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Objectives: This study aimed to investigate the predictive utility of respiratory variations

of inferior vena cava diameters on fluid responsiveness in children with septic shock.

Design: A prospective observational single-center study.

Setting: A pediatric intensive care unit in a tertiary hospital in China.

Participants: Patients with sepsis shock who require invasive mechanical ventilation

were recruited between 1 December 2017 and 1 November 2021.

Interventions and Measurements: Volume expansion (VE) was induced by a 30-min

infusion of 20 ml/kg of normal saline. Hemodynamics indexes were obtained through

bedside transthoracic echocardiography (TTE) measurement and calculation.

Results: A total of 86 patients were enrolled in this study, among them, 45 patients

(52.3%) were considered to be non-responders (NR), with an increase in stroke volume

variation (SVV) <15% after VE. Multivariate logistic analysis showed that 1IVC (adjusted

OR = 1.615, 95% CI 1.092–2.215, p = 0.012) was the significant predictor associated

with the fluid responsiveness. The area under the ROC of 1IVC was 0.922 (95% CI:

0.829–1.000, p< 0.01), and the cutoff value of1IVC used to predict fluid responsiveness

was 28.5%, with a sensitivity and specificity of 95.4 and 68.5%, respectively.

Conclusions: The 1IVC was found to have a potential value in predicting fluid

responsiveness in mechanically ventilated children with septic shock.
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INTRODUCTION

Sepsis shock is a leading cause of death in children globally.
The mortality rate of septic shock is as high as 25%, despite
advanced supportive care (1). Currently, fluids therapy remains
the cornerstone of the hemodynamic resuscitation of children
with septic shock. Fluid resuscitation seeks to rapidly restore
the effective circulating blood volume and oxygen delivery to
organs. Effective fluid resuscitation can improve the prognosis
(2, 3), while repeated or inappropriate fluid bolus administration
is associated with increased mortality and the length of intensive
care unit (ICU) stay (4). Previous studies have shown that only
40–69% of children respond to intravascular volume expansion
(5–8). Fluid overload is a common complication during the
resuscitation of septic shock and can be avoided by predicting
fluid responsiveness. Therefore, we have challenges in identifying
which patients will respond to volume expansion.

Numerous hemodynamic variables could be predictors of
fluid responsiveness (9, 10). Traditional static pressure indexes
such as central venous pressure (CVP) or mean arterial pressure
(MAP) had a limited predictive value for fluid resuscitation
(11, 12). Dynamic indices have shown to be good predictors
of fluid responsiveness in recent years, especially the indices
relying on heart-lung interactions, such as inferior vena cava
respiratory variability index, velocity-time integral (VTI) in left
ventricular inflow tract, stroke volume variation (SVV), and so
on (13–15). VTI or SVV was able to reliably predict the fluid
loading response and was superior to traditional pressure indexes
for adults (16). Children may have different patterns of fluid
responsiveness under critical care conditions. The predictive
value of these dynamic variables remains unclear (5, 17). Apart
from this, VTI and SVVmonitoring need highly skilled operators
to ensure measurement accuracy and require specialized pieces
of equipment that are not available in every hospital. These make
themmore difficult to perform in the clinical environment. Thus,
more ICU physicians are willing to choose the inferior vena cava
(IVC) as a point-of-care parameter of volume status assessment
due to their convenience for measuring. A systematic review
and meta-analysis found respiratory variations in the inferior
vena cava diameter performed moderately well in predicting
fluid responsiveness in adult patients with circulatory shock
receiving mechanical ventilation (18). However, the value of IVC
in predicting fluid responsiveness among pediatric populations
was not clear.

Thus, we performed the single-center prospective
observational study to evaluate the predictive utility of
respiratory changes in IVC diameter for fluid responsiveness in
children with septic shock undergoing mechanical ventilation as
well as to provide evidence-based clues for clinically reasonable
fluid therapy in these patients.

METHODS

Research Population
The patients with septic shock from 1 December 2017 to 1
November 2021 were recruited for this study. All parents or
guardians of the patients voluntarily gave written informed

consent before the trial. Patients did not receive any stipend for
participation. This study was approved by the ChengduWomen’s
and Children’s Central Hospital in Sichuan, China [Registration
No. 2017(11)].

