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Neuroinflammation is a leading cause of secondary neuronal injury in neonatal
hypoxic-ischemic encephalopathy (HIE). Regulation of neuroinflammation may
be beneficial for treatment of HIE and its secondary complications. Gallic acid
(GA) has been shown to have anti-inflammatory and antioxidant effects. In this
report we found that oxygen-glucose deprivation and/reoxygenation
(OGD/R)-induced cell death, and the generation of excessive reactive
oxygen species (ROS) and inflammatory cytokines by microglia were
inhibited by GA treatment. Furthermore, GA treatment reduced
neuroinflammation and neuronal loss, and alleviated motor and cognitive
impairments in rats with hypoxic-ischemic brain damage (HIBD). Together,
our results reveal that GA is an effective regulator of neuroinflammation and
has potential as a pharmaceutical intervention for HIE therapy.
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Introduction

Neonatal hypoxic-ischemic encephalopathy (HIE) is a cerebral hypoxic-ischemic

injury caused by perinatal asphyxia with an incidence of approximately 1–8/1,000 (1).

Although the incidence of HIE has decreased as improvements have been made in

prenatal and neonatal care, HIE remains the leading cause of neonatal death, with

survivors later showing severe neurological sequelae such as cerebral palsy, epilepsy, and

cognitive impairment (2–6). Treatment of patients with HIE and its sequelae places a

heavy burden on families and society, so identifying more effective ways to improve the

quality of life of HIE patients and reducing the incidence of sequelae is urgently needed.

Previous studies have shown that HIE induces primary neuronal death and delayed

neuronal death. In HIE, delayed neuronal death in the brain is mainly caused by
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excitotoxicity, oxidative stress, and inflammation (7). As the

main immune cells in the brain, microglial cells are activated

rapidly after HIE and produce excessive oxidative reactive

products such as reactive oxygen species (ROS) and various

proinflammatory cytokines, such as interleukin-1β (IL-1β),

interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α),

resulting in neuroinflammation and leading to the destruction

of the blood-brain barrier and infiltration of peripheral

inflammatory cells into the central nervous system, which

aggravates neuroinflammation and subsequent neuronal death

(8–10). Therefore, controlling the inflammatory response has

become a potential approach for the clinical treatment of HIE.

Gallic acid (GA) is a common polyhydroxy phenolic

compound in plants. Studies have shown that GA has anti-

inflammatory and antioxidant effects and exerts a

neuroprotective effect in different models of neurological

disease (11–14), but little is known about its effect on HIE.

Since neuroinflammation plays an essential role in the

occurrence and development of HIE and its sequelae, we

hypothesize that GA can alleviate brain damage in HIE by

reducing inflammation. In this study, we found that GA could

inhibit microglia-mediated neuroinflammation and oxidative

stress after OGD/R and reduce neuroinflammation and

neuronal loss to improve motor and cognitive abilities in a

hypoxic-ischemic brain damage (HIBD) model.
Materials and methods

Cell culture

BV2 cells were cultured in DMEM containing 10% FBS

(Excell Bio, FSP500) and placed in a 37 °C incubator with 5%

CO2. GA (MCE, HY-N0523) was dissolved in DMSO to

generate a 100 mg/ml stock solution and diluted with PBS to

100 mM before use. To establish a model of oxygen glucose

deprivation/reoxygenation (OGD/R), BV2 cells were cultured

in a hypoxic incubator and treated with glucose-free DMEM

(Gibco, A1443001) with or without GA for 4 h. Afterward,

the medium was replaced with normal medium with or

without GA, and the cells were placed in a normal incubator

for 1 h to simulate the reperfusion process. Control cells were

cultured for the same duration under normal conditions.
CCK8 assay

Cell viability was measured by a Cell Counting Kit-8 (MCE,

HY-K0301) according to the manufacturer’s instructions. BV2

cells were seeded into 96-well plates at an appropriate density,

and after treatment, 10 µl of CCK8 solution was added to

each well. The absorbance at 450 nm was measured with a

microplate reader after incubation for 1 h.
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Flow cytometry

