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Introduction

Congenital diaphragmatic hernia (CDH) is a complex birth anomaly described in

medical literature since the early 18th century. It is a defect in the diaphragm that

leads to herniation of the abdominal contents into the thoracic cavity. As a result, the

growth of the developing lung and vasculature is impaired, and respiratory failure can

occur at birth with devastating consequences. Infants are born with CDH every

10 min worldwide and 1 in 2500–3500 babies are diagnosed with CDH every year in

the USA (1). It is associated with 8% of all major congenital anomalies and accounts

for >1% of total infant mortality in the USA. The estimated cost of CDH

management in the USA is >230 million dollars.

CDH associated lung hypoplasia and abnormal pulmonary vascular malformation,

including defective angiogenesis leading to persistent pulmonary hypertension in

newborns (PPHN) are the main cause of high mortality and morbidity. Despite

advances in neonatal care and evolving new modalities of treatment CDH remains a

challenging problem (2). Surgical CDH repair after birth is not always linked with

improved survival (3). In addition, infants with CDH usually show limited response

to vasodilator therapy due to extensive vascular remodeling (4).
Normal embryological development of the
diaphragm

The diaphragm is a sheet of muscles separating the abdominal cavity from the thoracic

cavity. The diaphragm begins to develop at approximately 4 weeks of gestation and is fully

formed by 12 weeks of gestation. It develops from the septum transversum,

pleuroperitoneal folds, and somite adjacent to the neural tube as a source of diaphragm

muscles and derivatives of dorsal mesentery. The septum transversum is a thick mass of
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cranial mesenchyme, formed in the embryo, and gives rise to parts

of the thoracic diaphragm and the ventral mesentery of the foregut.

The septum transversum develops around 22 days gestation rostral

to the developing heart. During normal development, the

pleuroperitoneal folds fuse with the septum transversum, the

esophageal mesentery, and the muscular ingrowth from the body

wall invades the folds, forming the muscular part of the diaphragm.
Pathogenesis of CDH

CDH is a multifactorial disease with poorly understood

etiology and pathogenesis. Genetic factors, environmental

exposure, and nutritional deficiencies may play a role in the

development of this complex disease. The embryological basis

of CDH propose that the defect happens secondary to the

failure of parts of the diaphragm to fuse resulting in a patent

pleuroperitoneal canal, thereby inducing CDH. Another

theory, known as “the dual hit phenomenon” describes lung

hypoplasia (primary hit) as the primary causal factor in the

pathogenesis of CDH; this is followed by abdominal content

herniation (secondary hit) that further compromises the

growth of an already hypoplastic lung (5). In addition, diverse

genetic or environmental factors can cause disruption of

mesenchymal cell function in the primordial diaphragm as

well as thoracic organs including lungs and heart. An

additional hypothesis postulates that an imbalance between

cell apoptosis and cell proliferation plays a role in the

pathogenesis of CDH; however, analysis of the affected

patient’s tissues did not demonstrate increased apoptosis, thus

making this hypothesis less likely (6). Irrespective of the

underlying cellular mechanisms, the defect in the diaphragm

causes the abdominal viscera to herniate into the thoracic

cavity. This process ultimately results in abnormal lung and

vascular development as well as increased vasoreactivity,

manifesting as persistent pulmonary hypertension at birth.
Classification of CDH

The most common classifications of CDH are isolated or

non-syndromic vs. complex or syndromic CDH. CDH can be

classified based on location, size, organs involved, the extent

of lung involvement, and the presence of associated

abnormalities. Posterolateral, Bochdalek type accounts for

approximately 70%–75% of cases, anterior, Morgagni type

CDH for 27%. Central Hernia—Septum Transversum type

CDH for 2%–3%. The majority of cases are posterolateral,

Bochdalek type CDH on the left side (85%), while 13% of

cases occur on the right side, and only 2% are bilateral (7).