The inclusion criteria were as follows: (1) children aged
6 months to 5 years; (2) patients who fulfilled the criteria
for septic shock according to the Surviving Sepsis Campaign
(19). Septic shock in children is defined as a severe infection
leading to cardiovascular dysfunction, including hypotension,
need for the vasoactive drug, or impaired tissue perfusion (such
as deterioration ofmental status, tachycardia, prolonged capillary
refill of >2 s, mottled and clammy skin, decreased urine output,
or elevated blood lactate, and so on); only community-acquired
septic shock cases and patients who had not received previous
fluid boluses before entry into the study were included. (3)
Patients with septic shock who underwent invasive mechanical
ventilation and required rapid fluid resuscitation at the discretion
of the pediatric intensive care unit (PICU) physicians.

The exclusion criteria were as follows: children with
contraindications to rehydration testing (acute coronary
syndrome, cardiogenic shock, or severe pulmonary edema),
cardiac arrhythmias, right ventricular dysfunction, tricuspid
regurgitation, heart failure, intra-abdominal hypertension,
contraindications to central venous or artery line placement,
congenital heart diseases, patients with strong spontaneous
respiratory effort or informed consent not obtained from parents
or guardians.

Monitoring and Treatment
Eligible patients were monitored for their heart rate (HR),
ambulatory blood pressure (BP), a five-lead electrocardiogram,
and transcutaneous oxygen saturation. A radial arterial line
was placed to continuously monitor invasive arterial BP and
MAP. Meanwhile, patients underwent right internal jugular
vein catheterization, with the catheter tip being located at the
opening of the right atrium, and the position was confirmed
with bedside radiography. CVP was measured via jugular
central venous catheters at end-expiration. The patients’ clinical
information and laboratory results regarding capillary refill
time, Ramsay sedation score, arterial blood gas analysis, lactate,
origin of sepsis and ventilator parameters, and Pediatric Risk of
Mortality (PRISM) score (20) were obtained from the electronic
medical record.

All patients were given adequate midazolam and remifentanil
sedation maintaining a Ramsay score of 5–6 (21, 22).
Vecuronium may be considered when the patients have a
strong work of the respiratory muscle. The ventilator (Maquet,
Servo-s, Germany) was set with Assist/Control mode. The
ventilator parameters included positive end-expiratory pressure
(PEEP) 3-6 cmH2O, the inspiratory-to-expiratory 1:2, and
tidal volume (VT) 8-10 ml/kg (18, 23). The ventilatory
settings were kept constant throughout the study. Moreover,
antimicrobial therapy, source control, and organ support
were following the clinical guidelines and other accepted expert
consensus. Patients had not received any vasoactive agents during
the study.
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FIGURE 1 | Ultrasonographic measurement of inferior vena cava (IVC) diameters. The IVC images were obtained using the bi-dimensional mode on a subcostal

long-axis view (A). M-mode line was placed through the IVC 1–2 cm caudal from the hepatic vein-IVC confluence and an M-mode tracing obtained. The IVC

maximum diameter (IVCmax) and IVC diameter (IVCmin) was measured during the respiratory cycle (B).

Volume Expansion (VE)
A rapid intravenous infusion (20 ml/kg of 0.9% normal
saline) was performed within 30min. We used the
change of SV after rapid volume infusion as the
criterion for judging volume responsiveness in our study.

SVI (%)= (SVafterVE-SVbeforerVE)/ SVbeforerVE X 100%.
Patients with SVI >15% from baseline were classified as
the responders (R), and those with SVI <15%, unchanged
or even decreased, were considered the non-responders
(NR) (10).
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TABLE 1 | Baseline clinical characteristics and comparison between responders

and non-responders (before volume expansion) quantitative data was shown as (x̄

± SD) or median (25th and 75th percentiles).

Characteristics Responders

(n = 41)

Non-

responders

(n = 45)

P-value

Age (years) 1.7 ± 0.8 2.8 ± 1.2 0.316

Gender M/F (n) 20 / 21 28 / 17 0.507

Weight (Kg) 11.5 ± 1.6 13.2 ± 2.7 0.370

BSA (m2) 0.50 ± 0.06 0.56±0.05 0.352

PRISM III score 8.2 (7.8, 9.2) 9.1 (8.4, 9.6) 0.012

Ramsay score 5.2 (5, 6) 5.5 (5, 6) 0.471

LOS in PICU, days 7.6 (3, 10) 13.5 (7,

19.5)