ROS levels were measured by flow cytometry. Briefly, cells

were collected, incubated with 10 µM DCFH-DA (Beyotime,

S0033S) for 20 min, washed with PBS 3 times and then

analyzed by flow cytometry.
Real-time quantitative PCR (qPCR)

RNA was extracted using a BioTeke kit (BioTeke, RP1202),

and the RNA was then reverse-transcribed into cDNA (Takara,

RR047A). TB Green Premix Ex Taq (Takara, RR820A) and

gene-specific primers were used to amplify the cDNA. The

following primers for mouse were used: β-actin (forward, 5′-
ACTGTCGAGTCGCGTCC and reverse 5′-CTGACCCATT
CCCACCATCA); IL-1β (forward, 5′-TGCCACCTTTTGA
CAGTGATG and reverse 5′-ATGTGCTGCTGCGAGATTTG);
IL-6 (forward, 5′-GAGCCCACCAAGAACGATAG and reverse

5′-GTTGTCACCAGCATCAGTCC). The following primers for

rat were used: β-actin (forward, 5′-GTCCACCCGCGAGT
ACAACCTTCT and reverse 5′-TCCTTCTGACCCATACCC
ACCATC); IL-1β (forward, 5′- TGAGGCTGACAGACCCC

AAAAGAT and reverse 5′-GCTCCACGGGCAAGACATAGG
TAG); IL-6 (forward, 5′-AGCCACTGCCTTCCCTACTTCA
and reverse 5′-GCCATTGCACAACTCTTTTCTCA). The data

were processed by the 2−ΔΔCT method.
HIBD animal model and treatment

All animal studies were conducted in accordance with the

Guide for the Care and Use of Laboratory Animals of the

Ethics Committee of Chongqing Medical University. Animals

were blindly grouped and analyzed. The experimental

procedures were approved by the Animal Study Committee of

the Children’s Hospital of Chongqing Medical University.

Seven-day-old Sprague-Dawley (SD) rats were used to

construct the HIBD model, a well-validated animal model

(15), as described previously (16). Rats were anesthetized by

intraperitoneal injection of sodium pentobarbital at a dose of

30 mg/kg. The left carotid artery of the neonatal rats was

ligated, and the rats were then placed in a hypoxic cage

(8% O2 + 92% N2) at 37 °C for 2.5 h after resting for

approximately 1 h. The rats in the sham group underwent left

carotid artery isolation without ligation and hypoxia. After

hypoxia exposure, the pups were returned to their home cages

and care for by their mothers until day P21. All the rats had

free access to water and food and were kept in a constant-

temperature room on a 12 h light/12 h dark cycle.

The animals were randomly divided into four groups: the

sham + saline, sham +GA, HIBD + saline, and HIBD + GA
frontiersin.org

https://doi.org/10.3389/fped.2022.973256
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Dong et al. 10.3389/fped.2022.973256
groups. GA was dissolved in saline to a concentration of

10 mg/mL and injected intraperitoneally at a dose of 50 mg/kg

for 14 days. The first injection was performed immediately

after construction of the HIBD model (Figure 1).
Rotarod test

Three weeks after HIBD model construction, the rotarod

test (16) was performed (Figure 1). Two adaptative training

sessions were performed first, and the rats that did not

cooperate were excluded. Then, ten consecutive rotarod trials

were performed the day after adaptive training. The rotarod

was accelerated from 5 r/min to 60 r/min over 3 min, and the

time that each rat stayed on the rotarod was recorded. The

instrument was cleaned with 75% alcohol after each test.
Grasping test

Two days after the rotarod test, the rats were subjected to

the grasping test (16) to evaluate muscle strength (Figure 1).

