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Bronchopulmonary dysplasia (BPD) is the most common chronic respiratory disease
in premature infants. However, there is a lack of effective treatment. Mesenchymal
stromal cells derived extracellular vesicles (MSC-EVs), as nano- and micron-sized
heterogeneous vesicles secreted by MSCs, are the main medium for information
exchange between MSCs and injured tissue and organ, playing an important role in
repairing tissue and organ injury. EVs include exosomes, microvesicles and so on.
They are rich with various proteins, nucleic acids, and lipids. Now, EVs are considered
as a new way of cell-to-cell communication. EVs mainly induce regeneration and
therapeutic effects in different tissues and organs through the biomolecules they carry.
The surface membrane protein or loaded protein and nucleic acid molecules carried
by EVs, can activate the signal transduction of target cells and regulate the biological
behavior of target cells after binding and cell internalization. MSC-EVs can promote the
development of pulmonary vessels and alveoli and reduce pulmonary hypertension (PH)
and inflammation and play an important role in the repair of lung injury in BPD. The
regeneration potential of MSC-EVs is mainly due to the regulation of cell proliferation,
survival, migration, differentiation, angiogenesis, immunoregulation, anti-inflammatory,
mitochondrial activity and oxidative stress. As a new type of cell-free therapy, MSC-EVs
have non-immunogenic, and are small in size and go deep into most tissues. What’s
more, it has good biological stability and can be modified and loaded with drugs of
interest. Obviously, MSC-EVs have a good application prospect in the treatment of lung
injury and BPD. However, there are still many challenges to make MSC-EVs really enter
clinical application.

Keywords: extracellular vesicles, therapy, chronic respiratory disease, mesenchymal stem cell,
bronchopulmonary dysplasia (BPD)

INTRODUCTION

Bronchopulmonary dysplasia (BPD) is the most common chronic respiratory disease in premature
infants and low birth weight infants with high morbidity and mortality (1). With the development
of perinatal medicine, the survival rate of low-birth-weight infants (LBWIs) and very low birth
weight infants (VLBWIs) increased obviously, and the incidence of BPD increased year by year.
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Clinical epidemiologic studies show that the incidence of BPD
in very premature infants is about 40% and increases with the
decrease of gestational age (2). The mortality of BPD is high
in the early stage, and the adverse outcomes in the respiratory
system, circulatory system and even nervous system in the
late stage, which seriously affect the survival rate and quality
of life (3, 4). The clinical treatment of BPD has become a
great challenge in perinatal and neonatal field. The pathogenesis
of BPD is not clear at present, risk factors include preterm
birth, fetal growth restriction, maternal smoking, mechanical
ventilation, oxygen poisoning, infection, inflammation, patent
ductus arteriosus (PDA), genetics, late surfactant deficiency,
and impaired angiogenesis (5–13). Treatments for BPD include
respiratory management, circulation management, nutritional
support, and medication, including pulmonary surfactant,
caffeine, glucocorticoid, diuretics, docosahexaenoic acid, and
bronchodilator, however, the efficacy and safety need to be further
explored (14–16). So far, there is no effective therapy to prevent or
treat the development of lung injury, and therefore the research
of new therapy is urgent.

In the last decade, pre-clinical studies and clinical studies
indicate that therapies with mesenchymal stromal cells (MSCs)
offer a new therapeutic approach for the prevention of BPD
(17, 18). As the research continues, it is found that stem cells
play their role mainly through extracellular vesicles (EVs) and
other paracrine signal transduction (19, 20). Now, EVs are
considered as a new way of cell-to-cell communication (21).
They are present in biological fluids and are involved in many
physiological and pathological processes. Here we review the
progress in the treatment of BPD with mesenchymal stem cell
extracelluar vesicles (MSC-EVs), with a view to bring new hope
for the treatment of BPD.