0.004*

PICU Mortality , n(%) 2 (4.9%) 7(15.6%) 0.001*

Inhaled oxygen

concentrations(%)

32% 38% 0.088

Ventilatory parameters

PEEP (cmH2O) 4.2 (4.0, 5.0) 4.6 (4.0, 5.0) 0.075

Pplat (cmH2O) 19 (14, 26) 20 (15, 27) 0.462

Exhaled tidal volume

(ml/kg ideal body

weight)

6.7 (6.0, 8.0) 6.9 (6.0, 8.0) 0.089

Origin of sepsis, n

Pneumonia 18 22

Gastrointestinal

sepsis

9 9

Meningtitis 6 5

Skin or urinary 4 4

Septicemia without

focus

3 5

Capillary refill time(s) 3 ± 1 3 ± 1 0.560

Lactate 2.8 (1.5-3.9) 2.9 (1.5-4.2) 0.663

Arterial pH 7.36 ± 0.15 7.34 ± 0.12 0.682

Arterial PaO2 74 (43-90) 66 (42-87) 0.023

Qualitative data was showed as numbers. BSA, body surface area; PCIS, pediatric critical

illness score; LOS: length of stay; PRISM, pediatric risk of mortality; PEEP, positive end-

expiratory pressure; Pplat, plateau pressure; PaO2, partial pressure of arterial arterial

oxygen.*P < 0.05.

Echocardiographic Measurements
Transthoracic echocardiography (TTE) examination was
performed using a bedside ultrasound device (Philips
Ultrasound CX50, the Netherlands) equipped with a phased
array transthoracic probe (S5-1). All patients remained in a
supine position during the execution of the study protocol.
Hemodynamics indexes were obtained on the same child at
two time points, before VE and after VE. The IVC diameter
was measured from the subcostal longitudinal plane when the
M-mode tracing was exactly perpendicular to the IVC and 1 cm
distal to the hepatic vein-IVC confluence (24, 25). The maximal
diameter of the IVC (IVCmax) and the minimal diameter of
the IVC (IVCmin) was obtained within a measured respiratory
cycle (Figure 1). The inferior vena cava variability (1IVC) was
calculated as the following equation:1IVC= (IVCmax-IVCmin)

TABLE 2 | Comparison of hemodynamic parameters before and after volume

expansion.

Variables Before VE After VE P intragroup

HR (beatsmin−1)

Responders 159 ± 17 139 ± 15 0.000*

Non-Responders 143 ± 14 141 ± 13 0.306

P intergroup 0.017* 0.216

MAP (mmHg)

Responders 52 (48, 57) 60 (58,63) 0.002*

Non-Responders 54 (48, 59) 58 (49, 66) 0. 071

P intergroup 0.682 0.009

CVP (cmH2O)

Responders 4.1 ±1.7 7.0 ± 1.2 0.000*

Non-Responders 7.7 ±1.6 9.9 ± 2.5 0.000*

P intergroup 0.000 * 0.000*

EF (%)

Responders 53.6 ± 3.8 57.1 ± 1.6 0.000*

Non-Responders 51.8 ± 4.7 52.8 ± 4.9 0.682

P intergroup 0.075 0.000 *

SVVtte (%)

Responders 18.2 ± 5.2 11.3 ± 3.5 0.000*

Non-Responders 10.2 ± 1.4 9.7 ± 2.0 0.307

P intergroup 0.000 * 0.103

1IVC (%)

Responders 26.0 ± 4.2 16.1 ± 5.1 0.000*

Non-Responders 17.3 ± 6.7 16.4 ± 5.6 0.071

P intergroup 0.000* 0.843

dIVC (%)

Responders 29.1 ± 5.0 20.9 ± 5.3 0.008 *

Non-Responders 18.5 ± 6.6 17.6 ± 5.1 0.091

P intergroup 0.000* 0.062

Data are shown as (x̄ ± SD) or median (25th and 75th percentiles).

HR, heart rate; MAP, mean blood pressure; CVP, central venous pressure; SVV, stroke

volume variation; TTE, transthoracic echocardiography; EF, ejection fraction; 1IVC, the

inferior vena cava variability; dIVC, distensibility index of the inferior vena cava. *P < 0.05.

