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Development and validation of a
nomogram for the early
prediction of drug resistance in
children with epilepsy

Hua Geng and Xuqin Chen*

Neurology Department, Children’s Hospital of Soochow University, Suzhou, China

Background and purpose: This study aimed to e�ectively identify children

with drug-resistant epilepsy (DRE) in the early stage of epilepsy, and take

personalized interventions, to improve patients’ prognosis, reduce serious

comorbidity, and save social resources. Herein, we developed and validated

a nomogram prediction model for children with DRE.

Methods: The training set was patients with epilepsy who visited the Children’s

Hospital of Soochow University (Suzhou Industrial Park, Jiangsu Province,

China) between January 2015 and December 2017. The independent risk

factors for DREwere screened by univariate andmultivariate logistic regression

analyses using SPSS21 software. The nomogram was designed according

to the regression coe�cient. The nomogram was validated in the training

and validation sets. Internal validation was conducted using bootstrapping

analyses. We also externally validated this instrument in patients with epilepsy

from the Children’s Hospital of Soochow University (Gusu District, Jiangsu

Province, China) and Yancheng Maternal and Child Health Hospital between

January 2018 and December 2018. The nomogram’s performance was

assessed by concordance (C-index), calibration curves, as well as GiViTI

calibration belts.

Results: Multivariate logistic regression analysis of 679 children with epilepsy

from the Children’s Hospital of Soochow University (Suzhou Industrial

Park, Jiangsu Province, China) showed that onset age<1, status epilepticus

(SE), focal seizure, > 20 pre-treatment seizures, clear etiology (caused

by genetic, structural, metabolic, or infectious), development and epileptic

encephalopathy (DEE), and neurological abnormalities were all independent

risk factors for DRE. The AUC of 0.92 for the training set compared to that

of 0.91 for the validation set suggested a good discrimination ability of the

prediction model. The C-index was 0.92 and 0.91 in the training and validation

sets. Additionally, both good calibration curves and GiViTI calibration belts

(P-value: 0.849 and 0.291, respectively) demonstrated that the predicted risks

had strong consistency with the observed outcomes, suggesting that the

prediction model in both groups was perfectly calibrated.
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Conclusion: A nomogram prediction model for DRE was developed, with

good discrimination and calibration in the training set and the validation

set. Furthermore, the model demonstrated great accuracy, consistency, and

prediction ability. Therefore, the nomogram prediction model can aid in the

timely identification of DRE in children.

KEYWORDS

drug-resistant epilepsy, prediction model, nomogram, drug-resistant epilepsy (DRE),

children, drug-sensitive epilepsy (DSE)

Introduction

Epilepsy is a disorder of the brain with the characteristic

of an enduring predisposition to generate epileptic seizures,

which has been recognized as one of the most prevalent

neurological and psychiatric conditions by the World Health

Organization (WHO). Currently, there have been more than 70

million patients with epilepsy worldwide (1), and its prevalence

usually peaks among those <1 year old or > 50 years old (2).

Three generations of antiepileptic drugs have been developed.

Although AED therapy has played an effective role in stopping

seizures in a great number of patients with epilepsy, and seizure

control remains unsuccessful for some of them. As reported in

studies, 20–30% become resistant to treatment with AEDs (3–5).

Frequent seizures would cause neuron loss, axon germination,

glial hyperplasia, and neural network remodeling (6), which

could be fatal due to either the direct outcomes of seizures

(such as sudden death from epilepsy, long falls, etc.) or the

indirect outcomes of seizures (such as inhalation pneumonia,

suicide, etc.) (7). Seizures seriously affect the development of the

nervous system, resulting in growth retardation, low cognitive

function, and a series of neuropsychological problems. The

mortality rates of drug-resistant epilepsy (DRE) are four to

seven times higher than those of patients with drug-sensitive

epilepsy (DSE) (8). Kwan et al. indicated that some patients

with DRE are possible to be identified early, and thus can be

targeted for rational therapies or surgeries (9). Notably, the

early risk factors for DRE, when paired with the prediction

model, may offer a basis for personalized treatment. However,

the early risk factors for DRE are still debatable, and there

is no effective tool for diagnosing DRE. Therefore, it is vital

to develop an early prediction model of DRE that will not

only offer a basis for early DRE diagnosis and treatment

selection but will also increase doctor–patient communication

and achieve optimal allocation of healthcare resources. Most

of the existing prediction models have focused on identifying

independent risk factors for DRE (10). Scholars have developed

several tools, including formulas, machine learning methods,

prediction models of logistic regression, clinical prediction

rules (CPR), deep learning methods, molecular diagnosis

model, and integrative prediction algorithm based on combined

clinical-EEG functional connectivity features and circulating

microRNAs from plasma small extracellular vesicles, for the

early prediction of the probability of DRE (11–18). Nevertheless,

all of these tools were neither simple enough nor convenient

for practical application. Nomogram is an intuitive prediction

model which is graphically presented. Each independent risk

factor listed in the nomogram can be quantified. Benefiting

from these advantages, nomogram has been widely used in the

diagnosis and prognosis of diseases. Thus, our team decided to

develop a nomogram prediction model for DRE. Every potential

risk factor in the nomogram model would be analyzed and

quantified, to individually predict the likelihood of DRE in

children. Meanwhile, we would assess the discrimination and

calibration of the nomogram prediction model in internal and

external children with DRE, to provide a reliable tool that could

be directly used in clinical practice.

