NPPB (an ANO1 channel inhibitor), Apamin

(an SK3 channel inhibitor), CyPPA (an SK3 agonist), and

L-NAME [a nitric oxide (NO) synthase inhibitor] were added

sequentially. Their strip response was recorded accordingly.
Solutions and drugs

The Krebs solution comprised the following (mM): NaCl,

118.5; KCl, 4.5; MgCl2, 1.2; NaHCO3, 23.8; KH2PO4, 1.2;

dextrose, 11.0; and CaCl2, 2.4. NPPB, Apamin, and L-NAME

were purchased from Tocris Bioscience (Ellisville, MO, United

States).
Statistical analysis

The data are shown as the means ± standard deviation.

Paired t-test and ANOVA analysis with the LSD method were

applied using a standard statistical software package (SPSS

20.0). A P-value < 0.05 was considered to be statistically

significant.
’) Reverse primer sequence (5’–3’)

TCTCTGCACAGCACGTTCC

CCCACGCGGACTATTAAGTCT

GCGACAAGGTATAATGGCAGAAT

CTGGTGGATAGCTTGGAGGAA

AAG TGGTCGTTGAGGGCAATG
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Results

Reduced mRNA and protein expression
levels of c-kit/ANO1 and PDGFRα/Sk3
in HSCR

A specific band at 110–115 kDa was identified for c-Kit

(Figure 1A). The band for ANO1 was detected between 114

and 120 kDa (Figure 1B). PDGFRα was found with a band

between 188 and 192 kDa (the predicted molecular weight

was 190 kDa) (Figure 2A). SK3 had a band between 80 and

90 kDa (the predicted molecular weight was 85 kDa)

(Figure 2B). The relative protein expressions of c-Kit/ANO1

and PDGFRα/SK3 in the narrow segment were significantly

lower than those in the dilated and proximal segments

(Figures 1C,D, 2C,D). The mRNA expression of c-Kit/ANO1

and PDGFRα/SK3 in the narrow segment was significantly

lower than that in the dilated and proximal segments

(Figures 1E,F, 2E,F).
Abnormal contraction of colonic smooth
muscle in HSCR with TTX and EFS

Strips of different colonic segments showed spontaneous

contractions with TTX and EFS. The frequency and amplitude
FIGURE 1

mRNA and protein expressions of c-Kit and ANO1. (A,B) Electrophoresis iden
proteins in all the three segments (narrow, dilated, and proximal) of the colo
*P < 0.05 vs. proximal segment; #P < 0.05 dilated vs. narrow segments.
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of the wave in both the narrow and dilated segments were

greater than those in the proximal segment (Figure 3A).

When TTX is added, the wave baseline of the proximal and

dilated segments shifted upward and the area under the curve

(AUC) of the proximal segment significantly increased

compared to that of the dilated segment. In contrast, the

narrow segment remained unaffected (Figure 3B). Under EFS,

transient relaxations were present in both the proximal and

dilated segments with a significant difference in the AUC. In

contrast, the narrow segment did not show any relaxation,

although it showed increased subsequent contraction

compared to that shown by the proximal and dilated

segments. However, no significant difference in the AUC was

found between the latter two segments (Figure 4).
Effect of NPPB, L-NAME, Apamin and
CyPPA on the spontaneous contractions

After the addition of NPPB (5 μmol/L), the AUC of the

dilated and narrow segments significantly reduced in

comparison to that of the proximal segment (Figure 5A). The

proximal and dilated segments clearly showed increased AUC

in response to L-NAME (100 μmol/L), while the narrow

segment did not show any changes (Figure 5B). In contrast,

all parts of the colon showed enhanced AUC after the
tification. (C,D) Significant difference in the relative expression of the
n. (E,F): mRNA expressions of c-Kit and ANO1 in the three segments.
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FIGURE 2

mRNA and protein expressions of PDGFRα and SK3. (A,B): Electrophoresis identification. (C,D): Significant difference among the relative expressions
of proteins in the three segments (narrow, dilated, and proximal). (E,F): mRNA expressions of PDGFRα and SK3 in the three segments. *P < 0.05 vs.
proximal segment; #P < 0.05 dilated vs. narrow segments.

FIGURE 3

Spontaneous contractions of the smooth muscle of the colon without and with TTX blocker. (A): Significant differences among the spontaneous
contractions in the narrow segment under static station with no intervention. *P < .05 vs proximal segment. (B): AUC alternation of each
segment after the addition of the TTX blocker. *P < .05 vs before TTX; # P < .05 vs proximal segment.

Gu et al. 10.3389/fped.2022.975799
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FIGURE 4

Effects of EFS-induced on smooth muscle contractions of the colon. Relaxation and subsequent contractile response after EFS in the proximal
segment; relaxation response almost disappeared in the narrow segment. *P < 0.05 vs. proximal segment; #<0.05 dilated vs. narrow segments.

FIGURE 5

Effects of NPPB, L-NAME, apamin, and CyPPA on the smooth muscle contractions of the colon. A significant response was observed in the proximal
segment compared to that in the narrow segment after the administration of (A) NPPB, (B) L-NAME, (C) Apamin, and (D) CyPPA, *<0.05 vs. before
drugs; #<0.05 vs. proximal segment.