/ [(IVCmax+IVCmin)/2] x100 (%). The distensibility index of
the inferior vena cava (dIVC) was calculated as follows: dIVC =

(IVCmax-IVCmin) /IVCmin x100 (%). The measurements above
were repeated three times during three consecutive respiratory
cycles and the average values were taken for statistical analysis.
VTI was measured from an apical five-chamber view by using
a pulsed-wave Doppler. VTI measurements were performed
on at least 6 consecutive waveforms and the mean value was
obtained (26). The left ventricular ejection fraction (EF) was
measured from the parasternal short axis (M-mode). The aortic
diameter (D) was measured from the parasternal long-axis view
at the level of the aortic annulus. The left ventricular stroke
volume (SV) was obtained using the following equations: SV =

VTI x π(D2)/4. SVVtte has previously been shown to have the
diagnostic value for predicting fluid responsiveness in children
under mechanical ventilation (27). SVVtte was the variation
of SV during the ventilatory cycle. The calculation formula
is as follows: SVVtte =(SVmax-SVmin)/[(SVmax+SVmin)/
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TABLE 3 | Multivariate analysis of the predictors for volume responsiveness.

Variables Adjusted OR (95% CI) P-value

1IVC 1.615 (1.092, 2.215) 0.012*

HR 1.070 (0.985, 1.159) 0.170

MAP 0.862 (0.733, 0.975) 0.030*

CVP 4.465 (1.261, 15.964) 0.020*

dIVC 1.069 (0.985, 1.159) 0.113

HR 1.069 (0.946, 1.207) 0.287

MAP 0.857 (0.745, 0.986) 0.031*

CVP 4.492 (1.263, 15.976) 0.020*

HR, heart rate; MAP, mean blood pressure; CVP, central venous pressure; 1IVC, the

inferior vena cava variability; dIVC, distensibility index of the inferior vena cava. *p < 0.05.

2]x100 (%). Each measurement period was at least 20-s long.
The mean of the three measurements was used for statistical
analysis. To reduce interobserver variability, all ultrasound
operations were conducted by the same operator (Qin Zhou,
who holds a certification in ultrasound evaluation, has an 11-
year experience in PICU), and was blinded to the hemodynamic
variables collected by other investigators (Bing Lu and Zi-Hong
Xiong). The recorded ultrasound images were later reviewed by
sonographers (within 24 h) to ensure that high-quality image
acquisition and accurate interpretations are being performed.

Statistical Analysis
All statistical analyses were performed using SPSS 20.0 (IBM
Corp, Armonk, NY, United States). The normalities of data
distributions were confirmed using the Kolmogorov–Smirnov
test. The normally distributed quantitative data were presented
as the mean ± standard deviation (mean ± SD). The categorical
variables were presented as frequencies and proportions.
Abnormally distributed continuous variables were presented as
the median (25th and 75th percentiles). The comparisons of
variables before and after volume expansion using the paired
t-test or Friedman test were conducted. Qualitative data were
compared by the X2 test. Multivariable logistic regression
analyses were performed to determine the predictive factors of
fluid responsiveness. Odds ratios (ORs) with 95% confidence
intervals (CIs) were calculated. Receiver operating characteristic
(ROC) curves were established to assess the predictive utility of
variables for fluid responsiveness. The optimal cutoff value based
on the ROC curve was defined as the maximized value for the
sum of sensitivity and specificity. Statistical significance was set
at p < 0.05.

RESULTS

Demographics and Clinical Characteristics
A total of 86 mechanically ventilated patients with septic
shock were included during the study period. Among them,
41 patients were classified into the R group and 45 patients
into the NR group. The non-response rate of the total included
participants was 52.3%. The non-responders had longer lengths

of stay and greater mortality compared with responders. There
was no significant difference in the demographic data (age,
gender, weight, body surface area) or clinical characteristics
(pediatric risk of mortality score, Ramsay score, inhaled oxygen
concentrations, ventilatory parameters, capillary refill time,
lactate, arterial pH, arterial PaO2) between the R group and NR
group. The baseline demographics and clinical characteristics are
described in Table 1.

Comparison of Hemodynamic Parameters
Hemodynamics data and echocardiographic measurements in
the R group and NR group before and after VE are shown
in Table 2. There were significant differences in hemodynamic
parameters (HR, CVP, SVV, 1IVC, and dIVC)before volume
expansion between the R and NR groups (p < 0.05). Volume
expansion significantly increased the mean EF from 53.64 to
57.09 and the mean MAP from 52.72 to 60.44 in R (p < 0.05),
while there was a significant increase of CVP in both the R and
NR groups (p < 0.05). HR, SVV, 1IVC, and dIVC decreased
significantly after volume expansion in the R group (p < 0.05 for
all comparisons).

