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Background: Preterm birth and subsequent neonatal ventilatory treatment
disrupts development of the hypoxic ventilatory response (HVR). An
attenuated HVR has been identified in preterm neonates, however it is
unknown whether the attenuation persists into the second year of life. We
investigated the HVR at 12–15 months corrected postnatal age and assessed
predictors of a blunted HVR in those born very preterm (<32 weeks gestation).
Methods: HVR was measured in infants born very preterm. Hypoxia was
induced with a three-step reduction in their fraction of inspired oxygen
(FIO2) from 0.21 to 0.14. Respiratory frequency ( f), tidal volume (VT), minute
ventilation (VE), inspiratory time (tI), expiratory time (tE), VT/tI, tI/tTOT, VT/tTOT,
area under the low-volume loop and peak tidal expiratory flow (PTEF) were
measured at the first and third minute of each FIO2. The change in
respiratory variables over time was assessed using a repeated measures
ANOVA with Greenhouse-Geisser correction. A blunted HVR was defined as
a <10% rise in VE, from normoxia. The relationship between neonatal factors
and the magnitude of HVR was assessed using Spearman correlation.
Results: Thirty nine infants born very preterm demonstrated a mean (SD) HVR
of 11.4 (10.1)% (increase in VE) in response to decreasing FIO2 from 0.21 to 0.14.
However, 17 infants (44%) failed to increase VE by ≥10% (range −14% to 9%) and
were considered to have a blunted response to hypoxia. Males had a smaller
HVR than females [ΔVE (−9.1%; −15.4, −2.8; p=0.007)].
Conclusion: Infants surviving very preterm birth have an attenuated ventilatory
response to hypoxia that persists into the second year of life, especially in males.
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Introduction

The hypoxic ventilatory response (HVR) is a peripheral respiratory chemoreflex,

stimulated by a fall in the arterial partial pressure of oxygen (PaO2) (1, 2). The

peripheral respiratory chemoreceptors display a degree of plasticity in oxygen sensing

during the perinatal period (3, 4). At birth, the infant transitions from a relatively
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hypoxic in utero environment to the normoxic ex utero

environment (4). During this transition, peripheral

chemoreceptors “reset” to the higher PaO2, becoming more

sensitive to PaO2 levels below the new baseline. The normal

biphasic HVR of neonates is characterised by an initial increase

in minute ventilation due to increases in both tidal volume and

respiratory rate (augmentation phase), followed by a decrease

to pre-hypoxic levels or lower, due to reductions in respiratory

rate (depressive phase) (5). The depressive phase may result

from a reduction in metabolic rate (6, 7), as well as immature

mechanisms of the respiratory control center (8). However,

while a reduction in metabolic rate during hypoxia is common

in newborn mammals, there has been conjecture about this

phenomenon in infants (9). In contrast to the neonatal HVR,

the mature chemoreflex displays a longer period of increased

minute ventilation (between 10 and 20 min), followed by a

smaller decrease in minute ventilation. Moreover, the minute

ventilation remains higher than pre-hypoxic levels (for at least

the length of a 25 min hypoxia exposure) (10).

The maturation of the HVR continues through infancy.

Several previous studies in both preterm and term infants (9,

11–17) have investigated the postnatal maturation of the HVR

from an immature biphasic response to the sustained

hyperpnoea seen in adults. However, the age at which the infant

HVR becomes similar to the adult response remains

controversial. Some studies report an established “adult”

response by 10 days of life (11). While others report that the

immature biphasic response persists into the second month of

postnatal life (12), and even at 5–6 months of age term infants

fail to exhibit a sustained hyperpnoea during hypoxia (18).

Development of the HVR appears similar in healthy preterm

(with later gestation and no neonatal supplemental oxygen or

mechanical ventilation) and term infants (19). However, the

most preterm neonates often suffer from intermittent or chronic

hypoxia and hyperoxia due to an immature respiratory drive,

underlying respiratory disease and the associated neonatal

intensive care unit (NICU) treatments (19). Fluctuations between

hypoxic and hyperoxic states potentially disrupt the postnatal

development of the HVR (20, 21). Shorter gestation and low

birthweights of the preterm neonate predict a dampened post-

natal maturation of the HVR (22, 23). Additionally, infants with

evolving bronchopulmonary dysplasia (BPD) have a markedly

reduced or absent HVR in the first weeks of postnatal life (24,

25). Furthermore, infants with extended oxygen therapy

experience a blunted HVR up to 14 weeks post-natal age (23).