Materials and methods

Patients

The predictive nomogram model was developed based on

a retrospective study of children with epilepsy who visited the

Children’s Hospital of Soochow University (Suzhou Industrial

Park, Jiangsu Province, China) between January 2015 and

December 2017. Internal validation was conducted using

bootstrapping analyses with 1,000 resamples. The external

validation set comprised patients with epilepsy from the

Children’s Hospital of Soochow University (Gusu District,

Jiangsu Province, China) and the Yancheng Maternal and Child

Health Hospital between January 2018 and December 2018. All

the patients were regularly followed up in the Department of

Neurology for more than 36 months.

Inclusion criteria

Currently, according to the guideline of the International

League against Epilepsy (ILAE) 2010 (19), DRE is defined as a

failure of adequate trials of two tolerated, appropriately chosen,

and used antiepileptic drug schedules (whether administered
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alone or in combination) to achieve sustained freedom from

seizure for three times the longest interval between seizures

before the intervention (identified from seizures happened

during the past 12 months), or 12 months. Thus, the inclusion

criteria of DSE were as follows: (1) two unprovoked epileptic

seizures more than 24 h apart; (2) sustained freedom from

seizure for three times the longest interval between seizures

before the intervention (identified from seizures happened

during the past 12 months), or 12 months.

All the patients in the training set and validation set must

regularly be followed up in the Department of Neurology more

than 36 months after diagnosis.

Exclusion criteria

Exclusion criteria for DREwere: (1) incomplete information:

children with incomplete clinical and follow-up information;

(2) diagnostic mistakes: children mistakenly diagnosed as

epilepsy, such as vasovagal syncope, migraine, transient ischemic

attack, cardiogenic attack, and arrhythmia; (3) treatment errors:

children failed to receive AEDs corresponding to their types of

epilepsy, with inappropriate pharmacokinetic effects; (4) dose

errors: for AEDs whose blood concentration can be measured,

their doses were too low, that is, blood concentration did

not reach the therapeutic level, or the AED could not be

tolerated by children; for AEDs whose blood concentration

cannot be measured, their doses did not reach the minimum

maintenance dose recommended by the International League

Against Epilepsy (ILAE) (20) or the instructions of the

manufactures; (Supplementary Table 2); (5) inducing factors of

epilepsy: poormedication compliance; (6) other serious systemic

diseases: such as severe liver and kidney diseases, or congenital

heart disease.

Exclusion criteria for DSE were: (1) poor treatment

compliance; (2) acute symptomatic attacks; (3) missing

information: incomplete clinical and follow-up data; (4) severe

systemic diseases.

Data collection

According to the process, we collected the electronic

medical histories of children with epilepsy in the past. Missing

information was retrieved by phone call or directly contacting

the children’s guardians. The data in the questionnaire were

systematically sorted and summarized. The personnel who

were responsible for the collection and data input of medical

history were trained by “Galaxy Plan” (which was a capacity-

building project for professional doctors in epilepsy, held by the

Chinese Anti-epilepsy Association), and obtained qualification

certification, to ensure the accuracy and authenticity of data

collection. Clinical history was obtained only from the child’s

legal guardian or long-term caregiver. Moreover, the original

medical records and auxiliary examinations, as well as electronic

medical records, were inquired for information validation,

to ensure the authenticity and integrity of the data and to

minimize recall bias. The information on explanatory variables

were collected and documented at the time of the initial

presentation of the patients to the study hospital. All the

patients in the training set were regularly followed up in the

Department of Neurology for more than 48 months after

diagnosis. All patients were followed up for at least 36 months

to guarantee sufficient time for the observation of therapeutic

effect, disease progression, and outcome. This study complied

with the principles of the Declaration of Helsinki, as well as

its amendments, and was approved by the ethical committees

of Children’s Hospital of Soochow University and Yancheng

Maternal and Child Health Hospital.

Definition of variables

1) Gender: male or female.

2) Onset age: within 1 year of birth or more than 1 year old.

3) Status epilepticus (SE): with or without status epilepticus.

4) Focal seizure: The children with DRE in the research

were categorized and grouped into three categories: focal

seizure, generalized seizure, and unclassified seizure,

based on the ILAE classification of epilepsy in 2017, as

well as the symptoms of seizures and EEG results.

5) Clustered seizures: two or more seizures within 24 h.

6) Pre-treatment seizures: it was defined as the number of

seizures before the treatment and was divided into >

20 and ≤ 20 times (clustered seizures in one day means

one seizure).