Association of Hemodynamic Variables
With Fluid Responsiveness
Variables with statistically significant differences (p < 0.05)
between the R group and the NR group were tested in
multivariate logistic analysis. The results showed that 1IVC
(OR = 1.615, 95% CI 1.092–2.215, p = 0.012) was a significant
predictor associated with the volume responsiveness when it
was adjusted for MAP, CVP, and HR. MAP (OR = 0.862, 95%
CI 0.733–0.975, p = 0.03), and CVP (OR = 4.492, 95% CI
1.261–15.964, p = 0.02) were also independent predictors. No
significant differences were found for HR and dIVC (Table 3).

Comparison of 1IVC, MAP, and CVP as
Predictors of Fluid Responsiveness
The indictors (1IVC, MAP, CVP) used to compare were from
the R group before volume expansion. The results of the receiver
operating characteristic (ROC) curve analysis are provided in
Figure 2. The area under the ROC (AUROC) of 1IVC was 0.922
(95% CI: 0.829–1.000, p < 0.01), and the cutoff value of 1IVC
used to predict fluid responsiveness was 28.5%, with a sensitivity
and specificity of 95.4 and 68.5%, respectively. The AUROC of
MAP was 0.645 (95% CI: 0.444–0.847, p = 0.162). CVP had an
AUROC of 0.549 (95% CI: 0.347–0.751, p= 0.637).

DISCUSSION

This study was undertaken to identify the respiratory variations
in IVC diameter as a predictor of fluid responsiveness. Our
results show that 1IVC at a cutoff value of 28.5% can be used to
predict fluid responsiveness in mechanically ventilated children
with septic shock. It appeared that the 1IVC was more effective
in the prediction of the fluid responsiveness when compared to
the other indicators, such as dIVC, CVP, MAP, and HR.

Currently, two major approaches are being used for assessing
fluid responsiveness: the static and dynamic approaches. In this
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FIGURE 2 | The ROC curve of the 1IVC, MAP and CVP before volume expansion.The area under the ROC (AUROC) of 1IVC was 0.922 (95% CI: 0.829–1.000, p <

0.01). The AUROC of MAP was 0.645 (95% CI: 0.444–0.847, p = 0.162). CVP had an AUROC of 0.549 (95% CI: 0.347–0.751, p = 0.637). The cutoff value of 1IVC

used to predict fluid responsiveness was 28.5%, with a sensitivity and specificity of 95.4% and 68.5%, respectively. ROC, Receiver Operating Characteristic; MAP,

mean blood pressure; CVP, central venous pressure; 1IVC, the inferior vena cava variability.

study, we found a significant increase in CVP in both R and NR
groups after volume expansion (p < 0.01). Elevated CVP may
be related to intravenous fluids treatment before admission. The
area under the ROC of CVP was only 0.549. The result showed
that CVP had no significant diagnostic value for predicting fluid
responsiveness. This is consistent with previous reports that CVP,
which is a classical static hemodynamic variable, cannot reliably
predict fluid responsiveness (12, 28). A meta-analysis study (29)
also confirmed that CVP can be regarded as an indicator of
right ventricular end-diastolic volume index and can therefore
not be regarded as an indicator of preload responsiveness
to guide fluid therapy. Meanwhile, MAP did not indicate a
significant predictive value in evaluating fluid responsiveness in
our study. After volume expansion, the different amplitude of
elevations in MAP was seen in both groups. Blood pressure
is mainly determined by stroke volume and arterial elastance.
The magnitude of the BP elevation caused by an increase in
stroke volume may be partially offset due to a lower arterial
elastance in children. Although these changes in MAP in fluid
responders were statistically, MAP is still not a reliable indicator
of predicting volume.