Emerging data suggest potential long-term alteration in

cardiopulmonary control for those born preterm (19, 26).

However, it is unknown whether long-term development of the

HVR is hampered by increased duration of oxygen therapy and

respiratory support such as mechanical ventilation or continuous

positive airway pressure (CPAP) in the NICU.

We aimed to explore the hypoxic ventilatory response to a

stepwise reduction in the fraction of inspired oxygen (FIO2) in
Frontiers in Pediatrics 02
preterm born infants at 12–15 months corrected postnatal

age. Further, we aimed to determine if the magnitude of the

HVR beyond the first year of life was associated with neonatal

factors, such as duration of supplemental oxygen and duration

of respiratory support. We hypothesised that preterm infants

would mount a HVR at 12–15 months postnatal age, but that

the HVR would be blunted (defined a priori as <10% increase

in minute ventilation) in those receiving prolonged oxygen

therapy and/or respiratory support, during the neonatal period.
Methods

Study population

Infants enrolled in the study were born very preterm [<32weeks

gestational age (GA)] at King Edward Memorial Hospital with no

congenital abnormality. All infants were part of the Preterm

Infant Functional and Clinical Outcome (PIFCO) study, a cohort

evaluating the pulmonary and cardiovascular outcomes following

preterm birth (ACTRN12613001062718). Neonatal clinical

information and data on respiratory support were obtained from

the prospectively collected PIFCO REDCap database (27, 28).

Bronchopulmonary dysplasia was defined as supplemental oxygen

for more than 28 days after birth, as per the 2001 National

Institute of Child Health and Development (NICHD) diagnostic

criteria (29). This paper focuses on the ventilatory measurements

recorded in a subset of the PIFCO cohort that underwent infant

lung function tests at Princess Margaret Hospital, Perth during

the 12–15 month follow-up. The PIFCO follow up study was

approved by the WA Princess Margaret Hospital (PMH) Human

Research Ethics Committee (HREC reference number:

2014083EP), and informed written and verbal consent was

obtained from the parent(s) prior to the measurements.
Study protocol

Infants were sedated with 80 mg/kg chloral hydrate (orally)

for the duration of the infant lung function testing. The infant’s

level of consciousness and capillary refill time were measured

every 15 min by the attending physician. Heart rate and

peripheral oxyhaemoglobin saturation (SpO2) (MasimoSET®

Radical-7™, Masimo Corporation, French’s Forest/NSW) were

measured continuously. The dynamic oxygen test was

performed at the end of the infant’s lung function test

session, approximately 40 min after the infant fell asleep.
Dynamic oxygen test

The FIO2 was reduced stepwise from baseline (0.21 O2,

room air) to 0.19, then 0.16 and finally 0.14 oxygen in
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nitrogen balance, delivered at a continuous flow of 10 L/min via

a sealed face mask (Figure 1). Equilibration of the oxygen

mixture was instantaneous within the face mask, as

continuously measured by an O2/CO2 analyser (Respiratory

Gas Analyzer, ML206, ADInstruments, New Zealand),

sampled via a port proximal to the facemask. The respiratory

gases, FIO2 and SpO2 were recorded continuously and then

analysed offline using Lab Chart (Lab Chart 7 pro, version

7.3.4, ADInstruments, New Zealand). Each step lasted for

3 min duration, with tidal breathing measured during the first

(to assess the peak acute response to the reduction in FIO2),

and third minute of each FIO2 step using an ultrasonic

flowmeter (Exhalyzer D, EcoMedics, Duernten, Switzerland)..

Ventilation variables, including inspiratory time (tI),

expiratory time (tE), total breath duration (tTOT), time to peak

tidal expiratory flow (PTEF), tidal volume (VT), respiratory

rate ( f ), minute ventilation (VE), VT/tTOT, VT/tI, tI/tTOT and

area of the flow-volume loop were determined (WBreath

version 3.19.60, EcoMedics, Duernten, Switzerland).The

change in ventilatory variables (Δ) from baseline were

determined by subtracting baseline measurement from those

obtained during the first and third minute of each FIO2 step.
Statistical analysis

Differences in neonatal, demographic and HVR

characteristics between preterm born infants with and without

a diagnosis of BPD were assessed using Student’s T- test or

Mann-Whitney U test as appropriate for the data distribution.