The left or right forelimb of each rat was placed on the grasp

meter. Then, the rats were pulled back until they could no

longer grasp the meter, and the maximum tension was

recorded. The measurement was repeated 10 times for each

rat’s unilateral forelimb.
Morris water maze (MWM) test

The MWM test (17) was performed after the grasping test

to assess the spatial learning and memory of the rats

(Figure 1). On the first day, the rats underwent adaptative

training, during which they were placed in the water maze

and allowed to swim for 60 s. A spatial learning trial was

performed on each of the subsequent 5 days; the rats were

placed in the water facing the pool wall at staggered entry

points (1–3–2–4/4–2–3–1). The time required for the rats to

find the platform was recorded. If a rat did not find the

platform within 60 s, it was guided to the platform and
FIGURE 1

The timeline of HIBD animal experimental procedure.
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allowed to stay on it for 10 s. On the last day, a probe test

was performed. The hidden platform was removed, and the

rats were placed in the water in the quadrant opposite the

platform quadrant. The time the rats spent in the platform

quadrant and the number of times they crossed the platform

location were recorded. All the data were recorded by an

Any-maze tracking system.
Immunofluorescence

After the behavioral tests, the rats were anesthetized with

urethane, and the left hemisphere of the brain was fixed with

4% paraformaldehyde for several days after transcardial

perfusion with 0.9% saline. Thereafter, the brain tissues were

dehydrated with 20% and 30% sucrose until it sank to the

bottom of the tube. Next, the brain tissues were sectioned into

20 μm slices. Six to nine slices per brain were washed in PBS,

treated with blocking solution (Beyotime, P0260) for

approximately 30 min and then incubated overnight at 4 °C

with anti-NeuN primary antibodies (1:400, Abcam,

ab177487). The slices were subsequently incubated with

secondary antibodies (1:500, Invitrogen, A21206) for 90 min

the next day. Images were taken with an Olympus full-slide

scanner, and the number of neurons in the CA1 region was

counted with ImageJ.
Statistical analysis

SPSS 19.0 software was used to analyze the data. The data in

this study were all quantitative and expressed as the means ±

standard errors (SEMs). Student’s t test was used for

comparisons between two groups, while one-way ANOVA

followed by the LSD test was used for comparisons among

multiple groups. Differences in data from the spatial learning

trials of the MWM test were assessed by two-way repeated-

measures ANOVA with matched subjects followed by the LSD

multiple comparison post hoc test. P < 0.05 was considered

statistically significant.
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Results

GA increased the viability of Bv2 cells
after OGD/R

To investigate the effect of GA on cell viability, BV2 cells

were first subjected to OGD, and then CCK8 assay was

performed. The results of the CCK8 assay showed that after

2, 4, 6, and 8 h of OGD, cell viability significantly decreased

to 76.19% ± 1.38%, 32.95% ± 5.09%, 18.47% ± 1.43%, and
FIGURE 2

Ga increases BV2 cell viability after OGD/R. (A) BV2 cells were exposed to OG
(n= 6). (B) Effect of different GA concentrations on cell viability of control c
reoxygenation for another 3 h (OGD/R). GA treatment significantly increased
(C) GA treatment improved the cell viability after OGD for 4 h and reoxygen
± SEM. *P < 0.05, **P < 0.01, ***P < 0.001.
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8.43% ± 2.56%, respectively (Figure 2A). OGD for 4 h was

chosen as the optimal condition for GA treatment. In the

absence of OGD/R, GA treatment had no effect on cell

viability (Figure 2B). However, after 3 h of reoxygenation,

treatment with 20, 40 or 80 µM GA markedly increased cell

viability to 44.51% ± 2.22%, 45.18% ± 2%, and 41.51% ±

2.76%, respectively from 33% ± 4.96% (Figure 2B). To

examine the effect of GA on cell viability after

reoxygenation for different durations, cells were treated

with 40 µM GA. The cell viability was decreased to 46.18%
D for 2, 4, 6 and 8 h and the cell viability was detected by CCK-8 assay
ells for 7 h (CTR) and the cells treated with OGD for 4 h followed by
the survival rate of OGD cells without affecting Normal cells (n= 4).

ation for 1 and 3 h (n= 4). CTR, control. Data are presented as mean
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FIGURE 3

Ga inhibits OGD/R-induced ROS and inflammatory cytokines generation. (A) Quantification of ROS generation in BV2 cells. The mean fluorescence
intensity of the control group without GA treatment was used to normalize for analysis. GA treatment reduced the overproduction of ROS induced by
OGD/R (n= 5). The increased mRNA levels of IL-1β (B) and IL-6 (C) in OGD/R group were rescued with GA treatment (n= 3). Data are presented as
mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001.