The presence of additional anomalies is more common in

the complex type and it directly influences morbidity and

mortality (8) (Figure 1).
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Isolated cases of CDH are associated with better survival:

while the presence of additional anomalies in the complex

type of CDH directly influences the patient’s morbidity and

mortality (8). (Figure 1) The presence of liver herniation has

been described as a poor prognostic factor, with a 45%

survival rate compared to 74% in patients without liver

herniation. In addition, liver herniation has been associated

with high predictivity of ECMO treatment: 80% of the

patient with liver herniation required ECMO compared to

only 25% without liver herniation (9).

Lung to Head Ratio (LHR) is an ultrasound based

calculation first described in 1996, as a prenatal predictor of

mortality for fetuses with CDH. An LHR <1 is associated

with a poor prognosis (10). As LHR did not account for

gestational age initially, it is now expressed as a percentage of

what can be expected in a normal fetus or observed-to-

expected (O/E) LHR which is independent of gestational age.

LHR along with the presence of liver herniation is the most

often used predictor of clinical outcome.

MRI-derived lung volume metrics measuring lung size, and

degree of pulmonary hypoplasia, have also been found to

predict mortality and pulmonary morbidity, as well as chronic

lung disease (11).

Infants with CDH shows significant high survival with O/E-

TFLV > 35% compared to those <35% (94% survival vs. 56%

survival) (12).

The exact etiology of differences in the severity of CDH and

associated mortality and morbidity remains unclear, however,

the presence or absence of different risk factors plays

important role in the overall outcome of CDH. Risk factors

like congenital anomalies, side of the defect (right side vs. left

side, 33.3% vs. 7.8%,), position of the liver, intrathoracic

position associated with higher mortality (22.2% vs. 3.7%),

presence of pulmonary hypertension, and need for

extracorporeal membrane oxygenation(ECMO) contribute to

poor outcome (13) The survival in patients with an isolated

CDH was no different from those with another associated

congenital anomaly although there was a trend toward

improved survival with isolated CDH (80.2% vs. 70.2%).

Presence of complex congenital heart disease and genetic

disorder in combination with CDH has been described with

increased mortality (14).
Embryological basis of CDH

Impaired fusion of the diaphragm’s embryological

components may produce any of the following: hernia of

Morgagni, a pleuroperitoneal defect, a hiatal hernia, or

eventration of the diaphragm (15). Pleuroperitoneal folds

(PPF) are the major source of the diaphragm’s muscle

connective tissue and central tendon (16). Defects in the

development of the PPFs will lead to incomplete development
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FIGURE 1

Classification of CDH.
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of the diaphragm. Several genes associated with CDH are

expressed in relation to PPFs and may be the cause of

incomplete diaphragmatic development (17, 18). The genetic

inactivation of GATA-4 in mice showed the development of

localized regions that lack muscle progenitors leading to

amuscular patches in the developing diaphragm that are

mechanically weaker resulting in herniation. Failure of

migration of muscle progenitors from the somites into the

PPFs can lead to a muscle-less diaphragm or hemidiaphragm

(19). In summary, based on the data described above the

general view holds that CDH arises from the primary defects

in PPFs secondary to defective generation and migration of

cells or muscularization of the diaphragm (20). Genetic

defects in septum transversum have also been associated with

CDH in mice models (21).
Cellular aspect of CDH

The mesothelium is an outer tissue layer covering the

thoracic organs including the heart, diaphragm, and the

lung (22). Lung mesothelium plays an important role in the

early stages of lung development through expression of key

genes, such as retinoic acid dehydrogenase (ALDH1a2) and

fibroblast growth factor 9 (Fgf9) (23). The mesothelium

processes retinoic acid from Vitamin A via retinaldehyde

dehydrogenase 2 (RALDH2 also known as ALDH1A2) and

has been linked to CDH in humans as well as mouse

models of CDH (24, 25). Supporting the concept of

essential Vitamin A signaling in the diaphragm development,
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both pathogenic variants in and copy number variations