Change in each tidal breathing variable over time was

assessed using repeated measures ANOVA with Greenhouse-

Geisser correction. A blunted HVR was considered to be a
FIGURE 1

The testing protocol: inspired oxygen was reduced in 3 steps from
21% (baseline) to 14%, with each step lasting for 3 min, before the
infant was returned to room air.
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<10% increase in minute ventilation. Post hoc analysis was

conducted with Bonferroni adjustment. Factors associated

with the magnitude of HVR were assessed using Spearman

correlation. Significance was considered at p < 0.05. Data

analysis was performed with the use of IBM Statistical

Package for the Social Science (SPSS) software (IBM Corp.,

Chicago, Ill., USA; version 23).
Results

Study population

An oxygen reduction test was completed in 39 infants

surviving very preterm birth at a mean (SD) of 14.4 (1.0)

months corrected postnatal age. Sixteen of the 39 infants were

classified as having BPD. As expected, infants with BPD were

more immature, had lower birthweights and required

increased respiratory support compared to those infants

without BPD. Demographic and neonatal information are

shown in Table 1.
Hypoxic ventilatory response in infants
born preterm at 12–15 months corrected
postnatal age

Infants born very preterm demonstrated a HVR: there was a

mean (SD) increase in VE of 11.4 (10.7) % in response to

decreasing FIO2 from 0.21 to 0.14 (Figure 2). However, 17

infants (44%) failed to increase VE by ≥10% (range −14% to

9%) and were considered to have a blunted response to

hypoxia, compared to the responders (range 10% to 37%). Of

these 17 infants, 5 had reductions in VE that was below

baseline values; all were boys.

We determined that mean VT, VE, VT/tTOT, VT/tI, and area

of the flow volume loop differed significantly between time

points during the exposure to moderate hypoxic gas mixture

(p < 0.001): Each of these outcome variables increased during

the first minute of exposure to 0.16 FIO2, and during both

minute 1 and 3 of 0.14 FIO2, compared to baseline (See

Table 2 for all comparisons).
Factors associated with a blunted
ventilatory response to hypoxia

As the first minute of exposure to an FIO2 of 0.14 elicited the

strongest ventilatory response to hypoxia, we tested associations

between the magnitude of the HVR and neonatal factors at this

timepoint to explore if there were any predictors of HVR after

preterm birth. The HVR was generally not different between

preterm infants with or without BPD (see Figure 3 for
frontiersin.org
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FIGURE 2

Mean (SEM) change in minute ventilation (VE), tidal volume (VT) and
respiratory rate ( f ) are shown over time during the hypoxia
challenge.

TABLE 1 Describing the study population of preterm born infants, and by neonatal classification of bronchopulmonary dysplasia (BPD).

All Preterm No BPD BPD

N 39 23 16

Male/Female (% Male) 30/9 (76.9) 17/6 (73.9) 13/3 (81.3)

Gestational, (w) 27.6 (25.0–29.1) 29.0 (27.7–30.0) 25.0 (24.0–26.3)a

BWt, (g) 920 (750–1130) 1,005 (830–1364) 765 (685–945)a

BWt z-score, mean (SD) −0.06 (0.93) −0.43 (0.85) 0.48 (0.78)a

Any respiratory support, (d) 47.2 (23.9–92.4) 31.3 (9.3–42.8) 94.0 (75.0–100.6)a

- MV, (d) 0.5 (0.3–9.2) 0.3 (0.0–0.6) 17.5 (1.4–36.8)a

- CPAP, (d) 34.5 (7.0–50.9) 15.8 (5.4–34.5) 51.5 (45.1–57.9)a

- HHF, (d) 12.5 (4.6–19.9) 9.7 (1.7–13.2) 19.9 (11.8–31.7)a

Supp. O2 duration, (d) 6.7 (0.6–68.1) 0.9 (0.0–4.2) 80.2 (52.9–122.6)a

Caffeine duration, days 48.5 (27.8–67.3) 36.5 (20.0–48.3) 69.5 (60.3–86.5)a

cPNA, mean (SD) months 14.4 (1.0) 14.3 (1.1) 14.5 (1.0)

Wt, mean (SD) kg 9.9 (1.5) 9.6 (1.2) 10.3 (1.8)

All data are presented as median (IQR) unless otherwise indicated.
aIndicates a significant difference between the preterm groups with and without BPD (p < 0.05). BWt, birthweight; MV, mechanical ventilation; CPAP, continuous

positive airway pressure; HHF, humidified high flow; cPNA corrected postnatal age at study; Wt, weight at study.