FIGURE 4

Ga decreases the neuroinflammation in HIBD rats. The rats were sacrificed 48 h after modeling, and RNA was extracted to detect the expression of
proinflammatory cytokines. The increased mRNA levels of IL-1β (A) and IL-6 (B) in HIBD rats were rescued with GA treatment (n= 3). Data are
presented as mean ± SEM. *P < 0.05.
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± 4.7%, and 62.4% ± 3.93% after 1 h and 3 h of reoxygenation,

respectively, and GA significantly increased the survival rate

of OGD-treated cells to 52.7% ± 2.27% and 75.04% ± 5.01%

after 1 h and 3 h of reoxygenation, respectively (Figure 2C).

These data indicated that GA protected BV2 cells

from OGD/R.
GA inhibited OGD/R-induced ROS and
proinflammatory cytokine production in
Bv2 cells

Considering the influence of microglial activation in the

acute phase on the progression of the disease, OGD for 4 h

and reperfusion for 1 h were chosen as the conditions for

further study. To determine whether the protective effect of

GA is related to the decreases in ROS and proinflammatory

cytokine levels, the levels of ROS, IL-1β, and IL-6 in BV2

cells were measured (Figure 3). The levels of ROS, IL-1β

and IL-6 mRNA significantly increased in the OGD/R
FIGURE 5

Ga reduces neuronal loss in CA1 region of HIBD rats. The HIBD model rats w
visualized by immunofluorescence staining with the neuron marker NeuN and
(A) Representative immunofluorescence images of different groups. Scale b
(B) Quantification of NeuN positive cells. The number of neurons were signi
sham groups, which could be saved by GA treatment (n= 4). Data are prese

Frontiers in Pediatrics 06
group, while treatment with 40 µM GA significantly

decreased their levels.
GA decreased neuroinflammation in HIBD
model rats

The in vitro results demonstrated that GA could exert a

neuroprotective role by inhibiting OGD/R-induced ROS

and proinflammatory cytokine production in BV2 cells. To

determine whether GA could inhibit neonatal hypoxic-

brain injury by exerting an anti-inflammatory effect, the

levels of proinflammatory cytokines were also measured in

vivo. HIBD model was established in 7-day-old SD rats,

and RNA was extracted from the brains of rats in the

different groups 48 h after modeling. The HIBD model rats

exhibited higher expression of IL-1β and IL-6 (3.41 ± 0.97

and 6.25 ± 3.75 fold for IL-1β and IL-6, respectively) while

the expression of IL-1β and IL-6 was decreased in response

to GA treatment (1.06 ± 0.96 and 1.11 ± 0.23 fold for IL-1β

and IL-6, respectively) (Figure 4).
ere sacrificed and the brain tissues were sectioned. The neurons were
the number of neurons in the hippocampal CA1 region were counted.
ar: 500 μm for the left image and 50 μm for the right image (n= 4).
ficantly decreased in saline-treated HIBD rats compared to the rats in
nted as mean ± SEM. **P < 0.01.
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GA reduced neuronal loss in HIBD model
rats

Five weeks after HIBD rats were subjected to behavioral

tests, brain tissue was sectioned for immunofluorescence

staining with the neuronal marker NeuN to determine the

number of neurons in the hippocampal CA1 region. The

number of neurons in the CA1 region was significantly

reduced in the HIBD group compared with the sham group,

but was dramatically increased in response to GA treatment

(108.63 ± 2.73, 114.49 ± 2.16, 77.93 ± 7.09, 108.42 ± 3.46 for

sham + saline, sham + GA, HIBD + saline, and HIBD + GA,

respectively) (Figure 5). The results suggested that GA

protected neurons from HIBD.
GA ameliorated HIBD-induced motor
dysfunction and muscle strength
reduction