7) Radiological abnormalities: According to MRI in

Epilepsy by Horst Urbach (21), head MRI was

divided into normal conditions and abnormal ones

related to epilepsy. The head MRI abnormalities

included: hippocampal sclerosis, epilepsy-related tumor,

cortical malformations, neurocutaneous syndrome,

traumatic change, vascular malformation, ischemic

changes, infectious and inflammatory changes, and

metabolic changes.

8) Etiology: According to ILAE’s suggestion, the etiology

of DRE was divided into six types, namely, genetic,

structural, metabolic, immune, infectious, and unknown

ones (22).

9) Development and epileptic encephalopathy (DEE)

include three electroclinical entities: developmental

encephalopathy (DE: in conditions where the cognitive

development and behavior are impaired independently

of the epilepsy onset), epileptic encephalopathy (EE: it

is a progressive brain dysfunction caused by frequent

epileptic seizures and/or epileptic discharge), as well as
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the combination of the two (DEE). In clinical practice,

it was difficult to distinguish DE from patients with EE,

thus patients with DE, EE, or both were included in this

study and recognized as patients with DEE (22–24).

10) Initial EEG: Using a Nihon Kohden EEG-1200C

(Tokyo, Japan) or Nicolet EEG-V36 (USA), the EEG

electrodes were placed on the scalp, recording voltage

potentials resulting from current flow in and around

neurons, according to the International 10–20 system.

The video EEG of the patient was monitored and

recorded for no less than 4 h. According to Clinical

Electroencephalography by Xiao-yan Liu (25), pediatric

EEG could be divided into normal and abnormal

ones. EEG abnormalities included inter-seizure

abnormalities, abnormalities during seizures, and

background abnormalities. The video EEG before the

treatment was called the initial EEG.

11) Neurological conditions: Physical examinations of the

neurological system would be conducted for all the

children. The results would be divided into normal

and abnormal ones. Neurological abnormalities included

abnormalities in motor function, sensory function, nerve

reflex, skin, and skull.

12) Perinatal asphyxia: with or without perinatal asphyxia.

The definition of perinatal asphyxia in China provided by

the neonatal committee of the Chinese Medical Doctor

Association (20) was as follows: (1) Prenatal high-risk

factors that may lead to asphyxia; (2) Apgar score ≤7 in

1 or 5min, without spontaneous respiration established.

(3) PH < 7.15 in the umbilical arterial blood sample; (4)

other causes of low Apgar score were excluded.

13) History of febrile convulsion: with or without history of

febrile convulsion. Patients who have ever had febrile

convulsion for once were defined to have a history of

febrile convulsion.

14) Family history: with or without a family history. Family

history refers to epilepsy in a first-degree relative

or sibling.

15) Multiple seizure forms: according to the ILAE

classification (22), seizure forms ≥2 were defined

as multiple seizure forms.

Statistical analysis

Statistical analysis was performed by SPSS 21.0. The age

and onset age in this study were not normally distributed, and

thus were described as the median (interquartile interval). The

categorical data were described as frequency (percentage). The

continuous variables between groups were compared by the

Mann–Whitney U test, and categorical variables were compared

by the Chi-square (χ2) test. The risk factors were analyzed

by univariate and multivariate logistic regression. The risk

factors with P < 0.05 in the univariate analysis were deemed

to indicate statistical significance, selected into the multivariate

logistic regression analysis, and further screened by a stepwise

forward method. Variance inflation factor (VIF), tolerance, and

eigenvalue conditional indexes were used to detect collinearity.

A nomogram prediction model of individual DRE was

developed with the independent risk factors of the multivariate

regression analysis, using the rms, foreign, and gglot2 packages

in R software. The corresponding scores for each predicting

factor were listed in the nomogram, and then the score for all

variables was summed up, mapping to a scale of outcomes that

corresponded to the likelihood of DRE.

We tested the nomogram’s performance through

discrimination along with calibration. The nomogram was

validated in the training and validation sets. The nomogram

for DRE was subjected to 1,000 bootstrap resamples for

internal validation to assess their predictive accuracies. The

discrimination of the model was assessed through the receiver

operating characteristic (ROC) curve, which was drawn using R

software. A two-tailed P<0.05 was considered to be statistically

significant. The nomogram’s predictive accuracy was assessed

using concordance (C-index), calibration curves along with

GiViTI calibration belts. C-index’s value is related to the

predictive accuracy rate. The larger the C-index is, the higher

the predictive accuracy rate would be. In addition, calibration

plots of predictive DRE risk were assessed in the training and

external validation sets. A perfect prediction would correspond

to the 45◦ dashed line. The closer to the 45◦ dashed line, the

predicted calibration curve is the better the predictive ability

of the nomogram would be. GiViTI has been proposed as a

graphical tool to identify ranges of probability where a model

based on dichotomous outcomes mis-calibrates and applied

to determine the goodness-of-fit of the prediction model

(26). It has a calibration curve and a confidence belt. The

calibration curve interprets the link of predicted risk with the

observed outcome for various levels of risk, whereas the curve’s

confidence belt estimates the degree of uncertainty based on the

true location of the curve. In the GiViTI calibration belt, after

fitting a polynomial logistic function to the logit transformation

of the predicted probability and outcome, the relationship

between the predicted and observed outcomes is calculated.