(CNVs) of genes involved in Vitamin A metabolism and

signaling pathway were described affecting several levels of

retinoid signaling (26). Retinoid signaling (RA) is critical for

both diaphragm and lung development, and disruptions and

dysregulation of this pathway could contribute to isolated CDH

etiology (24). Similarly, Wilms’s tumor 1 (WT1) is a Wilms

tumor suppressor gene and a transcription factor expressed in

the muscular diaphragm, pleural and abdominal mesothelium

including the heart and kidney. WT1 has been identified as an

important defective gene expressed in the mesothelium and is

thought to be responsible for CDH in human and animal

models (27).

Pathogenic variants in the FOG2 gene, a transcriptional co-

regulator, have been linked to CDH and pulmonary hypoplasia

in human and mice models. The pathogenic variants of GATA-

4 gene, a transcription factor known to functionally interact

with FOG2, have also been described as an important factor

for proper mesenchymal cell function in developing

diaphragm, heart, and lung (28). In summary, mesenchymal

cell function is an important aspect of proper diaphragm,

heart, and lung development and many geneses including

GATA-4, FOG2, 1 may play a role but the exact mechanistic

pathway and association remain unclear. It is crucial to

understand the effect of pathogenic variants in these genes in

the development of the normal diaphragm and CDH, as well

as their possible role in the development of the heart and

lungs. CDH associated genes are known to have pleiotropic

effects and expressivity that varies between affected

individuals (29).
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Alongwith lunghypoplasia, CDH is associatedwith significant

pulmonary hypertension attributed to the early disturbance in

vascular growth and pulmonary vascular remodeling (30). As

vascular development precedes tissue growth, abnormal cellular

proliferation and interactions have been proposed as an

underlying mechanism. Increased proliferation of vascular

smooth muscle cells (SMCs) and abnormal signaling of

pulmonary arterial endothelial cells (PAECs) has also been

reported. Defective signaling of PAECs leads to increased

proliferation of pulmonary SMCs with subsequent development

of pulmonary hypertension (31). Endothelium −1 is a potent

vasoconstrictor and plays an important role in vascular

remolding associated with CDH. ET-1 is a member of a peptide

family that is secreted from endothelial cells. The upregulated

expression of ET-1 and ETA receptor mRNA has been correlated

with pulmonary vasoconstriction and altered pulmonary vascular

muscularization in CDH (32). ET1 acts as a vascular smooth

muscle cell mitogen via the production of reactive oxygen species

(ROS) and decreases pulmonary nitric oxide (NO) bioavailability.

ET1 levels are highly associated with disease severity in infants

with CDH (33). Rho and the Rho kinase pathway play an

important role in various cellular functions, including smooth

muscle contraction. Rho kinase activity has been found to play an

important role in the acute pulmonary vasoconstrictor response

to several different stimuli, including hypoxia and endothelin.

RhoA/Rho kinase-mediated vasoconstriction plays an important

role in the pathogenesis of PH in CDH (34).

Vascular endothelial growth factor (VEGF) is an important

factor involved in early angiogenesis, endothelial cell

proliferation, and differentiation. Angiogenesis is regulated with

proangiogenic factors such as VEGF and antiangiogenic proteins

including soluble fms-like tyrosinekinase-1 (sFlt-1). Down

regulation of VEGF has been related in CDH animal models as a

leading cause of the observed abnormal vasculature (35).

In-vitro cell culture, a new evolving technique can provide

better insight and understanding of different cell interactions in

the pathogenesis of CDH. PPF fibroblast is a type of cell culture

that was developed using mouse embryos. It shows that these

fibroblasts, maintain the expression of key genes in normal

diaphragm development (36). Inducible pluripotent stem cells

(iPSC) from fetuses and infants with CDH have been used to

establish a reproducible ex vivo model of lung development

(37). This in-vitro cell culture system can be a cost-effective

method for exploring the underlying mechanism and cellular

interactions in CDH. In addition, a better understanding of the

disease pathogenesis may lead to an improved investigation of

therapeutic targeted interactions.
Molecular aspect of CDH

CDH is usually a sporadic condition; however, familial cases

have been reported (38) An underlying genetic cause has been
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Among the identifiable genetic causes of CDH, cytogenetic

abnormalities and single gene disorders have been described.