To test the protective effects of GA, the motor ability and

muscle strength of the rats were measured by the rotarod test

and grasping test. In the rotarod test, the total time that the

rats in the HIBD + saline group stayed on the rotarod was
FIGURE 6

Ga alleviates the deficits of motor ability and muscle strength in HIBD mode
saline was injected daily for 2 weeks and the rotarod test was conducted at th
the rotarod for 10 trails on the following day and the time on the rotarod was
rotarod compared with the saline-treated HIBD rats (sham+ saline, n= 7; sham
strength of the left and right fore-limb was evaluated by grasping test. The im
by GA treatment (sham+ saline, n= 8; sham+GA, n= 8; HIBD + saline, n= 11
< 0.01, ***P < 0.001.
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significantly reduced, which was rescued by GA treatment

(1200.46 ± 95.81, 1210.77 ± 89.57, 914.19 ± 67.06, and

1185.31 ± 101.44 s for sham + saline, sham + GA, HIBD +

saline, HIBD + GA, respectively) (Figure 6A). The data

indicated that GA treatment did not affect the motor ability

of the rats in the sham group but significantly ameliorated

HIBD-induced motor impairment.

In the grasping test, the muscle strength of the right fore-

limb (2.09 ± 0.11 N) was significantly decreased compared

with that of the left forelimb (3.07 ± 0.18 N) in the HIBD +

saline group, but no difference was observed after GA

treatment (3.1 ± 0.18 N for left fore-limb and 2.99 ± 0.18 N

for right fore-limb). In the sham groups, regardless of

whether GA was administered, there was no difference in

muscle strength between the left and right sides (2.96 ± 0.17

and 3.15 ± 0.17 N, 2.79 ± 0.2 and 3.27 ± 0.12 N for sham +

saline and sham +GA, respectively) (Figure 6B).
GA alleviated HIBD-induced cognitive
impairment

HIBD causes learning and memory disorders in

animals (18–21). To investigate whether GA could
l rats. (A) Rats were subjected to HIBD at the postnatal 7th day, GA or
e 28th day. After the first day of adaptive training, the rats were put on
recorded. GA-treated HIBD rats increased the total time spent on the
+GA, n= 6; HIBD + saline, n= 10; HIBD +GA, n= 12). (B) The muscle

balance muscle strength of the upper limbs caused by HIBD was saved
; HIBD +GA, n= 12). Data are presented as mean ± SEM. *P < 0.05, **P
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FIGURE 7

Ga improves the learning and memory of HIBD rats. MWM test consists of 1 day of adaptive trials and 5 days of hidden platform trials, plus a probe
trial 24 h after the last hidden platform trial. Animal movement was tracked and recorded by ANY-maze tracking software (sham+ saline, n= 8;
sham+GA, n= 8; HIBD+ saline, n= 11; HIBD+GA, n= 12). (A) In hidden platform tests, rats were trained with 4 trials per day for 5 days. GA-treated
HIBD rats showed a shorter latency to escape onto the hidden platform on fifth days compared with the saline-treated HIBD rats. (B) Tracks of the
rat movement in MWM test on different days. In the probe trial, the number of crossing platforms (C) and the time spent in the platform quadrant
(D) of GA-treated HIBD rats were significantly more than the rats in saline-treated HIBD group. Data are presented as mean± SEM. *P < 0.05.
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improve cognitive functions, the spatial learning and

memory of rats were evaluated by the MWM test. As

shown in Figure 7A, the escape latency of rats in the

HIBD + saline group was longer than that of rats in the

other three groups, and the escape latency on day 5 was

somewhat decreased by GA treatment (19.57 ± 3.18,

18.08 ± 3.35, 31.52 ± 3.54, and 22.61 ± 1.95 s for sham +

saline, sham + GA, HIBD + saline, HIBD + GA,

respectively). GA treatment also significantly increased
Frontiers in Pediatrics 08
the time spent in the platform quadrant (23.95 ± 3.09,

26.63 ± 2.17, 15.66 ± 2.19, and 22.11 ± 1.86 s for sham +

saline, sham + GA, HIBD + saline, and HIBD + GA,

respectively) (Figure 7D), and the number of platform

crossings (2.88 ± 0.4, 2.63 ± 0.42, 1.36 ± 0.34, and 2.58 ±

0.4 times for sham + saline, sham + GA, HIBD + saline,

and HIBD + GA, respectively) following HIBD.