Freislich et al. 10.3389/fped.2022.974643
example). The exception to this statement is that infants with

BPD had decreased ΔtI (mean difference =−9.9%; 95% CI =

−17.7, −2.2; p = 0.013) during the first minute of 0.14 FIO2.

Accordingly, we also observed decreased ΔtI/tTOT (−5.4%;
−10.6, −0.3; p = 0.039) and increased ΔVT/TI (10.7%; 2.9, 18.4;

p = 0.009) in those with BPD.

Male infants had a reduced HVR, with decreased ΔVE

(−9.1%; −15.4, −2.8; p = 0.007), ΔVT/tI (−11.0%; −20.3, −1.8;
p = 0.025), and ΔVT/tTOT (−9.6%; −16.4, −2.8; p = 0.008) in

response to 0.14 FIO2 compared to female infants (Figure 4).

Several neonatal factors were associated with HVR

magnitude including gestational age, duration of respiratory
Frontiers in Pediatrics 04
support, duration of oxygen therapy, and shift of the

oxyhaemoglobin curve at 36 weeks postmenstrual age

(Supplementary Table S1; Figure 5). The ΔHVR was not

associated with the ΔSpO2 (p > 0.05).
Discussion

We report that infants born very preterm have a small

ventilatory response to hypoxia at 12–15 months corrected

postnatal age (mean (SD):11.4% (10.7) increase in minute

ventilation), that is largely driven by an increase in tidal

volume. However, the HVR was blunted (<10% increase in

minute ventilation) in almost half of the infants studied.

Interestingly, the magnitude of the HVR was not reduced in

infants with BPD but was reduced in male infants.

The magnitude of the HVR varies considerably in healthy

individuals at sea level, including with age. For example, the

HVR is small in newborns and very young infants (∼15% at 3

months of age), when exposed to 0.15 FIO2 (18). In contrast,

healthy adults can increase minute ventilation by up to ∼60%
in the first five minutes after exposure to hypoxia (measured by

an arterial oxygen saturation of 80%), remaining at 26% above

baseline 25 min after commencing hypoxic exposure (10).

Unfortunately, there are limited HVR data in healthy young

children and none for infants in the second year of life (to our

knowledge). Further, the methods of reporting the available

data in children hinder direct comparison to the % change

mentioned above for infants and adults. These previous data in

healthy populations do however show that children have an

increased HVR compared to adults (when corrected for weight)

(30), with the HVR declining throughout adolescence and

adulthood (30). Taken together, and in the absense of term
frontiersin.org
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TABLE 2 Tidal breathing measures at baseline and during hypoxic conditions.

0.21 FIO2 0.19 FIO2 0.16 FIO2 0.14 FIO2 p-value

Baseline* Minute 1a Minute 3b Minute 1c Minute 3d Minute 1e Minute 3f

tI (s) 0.9 (0.1) 0.9 (0.2) 0.9 (0.1) 0.9 (0.2) 0.9 (0.2) 0.9 (0.2) 0.9 (0.2) 0.510

% change from baseline – 1.0 (10.9) 1.1 (10.4) 1.1 (10.0) 0.7 (10.9) 0.8 (13.4) −1.0 (12.2)

tE (s) 1.3 (0.3) 1.3 (0.2) 1.3 (0.2) 1.3 (0.2) 1.3 (0.3) 1.2 (0.2) 1.3 (0.3) 0.265

% change from baseline – −1.2 (6.7) 1.2 (7.1) −1.2 (7.2) −0.5 (8.1) −1.7 (9.8) −1.2 (12.3)

tPTEF (s) 0.3 (0.1) 0.3 (0.1) 0.3 (0.2) 0.3 (0.1) 0.3 (0.1) 0.3 (0.1) 0.3 (0.2) 0.191

% change from baseline – 5.3 (18.5) 7.9 (30.6) 1.0 (16.5) 2.2 (19.8) 7.6 (26.3) 10.5 (30.7)

VT (ml.kg−1) 8.4 (1.4)c,e,f 8.7 (1.6)c,d,e,f 8.6 (1.4)c,e,f 9.1 (1.6)*,a,b 8.8 (1.6)a,e 9.2 (1.6)*,a,b,d 8.9 (1.4)*a,b p < 0.001

% change from baseline – 2.9 (6.2) 2.9 (8.8) 8.5 (8.7) 5.7 (8.6) 10.4 (9.8) 7.9 (9.0)