The most prevalent aneuploidy associated with CDH, trisomy

18, occurs in 2%–5% of CDH (39). Trisomy 13 account for <1%

of CDH cases (40). Trisomy 21 is the most frequently occurring

aneuploidy identified in children with Morgagni hernia (41).

The significance of copy number variations (CNVs) has been

related alongwith thedisruptionof essential signalingpathways as

a causative factor in the development of the diaphragm (26).

It has tobenoted that themajorityofCNVs identified inpatients

with CDH are deletions, suggesting that haploinsufficiency could be

a crucial mechanism of impaired diaphragm development (26)

However, several CDH-related chromosomal loci are affected also

by copy number gains (43). The most common CNVs associated

with CDH include tetrasomy 12p (44), 15q26.1–26.2 deletion,

8p23.1 deletion (OMIM 222400) (45), 8q23.1 deletions (46) and

4p16 deletion (also known as Wolf–Hirschhorn syndrome (OMIM

194190)) among others (47). The analysis of numerous CDH

patients with a chromosome 15q26.2 microdeletion has been

particularly crucial, as it revealed a common region of overlap

resulting in loss of one NR2F2 (COUP-TFII) allele (OMIM

142340) (48). This allele is a member of the orphan nuclear

receptors and is expressed in regions critical for the formation of

the diaphragm during embryonic development (40).

Pathogenic variants in several single genes have been described

in both syndromic and non-syndromic cases of CDH. Among the

syndromic form of CDH, Cornelia de Lange Syndrome is of

particular interest, as the presence of CDH is associated with

poor prognosis (42). CDH is also a cardinal feature of Fryns

syndrome. The genetic etiology of Fryns syndrome has not been

definitively established, although it can be caused by variants in

glycosylphosphatidylinositol anchor pathway genes (49).

CDH patients without any other associated birth defects

usually manifest with pulmonary hypoplasia of variable degrees.

The poor lung growth is not necessarily related to the

compression effects of the herniated organs. Indeed, studies have

shown that there are primary defects in lung growth that

precedes CDH. Disruption in mesenchymal cell function or

mutation in the genes encoding transcription factors, molecules

involved in cell migration, and extracellular matrix components

can all play a complex role in the development of CDH.

Mesenchymal cell differentiation abnormalities triggered by

environmental or genetic factors can be associated with

diaphragmatic or extra diaphragmatic defects as suggested by the

mesenchymal hit hypothesis (50). Transcriptional factors which

regulate the genes for mesenchymal cell function in the

diaphragm, lung, and other organs play an important regulatory

function and their deficiencies have been reported with impaired

structure integrity, apoptosis, and abnormal cell differentiation

(51). WT1, FOG-2, TA-4are the zinc finger transcription factors

associated with pulmonary and extrapulmonary manifestation

in CDH.
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CDHpatients without any other associated birth defects usually

manifest with pulmonary hypoplasia of variable degree. The poor

lung growth is not necessarily related to the compression effects of

the herniated organs. Indeed, studies have shown that there are

primary defects in lung growth that precede CDH (50, 53).

Identifyinganunderlying genetic etiology inpatientswithCDH

could significantly impact recurrence risk estimations, mortality

rates, and the availability and outcomes of therapy, ultimately

improving clinicians’ ability to counsel families. Analysis of

genetic testing results in one of the largest CDH cohorts

published to date provided significant insight into the diagnostic

yield of genetic tests in different CDH groups (54). This cohort

included 411 patients, 322 with isolated/nonsyndromic CDH and

89 with complex/syndromic CDH. Genetic testing was diagnostic

in 57% of infants with complex/syndrome CDH; of them, a

causative cytogenetic abnormality was identified in 73% of cases,

while a single gene disorder was identified in the other 27% (54).