The most important treatment strategy for patients with
septic shock is initial fluid resuscitation to restore hemodynamic
stability. According to the Frank-Starling principle, increasing
the heart preload can significantly improve the cardiac output
only when both the left and right ventricles are in the elevated
phase of cardiac function. It has been unclear as to which
patients are volume-responsive and likely to benefit from fluid
resuscitation. Although fluid resuscitation therapy is crucial
in the management of hemodynamically unstable critically
ill patients, excessive or inadequate fluid resuscitation can
be harmful. A similar finding was shown in our study. Of
the 58 patients with septic shock, 31 patients (53.4%) were
non-responsive to volume expansion. In the NR group, it
did not show a significant increase in cardiac output or a
significant improvement in the heart rate and blood pressure
after volume expansion. Judging the patients’ volume status
remains challenging.

Bedside ultrasound is an important method of evaluating
the volume status of critically ill patients and has been widely
adopted in intensive care units. Moreover, point-of-care
ultrasound is a convenient and non-invasive method to perform
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hemodynamics measurements and hemodynamic monitoring
(30). This hemodynamic information would be useful for the
implementation of goal-directed hemodynamic therapy and
help to tailor better fluid therapy protocol. Compared with
other echocardiographic measurements, such as SV, VTI, and
aortic peak blood flow velocity variation rate of breathing, the
measurement of IVC diameter is relatively easy. The cardiac
output may induce cyclic changes in intrathoracic pressure,
especially in patients undergoing mechanical ventilation under
deep sedation. Hence, there is a significant increase in the
percentage of IVC diameter change in patients with volume
deficits. Some studies (17, 31) suggest that respiratory change
in IVC diameter is a useful predictor of fluid responsiveness.
However, a systematic review and meta-analysis (32) stressed
that ultrasound evaluation of the diameter of the IVC and
its respiratory variations in fluid responsiveness had extreme
heterogeneity. These results were inconsistent. Several factors
affect the accuracy of the IVC for volume status judgments:
the measurement sites of inferior vena cava diameter (33),
the skill of the operators, the heart function, abnormal
intrathoracic pressure, intra-abdominal hypertension, and
so on.

Therefore, more stringent inclusion and exclusion criteria
were developed in our study. We enrolled children with septic
shock who received controlled mechanical ventilation under
sedation and analgesia to extensively eliminate the effects of
voluntary breathing and improve mechanical synchronism.
Moreover, we included patients with moderate PEEP levels and
a tidal volume ≤10 ml/kg to minimize the effects of PPEP and
intrathoracic pressure on the diameters of IVC. Eventually, we
found that the cutoff value of 1IVC (before volume expansion)
for predicting fluid responsiveness was 28.5%. Kutty et al. (34)
reported that IVC collapsibility varied with body surface area
(BSA), and the average was above 30% in normal pediatric
subjects since this average value is higher than the 28.5% cutoff
in this study. The interpretation of the inconsistent results can
consider the following factors: intrathoracic pressure changes
were highly regulated and the influence of spontaneous breathing
is maximally removed. Furthermore, we found that the sensitivity
of a 1IVC > 28.5% to predict fluid responsiveness was 0.954
with a specificity of 0.685. While the sensitivity of 1IVC was
good, the specificity was not high. A voluntary inspiratory effort

may explain in part the relatively low specificity of 1IVC.

The respiratory variation of the IVC diameter will increase
accompanied by strong spontaneous breathing. However, we
were not able to confirm whether fully eliminating the work

of breathing and the spontaneous breathing efforts had no

influence on the respiratory variation of the IVC diameter
in our study. In addition„ other factors could also affect
the relatively low specificity of 1IVC: intrathoracic pressure

changes, CVP, lung compliance, airway resistance, and so
on (35, 36).

Moreover, in this study, we found that dIVC was not the
significant predictor associated with volume responsiveness.
Saritaş et al.’s (37) study showed the dIVC had a more
accurate predictive role in predicting the volume status when
compared with the 1IVC among the patients with spontaneous
respiration receiving different positive pressure support. Another
research (38) showed the IVC area distensibility index and its
diameter ratio in cross-section had more value than the IVC
diameter distensibility index for predicting fluid responsiveness
in mechanically ventilated patients. Thus, it still needs further
research to confirm the value of dIVC.

This study found that the 1IVC was a useful predictor with
the ability to predict responsiveness in mechanically ventilated
children with septic shock. The result was obtained in a selected
patient population treated by specific protocols. The not so
high specificity of 1IVC suggests that clinicians should have
a comprehensive evaluation of the 1IVC in conjunction with
the patient’s underlying disease status and other hemodynamic
changes, thereby, contributing to clinical fluid management.
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