RR min−1 28.5 (4.4) 28.8 (4.8) 28.3 (4.6) 28.7 (4.9) 29.3 (5.7) 29.5 (5.2) 29.3 (5.1) 0.229

% change from baseline – 0.5 (6.6) −0.8 (6.6) 0.5 (6.1) 3.7 (21.5) 4.4 (21.4) 2.4 (8.9)

VE (ml.min−1.kg−1) 236 (35)c,e,f 245 (41)c,e,f 241 (38)c,d,e,f 257 (45)*,a,b 247 (42)b,e,f 261 (42)*,a,b,d 257 (42)*,a,b,d p < 0.001

% change from baseline – 3.5 (8.0) 2.0 (8.9) 9.0 (8.3) 5.7 (9.3) 11.4 (10.7) 10.1 (9.3)

tI/tTOT 41.2 (5.2) 41.6 (5.6) 41.1 (4.8) 42.0 (4.7) 41.9 (5.5) 41.9 (5.5) 41.6 (5.3) 0.521

% change from baseline – 1.0 (6.5) −0.2 (5.4) 1.3 (6.8) 0.7 (7.8) 1.4 (8.2) 0.5 (6.4)

VT/tTOT (ml.s−1) 38.2 (5.0)c,d,e,f 39.6 (5.8)c,e,f 38.9 (5.4)c,d,e,f 41.6 (5.5)*,a,b 40.4 (5.4)*,b,e,f 42.7 (5.4)*,a,b,d 41.8 (5.1)*,a,b p < 0.001

% change from baseline – 3.7 (8.2) 2.2 (8.8) 9.2 (8.3) 6.1 (9.3) 11.9 (11.0) 9.9 (9.9)

VT/tI (ml.s−1) 94.2 (16.0)c,d,e,f 97.0 (18.5)e,f 95.3 (15.1)c,e,f 100.0 (16.0)*,b 97.9 (16.1)e 103.5 (17.2)*,a,b,d 102.4 (15.9)*,a,b p < 0.001

% change from baseline – 2.9 (11.2) 2.6 (12.3) 8.2 (12.3) 6.0 (13.5) 10.7 (13.0) 10.1 (12.0)

AFVL 15,427 (3589)c,e,f 16,241 (4173)c,e,f 15,840 (3734)c,e,f 17,571 (4345)*,a,b 16,921 (4178)e 18,568 (4796)*,a,b,d 17,697 (4008)*,a,b p < 0.001

% change from baseline – 5.7 (14.7) 4.8 (18.9) 15.9 (19.8) 11.6 (21.6) 20.7 (21.1) 17.1 (17.5)

Tidal breathing measures at baseline and during hypoxic conditions. Data are presented as mean (SD).

*indicates significantly different to baseline.
a,b,c,d,e,fIndicate a significant difference from the corresponding timepoint during the hypoxia challenge (as indicated in the header). tI, inspiratory time; tE, expiratory

time, tPTEF, time to peak tidal expiratory flow; VT, tidal volume; RR, respiratory rate; VE, minute ventilation; tTOT, total cycle time; AFVL, area under flow volume loop. %

change is % change from baseline. N.B Means of whole group presented - analysis included only those infants with all timepoints (N= 31).

FIGURE 3

Mean ± SD (left) and individual (right) minute ventilation (VE) is shown at baseline and during 14% O2 for preterm infants with (black) and without (grey)
bronchopulmonary dysplasia. *indicates different from baseline (p < 0.05).
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FIGURE 4

Change (% from baseline) in minute ventilation (VE) during hypoxia is
shown as a function of sex.

Freislich et al. 10.3389/fped.2022.974643
born controls, we proposed an a priori cut off of <10% increase

VE to constitute a blunted response to hypoxia; a HVR 1/3 lower

than ∼3 month old infants. Indeed, without control data to

support the selected cut off, our analysis of the data does

potentially underestimate the proportion of infants displaying a

blunted HVR in the second year of life. Direct comparison of

our findings with earlier studies in infants, children and adults

is also hampered by the differing methods of application of

hypoxia, with some previous studies using headbox methods

(slow change in inspired O2) while others have used an instant

reduction in FIO2 from baseline (15, 17, 22), rather than the

stepwise approach to reduction in FIO2 utilised in our study.

The stepwise approach, compared with the intantaneous

reduction method, may elicit a different magnitude of response,

and should be considered as a limitation when comparing

these data to those obtained from the “gold standard” steady

state assessment of the HVR. Regardless, our findings highlight

that further investigation on the maturation of the HVR

beyond the first year of life, particularly in the preterm infant,

is warranted.