Through the calibration belt, 80% CI (marked in light gray)

along with 95% CI (marked in dark gray) around the calibration

curve are calculated. There would be a deviation from the

bisector vector (dashed line) with statistical significance if the

95% CI does not cross the bisector (27).

Results

Baseline characteristics

A total of 856 children with epilepsy, who visited the

Children’s Hospital of Soochow University (Suzhou Industrial

Park, Jiangsu Province, China) from January 2015 to December
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FIGURE 1

Technology roadmap.

2017, were evaluated, among which 177 children were excluded

according to the inclusion criteria and exclusion criteria. Of the

remaining 679 cases that were included in the training set for

model development (407, 170, and 102 in preschool, school-age,

and adolescence period, respectively), 229 belonged to the DRE

group, and 450 were in the DSE group. Furthermore, there were

a total of 347 patients included for external validation, including

189 children with epilepsy (64 in the DRE group, and 125 in

the DSE group) who visited the Children’s Hospital of Soochow

University (Gusu District, Jiangsu Province, China) and 158

children with epilepsy (54 in the DRE group, and 104 in the

DSE group) who visited Yancheng Maternal and Child Health

Hospital from January 2018 to December 2018 (Figure 1). All

the patients in the external validation set were regularly followed

up in the Department of Neurology for at least 36 months

from diagnosis of epilepsy. Patients with DSE in the external

set were effectively controlled and their antiepileptic drugs were

gradually withdrawn without recurrence. Finally, 1,026 children

in total were included in this study, among which 679 children

were in the training set, with 369 male (54.3%) and 310 female

(45.7%), while 347 children were in the external validation set,

with 200 male (57.6%) and 147 female (42.4%). There was no

significant difference between the baseline characteristics of the

two sets (Table 1). All the patients in the training set were

regularly followed up in the Department of Neurology for more

than 48 months after diagnosis, with the median follow-time

reaching up to 66 months (range 48–84 months, interquartile

range [IQR] 55.2–76.8 months), which was longer than the

median of 42 months in the validation set (range, 36–48 months,

IQR 38.4–45.6 months).

Model establishment

Univariate analysis showed that onset age <1, status

epilepticus (SE), focal seizure, clustered seizures, >20 pre-

treatment seizures, radiological abnormalities, clear etiology

(caused by genetic, structural, metabolic, or infectious), DEE,

abnormalities of initial EEG, perinatal asphyxia, neurological

abnormalities, and multiple seizure forms were risk factors

for DRE with statistical significances. However, gender, family

history, and history of febrile convulsions were not associated

with DRE (Table 2). Based on the collinearity diagnosis

of 12 risk factors, we found the variance inflation factor

(VIF) was <2, the tolerance was >0.1, the eigenvalue was

close to 0, and the conditional indexes were <30. Thus, no

collinearity in these risk variables could be deduced (Table 3

and Supplementary Table 1). Children with radiological

abnormalities, moreover, are frequently characterized by

symptomatic epilepsy, and children with clustered seizures are

more prone to have>20 pre-treatment seizures. Taking this into

consideration, the risk factors radiological abnormalities and

clustered seizures were excluded in this study. The risk factors

for DRE with statistical significance in the univariate analysis
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TABLE 1 Baseline characteristics of the training set and validation set.

Training

set

(n = 679)

Validation

set

(n = 347)

z/χ2 P value

Gender (%) – – 1.01 0.315

Male 369 (54.3%) 200 (57.6%) – –

Female 310 (45.7%) 147 (42.4%) – –

Onset age <1 (%) – – 1.47 0.225

Yes 153 (22.5%) 90 (25.9%) – –

No 526 (77.5%) 257 (74.1%) – –

SE (%) – – 1.28 0.258

Yes 74 (10.9%) 30 (8.6%) – –

No 605 (89.1%) 317 (91.4%) – –

Focal seizure (%) – – 0.15 0.696

Yes 359 (52.9%) 179 (51.6%) – –

No 320 (47.1%) 168 (48.4%) – –

Clustered seizures (%) – – 0.22 0.642

Yes 296 (43.6%) 146 (42.1%) – –

No 383 (56.4%) 201 (57.9%) – –

>20 pretreatment seizures

(%)

– – 0.01 0.919

Yes 260 (38.3%) 134 (38.6%) – –

No 419 (61.7%) 213 (61.4%) – –

Radiographic tests (%) – – 3.45 0.063

Abnormal 165 (24.3%) 103 (29.7%) – –

Normal 514 (75.7%) 244 (70.3%) – –

Etiology (%) – – 5.97 0.309

Genetic 78 (11.5%) 37 (10.7%) – –

Structural 77 (11.3%) 51 (14.7%) – –

Metabolic 31 (4.6%) 18 (5.2%) – –

Immune 19 (2.8%) 16 (4.6%) – –

Infectious 113 (16.6%) 48 (13.8%) – –

Unknown 361 (53.2%) 177 (51.0%) – –

DEE (%) – – 0.53 0.465

Yes 183 (27.0%) 101 (29.1%) – –

No 496 (73.0%) 246 (70.9%) – –

Initial EEG (%) – – 1.71 0.191

Normal 82 (12.1%) 52 (15.0%) – –

Abnormal 597 (87.9%) 295 (85.0%) – –

Perinatal asphyxia (%) – – 0.28 0.598

Yes 56 (8.2%) 32 (9.2%) – –

No 623 (91.8%) 315 (90.8%) – –

History of febrile

convulsion (%)