ADVANTAGES OF MESENCHYMAL
STROMAL CELLS DERIVED
EXTRACELLULAR VESICLES

Since MSCs were first reported as being derived from human
bone marrow (BM) in 1999, they have been isolated from
multiple tissues, including adipose tissue, amniotic fluid,
umbilical cord blood, placental amnion, and placenta (22).
MSCs are pluripotent and highly self-renewing stem cells
derived from the mesoderm. They can promote the survival
and repair of damaged cells, by being induced to differentiate
into corresponding tissue cells and by regulating inflammation
and immune response. What’s more, they can also promote
the regeneration of damaged tissues by paracrine. Animal
experiments showed that MSCs transplantation could prevent
the growth stagnation of pulmonary vessels and alveoli, improve
the simplification of alveolar structure and the abnormal
development of pulmonary microvessels in BPD, and reduce
pulmonary fibrosis (23, 24). MSCs are currently in clinical trials
for the treatment of premature infants with BPD, and have
achieved good curative effect (25, 26). Although MSCs have
improved the physiological function of recipient lungs after
treatment, some preclinical studies have pointed out that there

are no large number of donor cells transplanted into the lungs,
and the therapeutic effect of MSCs depend on its paracrine rather
than cell replacement (27, 28). Hence, there is still a long way to
go for mesenchymal stem cells to be used in clinical treatment.

Extracellular vesicles, a collective term covering various
subtypes of cell-released, membranous structures, including
exosomes, microvesicles, microparticles, ectosomes, oncosomes,
apoptotic bodies, and so on, are delimited by a lipid bilayer and
cannot replicate (29). Exosomes are of endosomal origin and in
a size range of ∼40–160 nm in diameter, while microvesicles are
vesicles generated by the direct outward budding of the plasma
membrane in the size range of ∼50 nm–1 µm in diameter (30)
(Figure 1). EVs are rich with various proteins, nucleic acids, and
lipids. The main marker proteins of exosomes are CD9, CD63 and
CD81, but there is no specific marker for microvesicles (30–32)
(Table 1). MSC-EVs are nano- and micron-sized heterogeneous
vesicles secreted by MSCs, which play an important role in
repairing tissue and organ injury and is the main medium
for information exchange between MSCs and injured tissue
and organ (33). MSC-EVs, especially the smaller subcategory
MSC-exosomes, may be superior to maternal cell therapy. MSC-
exosomes have lower immunogenicity than its parent cells and
can be modified to enhance bioavailability and cell targeting
(34, 35). They can be used for cryopreservation without loss of
activity and is convenient for drug preparation. Based on the
above advantages, more and more scholars have proposed to use
EVs as drug delivery carriers for targeted therapy (36). Therefore,
MSC-EVs have become a hot spot in the treatment of BPD at
home and abroad, but they are limited to animal experimental
study at present.

THE ROLE OF MESENCHYMAL
STROMAL CELLS DERIVED
EXTRACELLULAR VESICLES IN THE
TREATMENT OF
BRONCHOPULMONARY DYSPLASIA

The clinical application of MSC-EVs includes both as drug
delivery carrier and as an alternative to MSCs-based tissue
and organ regeneration therapy. MSC-EVs can promote the
development of pulmonary vessels and alveoli and reduce
pulmonary hypertension and play an important role in the repair
of lung injury in BPD (Figure 2).

Mesenchymal Stromal Cells Derived
Extracellular Vesicles Promote the
Development of Pulmonary
Microvasculature
As described above, pulmonary microvascular dysplasia
is one of the main pathological manifestations of BPD.
Therefore, promoting pulmonary angiogenesis is the key to
the improvement of pulmonary vascular dysplasia. Porzionato
et al. (37) conducted a study to compare the protective effects
of intratracheally (IT) administered MSCs vs. MSC-EVs in a
hyperoxia-induced rat model of BPD. They concluded that
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FIGURE 1 | Generation and release of extracellular vesicles. Extracellular
vesicles are a heterogeneous group of cell-derived membranous structures
comprising microvesicles (50 nm–1 µm diameter) and exosomes (40–160 nm
diameter). Microvesicles are shed from the plasma membrane, while
exosomes originate from the endosomal system. Exosomes are secreted from
cell to extracellular space by exocytosis after fusion of multivesicular body
(MVB) (formed by endocytic vesicles) with plasma membrane.

both EVs and MSCs reduce hyperoxia-induced damage, with
EVs obtaining better results in terms of alveolarization and
lung vascularization parameters. In addition, a study by Rudolf
K Braun et al. (38) found that daily intraperitoneal injection
of MSC-derived exosomes protected alveolarization and
angiogenesis in a newborn rat model of BPD induced by 14 days
of neonatal hyperoxia exposure. In vitro, exosomes significantly
increased tube-like network formation by human umbilical vein
endothelial cell (HUVEC), in part through a vascular endothelial
growth factor(VEGF)mediated mechanism.