(Figure 7C). These data suggested that GA treatment

alleviated HIBD-induced cognitive impairment.
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Discussion

GA, a plant-derived phenolic acid with anti-inflammatory and

antioxidant effects, is highly safe and has few side effects (22, 23).

GA has been reported to exert a protective effect in many

diseases, such as ischemic hypoxic injury in adult rats (24) or

mice (25), Parkinson’s disease (11), diabetes (26), and tumor

(27), but little is known about its protective effect in newborn

mice. HIE is not a single event, but a sustainable process.

Inflammation has been considered as an important contributor

in the pathophysiology of cerebral hypoxic ischemia (HI) injury

(7, 28, 29). Previous studies have shown that the increased levels

of inflammatory cytokines in the cerebrospinal fluid are

associated with adverse neurological outcomes in children with

HIE (30, 31). Neuroinflammation caused by HIE further leads to

cell death and ultimately dysfunction (7, 32). Various drugs

targeting neuroinflammation have been tested in animal models

of perinatal brain damage. Several compounds that are already

used in clinical such as melatonin and COX inhibitors have

shown promising neuroprotective properties by inhibiting

neuroinflammation (28). So timely inhibition of the inflammatory

response in the early stage of HIE is critical to reduce injury.

Microglial cells are key immune cells that are involved in

maintaining brain homeostasis (33). Previous studies have

shown that microglia play a dual role in neuronal injury and

recovery, which is associated with their phenotype; specifically,

M1 microglia promote the release of inflammatory cytokines

and aggravate injury, while M2 microglia can release anti-

inflammatory cytokines to play a protective role (34, 35). HI

promotes the polarization of microglia to the M1 phenotype

and the release of proinflammatory factors such as TNF-α, IL-

1β, and IL-6, which have toxic effects on nerve cells in the

surrounding area (36, 37). In addition, excess production of

ROS by activated microglia induces oxidative damage in the

developing brain (38). Our study showed that OGD/R

activated microglia and promoted the release of inflammatory

cytokines and ROS, whereas GA treatment alleviated the

damage induced by OGD/R; moreover, GA itself did not affect

the inflammatory response and oxidative stress in normal BV2

cells, suggesting that GA could play a neuroprotective role by

reducing neuroinflammation in OGD/R-treated BV2 cells.

Neuroinflammation caused by HI results in neuronal death,

and neuronal death results in motor and cognitive impairments

in both animal models and humans (39–41). Interestingly, in this

study we found that GA could reduce neuroinflammation,

neuronal loss and neurological dysfunction caused by HI. In

addition to exerting positive effects in the HIBD model, GA

has been reported to improve the cognitive function of patients

with Alzheimer’s disease and reduce motor dysfunction caused

by lead and aflatoxin B1 exposure (13, 42–44). These evidences

confirmed the neuroprotective effect of GA in HIBD.

GA was found to downregulate HI-induced

proinflammatory genes in vitro and in vivo. Considering that
Frontiers in Pediatrics 09
M1 microglia can promote the release of inflammatory

cytokines and aggravate injury, GA might play a protective

role by affecting the polarization of microglia, thus decreasing

the levels of inflammation-related genes and ROS. However,

the specific mechanism through which GA regulates

neuroinflammation after HI needs further in-depth study.
Conclusion

The evidence provided in this study indicates that, by

inhibiting abnormal inflammatory activation, GA reduces

HIBD-induced neuronal death and improves the motor and

cognitive impairments following a hypoxic-ischemic insult.

The data from our investigation support that GA is

neuroprotective and may be a potentially effective drug for

treatment of HIE and prevent its sequelae.
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