– – 3.23 0.072

Yes 37 (5.4%) 29 (8.4%) – –

No 642 (94.6%) 318 (91.6%) – –

Family history (%) – – 2.16 0.142

Yes 61 (9.0%) 22 (6.3%) – –

No 618 (91.0%) 325 (93.7%) – –

(Continued)

TABLE 1 Continued

Training

set

(n = 679)

Validation

set

(n = 347)

z/χ2 P value

Neurological conditions

(%)

– – 0.33 0.565

Normal 466 (68.6%) 232 (66.9%) – –

Abnormal 213 (31.4%) 115 (33.1%) – –

Multiple seizure forms 0.23 0.633

Yes 163 (24.0%) 88 (25.4%)

No 516 (76.0%) 259 (74.6%)

Outcome (%) – – 0.01 0.944

DRE 229 (33.7%) 118 (34.0%) – –

DSE 450 (66.3%) 229 (66.0%) – –

SE, status epilepticus; DEE, development and epileptic encephalopathy; EEG,

electroencephalogram; DRE, drug-resistant epilepsy; DSE, drug-sensitive epilepsy.

Categorical variables were compared by Chi-square (χ2) test.

were further analyzed with unconditional binary multifactor

logistic regression, and the result showed that onset age <1,

SE, focal seizure, >20 pre-treatment seizures, clear etiology

(caused by genetic, structural, metabolic or infectious), DEE,

and neurological abnormalities were independent risk factors

for DRE (Table 2). Therefore, seven independent risk factors

were adopted and analyzed in the nomogram for predicting the

incidence of individual DRE (Figure 2). For example, if there

was an epileptic child aged 6 months old, with SE, structural

etiology, 10 pre-treatment seizures, but without focal seizure,

DEE, or neurological abnormalities, then the cumulative score

of predicting factors was 40 + 45 + 99 + 0 + 0 + 0 + 0

= 184, and the corresponding likelihood for DRE was 0.84

(84%), indicating that this child was at 84% possibility for

DRE (Figure 3).

Model validation

We tested the nomogram’s performance through

discrimination and calibration. The ROC curve for DRE

prediction was drawn by R software. The AUC value was 0.92

for the training set compared to 0.91 for the validation set.

The AUC of the nomogram model for both sets was >0.75,

suggesting good discrimination for the nomogram prediction

model (Table 4, Figure 4).

Internal validation of the nomogramwas conducted through

bootstrap analyses with 1,000 resamples. The C-index was

0.92 (95% CI 0.92–0.93) and 0.91 (95% CI 0.90–0.91) in

the training and validation sets, respectively. Based on the

two calibration curves, a good agreement was demonstrated

between the predicted and observed values for DRE (Figure 5).
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TABLE 2 Univariate and multivariate logistic regression in the training

set.

Univariate analysis Multivariate analysis

OR (95%CI) P value OR (95%CI) P value

Gender (male) 0.82 (0.59–1.13) 0.219 NA NA

Onset age<1 3.57 (2.45–5.18) <0.001* 3.96 (2.24–6.98) <0.001*

SE 5.32 (3.16–8.97) <0.001* 4.76 (2.21–10.28) <0.001*

Focal seizure 3.51 (2.49–4.95) <0.001* 2.88 (1.76–4.73) <0.001*

Clustered seizures 7.16 (5.00–10.26) <0.001* NA NA

> 20 pretreatment

seizures

4.33 (3.09–6.07) <0.001* 3.25 (1.99–5.29) <0.001*

Radiological

abnormalities

30.30 (18.43–49.82) <0.001* NA NA

Etiology <0.001* <0.001*

Genetic – – – –

Structural 8.76 (4.19–18.32) <0.001* 12.16 (4.69–31.55) <0.001*

Metabolic 6.10 (2.39–15.52) <0.001* 12.41 (3.78–40.74) <0.001*

Immune 1.24 (0.43–3.52) 0.691 1.72 (0.46–6.39) 0.421

Infectious 3.45 (1.88–6.34) <0.001* 3.92 (1.73–8.85) 0.001*

Unknown 0.28 (0.16–0.50) <0.001* 0.39 (0.18–0.83) 0.014*

DEE 4.04 (2.83–5.77) <0.001* 3.64 (2.13–6.22) <0.001*

Abnormalities on

initial EEG

1.80 (1.05–3.09) 0.033* NA NA

Perinatal asphyxia 2.66 (1.53–4.63) 0.001* NA NA

History of febrile

convulsion

1.54 (0.79–3.00) 0.211 NA NA

Family history 1.31 (0.76–2.24) 0.332 NA NA

Neurological

abnormalities

5.44 (3.83–7.74) <0.001* 5.72 (3.45–9.49) <0.001*

Multiple seizure

forms

2.30 (1.60–3.29) <0.001* NA NA

SE, status epilepticus; DEE, development and epileptic encephalopathy;

EEG, electroencephalogram.