In summary, daily intraperitoneal injection of exosomes
increased blood vessel number and size in the lung through
pro-angiogenic mechanisms. The results suggest that MSC-
EVs can promote pulmonary microvasculature in experimental
animals with BPD.

Mesenchymal Stromal Cells Derived
Extracellular Vesicles Promote the
Development of Alveoli
The main pathological features of bronchopulmonary dysplasia
in premature infants were hypoplasia of alveoli, decreased
number, increased volume and simplified structure of alveoli.
Over-death of alveolar type II epithelial cells is the key
cause of alveolar hypoplasia. Many studies have shown that
MSC-exosomes play an anti-apoptotic role in diseases closely
related to apoptosis by regulating the apoptotic process. Yunfei
Wu et al. (39) established hyperoxia-induced lung injury
(HILI) rat models and RLE-6TN cell models, then treated them
with BMSCs-exosomes. BMSCs-exosomes attenuated HILI and
H2O2 induced RLE-6TN cell injury as evidence by alleviated
lung cell injury, decreased TUNEL-positive cells, induced cell

TABLE 1 | Characteristics of extracellular vesicles.

Exosomes Microvesicles

Biogenesis Start with endocytosis, accumulate
intraluminal vesicles of multivesicular
bodies, and then release to extracellular
spaces through exocytosis.

Released by budding and
shedding from the plasma
membrane of activated
cells.

Size(nm) 40–160 50–1000

Contents Nucleic acids (mRNA, microRNA, ssDNA,
dsDNA, etc.), proteins, lipids, etc.

Nucleic acids (mRNA,
microRNA, ssDNA, dsDNA,
mitochondrial DNA, etc.),
proteins, lipids, etc.

Marker Tetraspanins (CD9, CD63, CD81, etc.) No consensus marker

viability and declined apoptosis. In addition, Sushma Chaubey
et al. (40) reported that early gestational MSC-exosomes
treatment reverses alveolar injury, septal thickness and other
morphometric alterations associated with hyperoxia-induced
lung injury in the BPD mouse model. Ai et al. (41) found
that MSC-EVs ameliorated hyperoxia-induced lung injury in a
dose-dependent manner, and high-dose MSC-EVs ameliorated
alveolar simplification and fibrosis. What’s more, MSC-EVs
showed its beneficial effects on vascular growth and pulmonary
hypertension. A meta-analysis (42) included eight articles on the
treatment of BPD with MSC-EVs, concluded that alveolarization
was improved by MSC-EVs (SMD −1.45, CI −2.08 to −0.82)
with small EVs more consistently beneficial then small/large EVs.
In conclusion, EVs from different MSC sources can effectively
promote alveolar development and reduce lung injury.

Mesenchymal Stromal Cells Derived
Extracellular Vesicles Reduce Pulmonary
Hypertension
Combined pulmonary hypertension (PH) is one of the important
characteristics of BPD, the incidence is 19.4 ∼ 40.0%, which
is closely related to the degree of BPD. The mortality of BPD
with PH was significantly increased, which was an important
cause of late death in BPD patients. Jingyi You et al. (43)
found that human umbilical cord MSC- EVs were successfully
absorbed by lung tissue after intratracheal administration, and
remained in the lungs for at least 72 h. The results showed
that human umbilical cord MSC-EVs not only could improve
alveolarization and angiogenesis, but also could ameliorate
pulmonary hypertension in a rat model of BPD meantime. Willis
et al. (44) found that delivery of MSC-EVs improves core features
of experimental BPD, restoring lung architecture, decreasing
pulmonary fibrosis and vascular muscularization, ameliorating
PH and improving exercise capacity. What’s more important,
delivery of MSC-EVs may not only be effective in the immediate
neonatal period to prevent the development of BPD but may
provide beneficial effects for the management and potentially
the reversal of cardiorespiratory complications in infants and
children with established BPD. In view of the multiple roles
of MSC-EVs in the treatment of BPD, MSC-EVs has broad
application prospects in future.
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FIGURE 2 | The role of mesenchymal stromal cells derived extracellular vesicles (MSC-EVs) in the treatment of bronchopulmonary dysplasia (BPD). MSC-EVs can
promote the development of pulmonary vessels and alveoli and reduce pulmonary hypertension (PH) and inflammation and play an important role in the repair of lung
injury in BPD. The regeneration potential of EVs is mainly due to the regulation of cell proliferation, survival, migration, differentiation, angiogenesis, immunoregulation
and anti-inflammatory.