The diagnostic yield of exome sequencing in this group was

consistent with previous publications (55). By contrast, genetic

testing was diagnostic in only 2% of infants with isolated/

nonsyndromic CDH (54). However, it must be noted that most

patients in this group were tested only for cytogenetic

abnormalities. In addition, for the subjects in which exome

sequencing was performed, the indication was developmental

delay and/or autism spectrum disorder.

Overall, based on the data available in the literature to date,

there is consensus that genetic testing is warranted, especially in

individuals with complex/syndromic CDH.
Metabolic aspect of CDH

Over the last decade, lung metabolism has been extensively

studied with the goal of unfolding metabolic dysfunction and

association with various diseases (56). However, there are still

several aspects that need to be elucidated. In a recent study,

significant alterations in antioxidant metabolites, glycolytic

energy metabolites, and nucleotide metabolites were associated

with CDH in animal models (57). Increased oxidative stress

play a role in development of CDH (58). The normal growth of

the embryo is sensitive to the balance between antioxidant

activity and the production of reactive oxygen species. The

endogenous redox state regulates cell proliferation and

differentiation during the critical period of active growth via

signaling pathway (59). Disturbance in this homeostasis can

lead to congenital malformations and dysmorphogenesis (60).

Hypoxic environment in CDH causes enhanced production of

reactive oxygen species (ROS) leading to remodeling of growing

vessels via smooth muscle cell hyperplasia, endothelial

dysfunction, and enhanced contractility that eventually

manifests as PPHN (61, 62). A low level of antioxidant activity

with high ROS may destroy the signaling pathways to regulate

the growth of developing organs (63). Supplementation of Vit E
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CDH but does not have any significant effect on lung

hypoplasia (64) Deficient antioxidant activity can be a future

therapeutic target for CDH. In addition, a hypoxic environment

leads to anaerobic metabolism and subsequent energy failure

with inadequate adenosine triphosphate (ATP) production (65).

Elevation of lactate and significant depletion of ATP has been

described with CDH. Nucleotides are organic molecules

consisting of a nucleoside and phosphate. They serve as

monomeric units of the nucleic acid polymers-deoxyribonucleic

acid (DNA) and ribonucleic acid (RNA) both of which are

essential for tissue growth and cell replication. Nucleotides also

play a role as coenzymes and messengers in signaling pathways

involving cyclic adenosine monophosphate (cAMP) and cyclic

guanosine monophosphate (c-GMP). Alteration in nucleotide

synthesis, degradation, and imbalance has also been described

in CDH but the exact correlation remains unclear. Further,

retinoid (Vitamin A), and its metabolites play an important role

in fetal growth and development. Vitamin A is an important

micronutrient and its deficiency as well as excess have been

described in literature as congenital defects and teratogenicity in

offspring. Retinoid hypothesis describes abnormal retinoid

signaling early in the diaphragm development leading to the

development of CDH (66). Dietary deficiency of vitamin A has

been described in literature with increased incidence of CDH in

animal models but has not been validated in a recent National

Birth Defects Prevention Study (67). Although experimental

animal data suggest dietary factors including, low intakes of B-

vitamins, choline, protein, retinol, and certain minerals in the

maternal diet may be associated with CDH among offspring but

lacks a clear body of evidence (68). Similarly, pre-conceptional

maternal folic acid intake has failed to show any association

with the development of CDH (69).
Conclusions

CDH is a heterogenous disease and multiple factors

play a role in its pathogenesis. Understanding the

underlying cellular, molecular, and metabolic aspects of

CDH is crucial to improve morbidity and mortality. New

advances in genetic testing and isolation of genes

implicated in CDH development are especially important,

as they could represent a very promising target for new

therapeutic strategies.
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