Gu et al. 10.3389/fped.2022.975799
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addition of Apamin (300 nmol/L); the proximal segment

showed significantly increased AUC than that of the dilated

and narrow segments (Figure 5C). In contrast, administration

of 300 nmol/L of CyPPA decreased the AUC of all the three

segments, although the proximal segment showed a greater

decrease than the dilated and narrow segments (Figure 5D).
Discussions

The study investigated the effect of the downregulation of

the ENS on the SIP syncytium in different segments of the

colon of pediatric HSCR using the electrophysiological

method, which may be responsible for the colonic dysmotility

after the pull-through operation.

The pathological change caused by the absence of ganglion

cells and the thickening of cholinergic nerve fibers under

excessive acetylcholine secretion is responsible for HSCR

(15, 16). The frequency and amplitude of the spontaneous

contraction wave in the narrow segment greatly increased

compared to that in the proximal segments. As the EFS can

promote the release of both inhibitory and excitatory

neurotransmitters (17), the proximal colon showed strong

transient relaxation and contraction responses, demonstrating

that the responses induced by the EFS were caused by the

release of the inhibitory and excitatory neurotransmitters. In

contrast, the narrow segment showed almost complete

disappearance of the relaxation response and a much more

intense contraction response than that of the proximal

segment. We used TTX to block the conduction of exogenous

neurotransmitters. The muscular tension in the proximal and

dilated segments increased significantly after the TTX

addition, whereas no change was observed in the narrow

segment, indicating that the enteric nerves may be damaged,

which is consistent with the neuropathology of HSCR.

However, irrespective of the inhibition caused by the

administration of TTX and/or EFS, the spontaneous

contractions comprising rhythmic electric slow waves were

always present in each colonic segment, implying that the SIP

syncytium in the HSCR colon still plays a key role in

regulating the contractile rhythm.

Koh et al. first proposed the concept of SIP syncytium,

believing that the rhythmic contraction of gastrointestinal

SMCs results from the collaboration among the external

nerves, intestinal plexus, and syncytium (18). Recent studies

have also investigated the role of ICCs and PDGFRα+ cells

and dysmotility of the stenotic colon in the development of

HSCR (12, 13, 19). In this study, we showed that the mRNA

and protein expressions of c-Kit/PDGFR were downregulated

from the proximal segment to the narrow one. Our result is

in accord with that reported by O’Donnell et al. (13).

As the NO is a primary inhibitor of the ENS, its target cells

are ICCs (20). We used L-NAME to block the synthesis of NOS.
Frontiers in Pediatrics 07
We observed significantly increased tension of spontaneous

contraction in the proximal segments compared to that in the

dilated segments; in contrast, the contraction in the narrow

segment remained unchanged. This observation confirmed

that neuronal NO synthase (nNOS) may also have a role to

play in the relaxation response induced by the EFS. We

presumed that two factors may be responsible for the

response of the narrow segment: (i) the NO neurons in the

narrow segment are either damaged or absent and cannot

release NO; and (ii) the number of target cells of NOS in the

narrow segment such as ICCs decreased.

ANO1 is a functional protein specifically expressed in

ICCs—the key ion channel that produces the pacemaker

current in the gastrointestinal tract responsible for its

motility (21). Coyle et al. investigated that the protein

expression of ANO1 reduced from the ganglionic colon

section to the aganglionic colon (22). In this study, we also

observed that the mRNA and protein expression of ANO1

significantly decreased from the proximal segment to the

narrow one. As NPPB blocked the ANO1 channel, it

significantly inhibited the spontaneous contraction of the

colonic smooth muscle of all the three segments. The

proximal segment is more sensitive to NPPB than the dilated

and narrow segments, directly reflecting the damage of ICCs

in the narrow segment.

The SK3 channel was highly expressed in PDGFRα+ cells,

which play an important role in the relaxation of smooth

muscle through gap junctions (23). In this study, both the

mRNA and protein expressions of PDGFRα+ and SK3 in

different segments of the colon were downregulated

subsequently. These results are in good agreement with those

of Coyle et al. (12, 13). Hence, we used Apamin, an SK3

channel blocker (24), and CyPPA, an SK3 channel agonist

(25), to check the activity of PDGFRα+ cells in each

segment. The results showed that Apamin enhanced the

muscular contraction tension in all the three colonic

segments, although the proximal segment was more sensitive

to Apamin than the dilated and narrow segments. On the

contrary, CyPPA greatly inhibited the contraction of the

three segments, especially that of the proximal segment,

indicating that the reduced activity of PDGFRα+ cells in the

narrow segment.

In conclusions, this study showed that the abnormal

distribution of ENS-ICCs/ANO1-SMC and ENS- PDGFRα+/

SK3-SMC axes in different segments of the colon affected

by HSCR have different characteristics. The number of

ICCs and PDGFRα+ cells gradually decrease from the

proximal segment to the narrow segment. Both c-Kit/ANO1

and PDGFRα/SK3 showed significantly reduced expressions

in the narrow segment. The reduced inhibition of NO/

ICCs from the proximal segment to the narrow one may

be responsible for the dysmotility of the colon in

pediatric HSCR.
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