*P < 0.05; OR, odds ratio; NA, not consolidation; CI, confidence interval.

The 80% and 95% CI of the GiViTI calibration belt did not

cross the diagonal line, presenting P-values of 0.849 and 0.291

for the training set and for the validation set, respectively

(P > 0.05), with no statistical significance (Figure 6). We also

calculated the accuracy rate for the nomogram in each validation

set: the internal validation (accuracy: 0.87, 95% CI 0.88–0.90,

sensitivity:0.93, specitivity:0.76) and the external validation

(accuracy:0.87, 95%, CI 0.84–0.90, sensitivty:0.93, specificity:

0.76). These findings indicated that the validation set had

strong consistency with the training set. Thus, the nomogram

prediction model was perfectly calibrated.

Discussion

Epilepsy is a brain disease persistently prone to result in

epileptic seizures (28). The incidence of epilepsy in children was

TABLE 3 Variance inflation factor (VIF) and tolerance analysis of

variables.

Variables P value Tol VIF

Onset age<1 0.000 0.93 1.08

SE 0.000 0.94 1.07

Focal seizure 0.000 0.91 1.11

Clustered seizures 0.000 0.84 1.20

> 20 Pretreatment seizures 0.000 0.85 1.18

Radiographic abnormalities 0.000 0.60 1.67

Etiology 0.910 0.68 1.48

DEE 0.000 0.92 1.09

Abnormalities on initial EEG 0.358 0.97 1.03

Perinatal asphyxia 0.060 0.96 1.04

Neurological abnormalities 0.000 0.90 1.11

Multiple seizure forms 0.053 0.94 1.06

VIF, variance inflation factor; Tol, tolerance; SE, status epilepticus; DEE, development

and epileptic encephalopathy; EEG, electroencephalogram.

The (VIF) was <2, the tolerance was >0.1 inferred that there was no collinearity in these

risk factors.

144/100 000 and 58/100 000 person-years for those aged <1

year and 1–10 years, respectively. The cumulative incidence of

epilepsy reached up to 0.66% for the children at 10 years old,

among which 0.62% with active epilepsy (29). DRE accounts

for 20–30% of all patients with epilepsy (3–5). As reported,

there are 13 million disability-adjusted life years due to epilepsy

each year globally (30). Long-term recurrent seizures exert a

serious influence on the physical/mental health of children, as

well as their quality of life. If the children at high risk of DRE

could be effectively identified at the early stage, personalized

interventions could be adopted to prevent its occurrence,

reduce severe comorbidities, and improve prognosis. The risk

factors for DRE currently reported have been inconsistent, if

not controversial. Furthermore, most prediction models lack

high replicability or sufficient evidence, and risk variables were

not quantified specifically. Based on the above, it is of great

significance to explore the risk factors for DRE among epileptic

children and establish an easy-to-operate visual scale for the

assessment of therapeutic efficacy. In our study, the established

nomogram prediction model was found to be capable of

identifying patients with DRE at diagnosis before the treatments,

and the results suggested that this prediction model was able to

identify patients with high-risk DRE at least 1 year earlier than

the current practice that waits for failing from two AEDs.

Risk factors for DRE

In this study, compared to the 450 children with DSE, the

independent risk factors for 229 children with DRE included

onset age<1, SE, focal seizure,>20 pre-treatment seizures, clear
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FIGURE 2

The nomogram prediction model of individual DRE. SE, status epilepticus; DEE, development and epileptic encephalopathy. The top row is used

for point assignments for each variable. Rows 2–8 indicated the variables included in the nomogram. The sum of the points is located on the

total points line. The lowest row showed the diagnostic possibility of DRE.

etiology (caused by genetic, structural, metabolic, or infectious),

DEE, and neurological abnormalities. Specifically, the risk of

onset age < 1 year old in children with DRE was 3.96 times

of those with onset age >1, which was consistent with other

published literature (3). Infancy is the most critical period in

brain development. Brain maturity may be related to the high

incidence of seizures in infancy (31–33). Besides, the frequency

of focal epilepsy in children with DRE was 2.88 times that of

children with DSE in this study. As common focal epilepsy,

hippocampal sclerosis has been recognized as the most common

pathology contributing to drug-resistant mesial temporal lobe

epilepsy (34), while patients with focal frontal epilepsy (35, 36)

are prone to be drug-resistant. Thus, it can be inferred that

patients with focal origins are more inclined to develop DRE.

Additionally, we found that more than 20 pre-treatment seizures

were an independent risk factor for DRE, which was consistent

with the results of a 30-year longitudinal cohort study (37).