A single small study has previously evaluated the ventilatory

response to hypoxia beyond the first year of life, and reported a

blunted HVR in young adults born <32 weeks gestation

compared to term born young adults (receiving a 60 s hypoxic

exposure), despite similar respiratory function and exercise

capacity (31). Unfortunately, the sample size of 13 individuals

prevented any exploration of factors potentially contributing to

a blunted HVR. However, the observation of blunted HVR in

survivors of very preterm birth is concerning and may pose

additional lifetime risk of disordered breathing during sleep and

in response to challenges such as high altitude or during

anaesthesia.
Frontiers in Pediatrics 06
The ventilatory response to hypoxia (% change in VE) was

not different between infants with and without BPD, nor

associated with NICU factors such as the duration of

supplemental oxygen. However, the strategies by which the

infants altered their ventilation was related to neonatal factors.

For example, infants with higher duration of supplemental O2,

or increased right shift of the oxyhaemoglobin dissociation

curve in the NICU, showed increase in the “driving

components” (VT/tI) of the breathing cycle and decreases in the

“timing components” or duty cycle (tI/tTOT) during hypoxia,

largely influenced by a reduced inspiratory time. Such

observations may highlight ongoing alterations to central

respiratory neural networks and/or respiratory system

compliance in preterm infants requiring additional respiratory

support in the NICU. Indeed, a short inspiratory time (tI) is

common in preterm neonates, relative to term born infants,

and hinders adequate ventilation and oxygenation (32).

Further, children with increased duration of supplemental

oxygen have “stiffer” lungs during childhood (33) and an

altered ventilatory response to exercise (34). It remains likely

that the altered HVR of preterm infants with lung disease

involves a complex interaction between immaturity and injury

of the peripheral chemoreceptors, central control of breathing,

and respiratory mechanics (35).

We showed a reduced ventilatory response to hypoxia in

males born preterm. Further, all 5 infants with VE falling below

baseline levels in response to hypoxia were boys. Sex differences

in the magnitude of the acute HVR have generally not been

observed in term-born humans, once accounting for differences

in body size (30) or baseline minute ventilation (36). However,

preclinical studies suggest that there are critical developmental

windows or “sensitive periods” where exposure to hypoxia or

hyperoxia can have lifelong impacts on the control of breathing

(37–39), and that these impacts can differ between males and

females (40). For example, neonatal hypoxia impairs the HVR

in adult male, but not adult female, rats (39). Developmental

sensitive periods have not been identified in human infants.

However, the heterogeneity of HVR in this study may support

the idea, and males may be disproportionately affected by long

term disturbances in the control of breathing. Indeed the

prevalence of infant respiratory distress syndrome, sudden

infant death syndrome (SIDS) and obstructive sleep apnoea

(OSA) is higher in males than females (41–43) in the term born

population. Similarly, the risk of SIDS (44), brief resolved

unexplained events (BRUE) (45), and sleep disordered breathing

(46) is increased in those surviving preterm birth and is

inversely correlated to gestational age at birth. Together, these

findings suggest that males born preterm may warrant further

screening for disorders of respiratory control. Our findings at

one year of age indicate that the risk of hypoxia related

morbidity and mortality is not isolated to early infancy.

Our infants were studied while sedated with chlroral

hydrate, which likely affected sleep state. Chloral hydrate is
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FIGURE 5

Change (% from baseline) in the driving (VT/tI) and timing (tI/tTOT) components of the breathing cycle during hypoxia are correlated with days of
supplemental oxygen and shift at 36 weeks’ PMA.
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reported as safe to use during hypoxia and has minimal effect

on ventilation (47, 48). However, in adults, sleep state

influences ventilatory response to hypoxia, with the HVR

being smaller in rapid eye movement (REM) sleep compared

with quiet sleep (49). In contrast, sleep state has no effect on

the HVR in infants: Richardson et al., show no difference in

the HVR between healthy term infants tested in active sleep

compared to quiet sleep at 5–6 months of age (18). Hence,

the influence of sleep state on the HVR may be the result of

maturation.

In summary, we show that some infants surviving very

preterm birth have an attenuated ventilatory response to

hypoxia that persists into the second year of life, especially

males. Although it is unclear why some preterm infants have

a dampened HVR, these findings further our understanding

that preterm infants may be at increased risk of disorders of

respiratory control throughout life.
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