Regarding the etiology of epilepsy, epilepsy may be classified

into structural, infectious, genetic, metabolic, immune, or

unknown subgroups according to the suggestions of ILAE

(22). After a series of auxiliary examinations, we were able

to discover a clear and definitive etiology for the disease in

the majority of the children with DRE, and some patients

may have two or more reasons. When compared to those

with an unclear etiology, epilepsy with a definite etiology was

harder to treat and was more inclined to progress to DRE.

Autoimmune encephalitis can cause epilepsy; however, it is

not the risk factor of DRE. The prognosis of autoimmune

encephalitis is correlated with the location of antigen and

antibody, which can be divided into anti-neuron cell surface

antibody and anti-neuronal intracellular antibody, the former

is more common, and has a low probability of progressing

to DRE, but the latter easily progress to DRE. In a word,

anti-neuron cell surface antibody, the most common type of

autoimmune encephalitis, is less likely to develop into DRE

(38). The prognosis was poorest in patients with structural

etiology, followed by metabolic, infectious, and genetic etiology,

respectively; this differed from the results of previous studies

based on the classification of idiopathic, symptomatic, and

cryptogenic epilepsy (39, 40).

There are four types of drug resistance in clinical practice:

de novo continuous drug resistance, reversal of drug resistance,

possibly in an intermittent pattern in which periods of

remission are followed by periods of uncontrolled seizures, and
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FIGURE 3

Example of the nomogram prediction model for individual DRE. If there was an epileptic child aged 6 months old, with SE, structural etiology, 10

pre-treatment seizures, but without focal seizure, DEE, or neurological abnormalities, then the cumulative score of predicting factors was 40 +

45 + 99 + 0 + 0 + 0 + 0 = 184, and the corresponding likelihood for DRE was 0.84 (84%), indicating that this child was at 84% possibility for DRE.

progression to drug resistance of delayed onset with persistent

loss of efficacy after the control initially (41). Therefore, the

condition of DRE may be recognized in more than 50% of early-

stage patients. Focal signs implicating or localizing cerebral

pathology are identified through the neurological examination

(42), where dysmorphic features can suggest genetic syndromes

(7). For instance, increased tone on one side of the body

could suggest lesions in the contralateral hemisphere, such as

cortical dysplasia (42). Stigmata of neurocutaneous syndromes

are constituted by the facial port-wine stain of Sturge–

Weber syndrome; café au lait spots and iris hamartomas

of neurofibromatosis; and facial angiofibroma, periungual

fibromas, hypomelanotic macules, as well as shagreen patches

of tuberous sclerosis complex (TSC) (43). In our study, it

was found that the risk factor of neurological abnormalities

was an independent predictor for DRE, with its frequency

in children with DRE5.72 times that of children with DSE.

Multiple studies have proved the strong correlation between

MRI abnormalities and the incidence of DRE (44–46), which

was consistent with the result of our study. In our study,

it was found that the risk of abnormalities on head MRI in

children with DRE was 30.30 times higher than that in children

with DSE (P < 0.001, OR = 30.30, 95% CI 18.43–49.82).

However, as an auxiliary investigation, abnormalities on MRI

were found to be collinear with the clinical etiology of DRE

and were thus excluded by multiple logistic regression. Etiology

was the biggest risk factor for DRE, according to the odds

ratios in this study, followed by neurological abnormalities,

SE, onset age <1, DEE, >20 pre-treatment seizures, and focal

origins, respectively.

Establishment of a prediction model

The establishment of prediction models is conducive

to the application of scoring tools in clinical guidelines,

benefits doctor–patient communication, as well as provides

an optimal allocation of healthcare resources. The essence of

prediction models is to explore the law between independent

and dependent variables through statistical analysis and to

quantitate the relationship between predictive factors and

outcomes. So far, prediction models mainly included formulas,

scoring tables, web calculators, mobile APPs, nomograms, and

so on. Nomogram achieves data visualization based on a

complex mathematical formula. It makes use of the variables

which are independent risk factors to picture a prediction
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model which is capable of quantifying a specific event’s

probability in clinical practice. After being listed separately,

each variable is assigned a point, which is a weighted

number based on the regression coefficient. Subsequently, the

score for all the variables is summed up, followed by the

matching to a scale to predict the outcomes. The formula

can also be alternatively programming into a calculator

based on the computer or smartphone. Once the variables

are entered, the possibility of a specific event would be

calculated (47). In other words, nomogram has the potential

of transforming complicated regression equations into the

visual figure, making prediction models easy-to-operate and

allowing clinicians to conveniently obtain the likelihood of

diseases. In recent years, nomogram has been an influencing

element in healthcare decision-making at a system level. A

well-established nomogram designed to solve a practical and

confusing problem, if correctly interpreted or used, will be

beneficial for clinicians, as well as patients. In this study,

nomograms were drawn using R software (rms package) on the

basis of the regression coefficients of independent risk factors

for children with DRE. Throughout the establishment and

validation of the model, we stand by the transparent reporting

of a multivariable prediction model for individual prognosis or

diagnosis (TRIPOD) statement (48, 49). Because the nomogram

can generate a numerical probability for individual DRE by

integrating various independent and predictive risk factors,

it fits our need model that combines demographic, genetic,

biological, and clinical data. The clinicians no longer need to

memorize complicated formulas. Nomograms can be beneficial

for clinicians and patients not only in planning personalized

treatments but also in providing a reference for decision-

making. As far as we know, our nomogram model is very

innovative for DRE prediction, since no relative visual tool has

been established before.

Discrimination assessment of the
nomogram prediction model

ROC curves have been widely used in the fields of

medicine and machine learning since they are the most

convenient evaluation tool for models. AUC was adopted

to assess each predictor and how the model discriminates

the patients with DRE from DSE. The value of AUC is

associated with the model’s discrimination ability. Generally

speaking, the AUC between 0.5 and 0.75 means a poor

ability, while AUC > 0.75 suggests a good ability (50).

In this study, the AUC was 0.92 for the training set

compared to 0.91 for the validation set, both larger than 0.75,

suggesting a good discrimination ability for the nomogram

prediction model.

TABLE 4 AUCs of ROC curves for the nomogram and variables from

the logistic regression model in the training as well as validation sets.

Training set Validation set

AUC 95%CI P value AUC 95%CI P value

Nomogram 0.92 0.92–0.93 <0.001 0.91 0.90–0.91 <0.001

Onset age 0.62 0.58–0.66 <0.001 NA

>20

pretreatment

seizures

0.67 0.63–0.72 <0.001 NA

Etiology 0.74 0.71–0.78 <0.001 NA

DEE 0.64 0.60–0.69 <0.001 NA

Neurological

abnormalities

0.69 0.64–0.73 <0.001 NA

SE 0.59 0.54–0.63 <0.001 NA

Focal seizure 0.65 0.61–0.69 <0.001 NA

AUC, area under the curve; ROC, receiver operating characteristic; SE, status

epilepticus; DEE, development and epileptic encephalopathy; NA, not consolidation; CI,

confidence interval.

Calibration assessment of the nomogram
prediction model

The nomogram’s performance was assessed by concordance

(C-index), calibration curves along with GiViTI calibration

belts. C-index exceeded 0.90 in all sets indicating good

consistency of the nomogram. A prediction model is considered

to be well-calibrated when it predicts the clinical event

accurately. P-value of the GiViTI calibration belt < 0.05

indicates a not-so-perfect model. In this study, the 80% CI

and 95% CI of the GiViTI calibration belt did not cross

the dashed line (diagonal line), with P-values of 0.849 for

the training set compared to that of 0.291 for the validation

set in the GiViTI calibration belt (P > 0.05), indicating

that the predicted risks had strong consistency with the

observed outcomes, suggesting the perfect calibration of the

prediction model.

Limitations of this study

This study also has shortcomings. To begin with, as this is a

retrospective study, there may be a recall bias and, obviously, a

selection bias. We used a strict inclusion criterion and collected

sufficient samples to reduce bias. According to the results of

PASS, the calculated sample size for the DSE and DRE groups

was 186 children in total. However, the children included

in this study were far more than the calculated minimum

sample size. Second, the population for the model establishment

came from a single center. Although we have applied external

validations, the external validation was based on two hospitals;
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FIGURE 4

ROC curves for training and validation sets in the nomogram prediction model. (A) Training set. (B) Validation set (AUC = 0.92, AUC = 0.91). The

area under the ROC curve was 0.92 and 0.91 in the training set and the validation set, respectively.
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FIGURE 5

The calibration curves for the nomogram. Calibration plots of predictive DRE risk in the training set (A) as well as the external validation set (B).

The x-axis showed the nomogram-predicted probability, while the y-axis showed the actual probability of DRE. Perfect prediction would

correspond to the 45◦ dashed line.

thus, data from other centers for more external validations are

still necessary. Therefore, we are expecting other institutions

to join this research and strengthen the prediction model

in future.

Conclusion

(1) The clinical information of children with DRE and DSE

was retrospectively analyzed. The nomogram prediction

Frontiers in Pediatrics 12 frontiersin.org

https://doi.org/10.3389/fped.2022.905177
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org


Geng and Chen 10.3389/fped.2022.905177

FIGURE 6

Calibration of the nomogram for DRE prediction in the training set along with the validation set. The 80% CI and 95% CI of the GiViTI calibration

belt for either the training set (A) or validation set (B) did not surpass the diagonal line, with P-values of 0.849 for the training set compared to

that of 0.291 for the validation set in the GiViTI calibration belt (P > 0.05).

model of individual DRE was constructed through

univariate and multivariate logistic analyses.

(2) Onset age < 1 year old, SE, focal seizure, >20

pre-treatment seizures, clear etiology (caused by
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genetic, structural, metabolic, or infectious), DEE, and

neurological abnormalities were all independent risk

factors for DRE.

(3) Nomogram realized the visualization of the prediction

model for DRE. Moreover, the model was well

discriminated and calibrated among children, for

model development and model validation. Based on the

nomogram for DRE, we would have the potential not

only to accurately predict the risk of individual DRE but

also in achieving an early identification of DRE children.

The predicted probability was strongly consistent with

the real situation.
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