Mesenchymal stromal cells derived extracellular vesicles
treatment for animal BPD model and their relative mechanisms
were summarized in the Table 2.

THE MECHANISM OF MESENCHYMAL
STROMAL CELLS DERIVED
EXTRACELLULAR VESICLES IN THE
TREATMENT OF
BRONCHOPULMONARY DYSPLASIA

Many studies have shown that EVs mainly induce regeneration
and therapeutic effects in different tissues and organs through
the biomolecules they carry. As a natural macromolecular carrier,
the surface membrane protein or loaded protein and nucleic acid
molecules carried by natural EVs, such as mRNA and miRNA,
can activate the signal transduction of target cells and regulate
the biological behavior of target cells after binding and cell
internalization.

Promoting Angiogenesis
Mesenchymal stromal cells can secrete many kinds of growth
factors associated with angiogenesis such as VEGF and store
them in MSC-EVs. High-resolution isoelectric focusing coupled
liquid chromatography tandem mass spectrometry, a non-
targeted high-throughput proteomic method, was used to map
the protein profiles of MSCs and MSC-exosomes in a recent
study (45). The study found that MSC-exosomes contain many
proteins related to angiogenesis, such as VE-cadherin, EGFR,
FGF, PDGF. VEGF is the key regulator in regulating the
growth, development, and repair of pulmonary vessels in the
whole embryonic stage, fetal stage, and postnatal stage. It is
also involved in the occurrence of neonatal hyperoxia lung
injury. VEGF mediated angiogenesis is considered to be one
of the mechanisms of MSC-exosomes in the treatment of BPD,
which participates in the repair of endothelial cell injury by
reducing endothelial cell apoptosis, promoting endothelial cell
proliferation, reducing vascular endothelial cell permeability,
and promoting angiogenesis. The therapeutic effect of MSC-
exosomes on neonatal rat hyperoxia lung injury (HLI) model
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shows that the mechanism of MSC-exosomes in reducing
neonatal rat HLI is mainly mediated by VEGF (38). A study
compared the therapeutic efficacy of MSCs, MSC-EVs with or
without VEGF knockdown, and fibroblast-derived EVs in vitro
with a rat lung epithelial cell line challenged with H2O2
and in vivo with newborn Sprague-Dawley rats exposed to
hyperoxia (90%) for 14 days. The study indicated that MSCs
and MSC-EVs, but not the EVs derived from VEGF-knockdown
MSCs or fibroblasts, attenuated hyperoxic lung injuries, such as
impaired alveolarization and angiogenesis, increased cell death,
and activated macrophages and proinflammatory cytokines. All
in all, MSC-derived EVs are as effective as parental MSCs for
attenuating neonatal hyperoxic lung injuries, and this protection
was mediated primarily by the transfer of VEGF (46).

Anti-apoptosis
Alveolar epithelial type II cell (AEC-II) are progenitor cells
of lung epithelium, which can proliferate, differentiate, and
repair lung injury. Besides, AEC-II can synthesize and secrete
pulmonary surfactant and participate in innate immunity
and immunomodulation. AEC-II play an important role in
maintaining the structure and function of pulmonary alveoli
and the homeostasis of local environment (47). AEC-II are the
key target cells for BPD lung epithelial injury. Previous studies
have shown that excessive apoptosis of AEC-II cells is the key
cause of BPD pulmonary alveolar dysplasia (48). Recent studies
have shown that MSC-EVs contains a variety of anti-apoptotic
proteins, can play an anti-apoptotic role in diseases closely
related to apoptosis by regulating the apoptosis process. In vitro,
under hyperoxic conditions, the tube-like structure formation
was improved in HUVECs, and the proliferation was increased,
and the apoptosis was attenuated in MLE-12 cells treated with
human umbilical cord MSC-EVs (43). There is little research on
the anti-apoptotic effect of MSC-EVs in lung injury, and more
experimental studies are needed to elucidate this mechanism.

RNA Transfer
Mesenchymal stromal cells derived extracellular vesicles contain
a variety of non-coding RNAs, such as microRNAs, long non-
coding RNAs(lncRNAs). Many studies have shown that EVs play
a biological role in the transmission of RNA in intercellular
communication. The selective loading of specific RNA into
exosomes protects it from the effects of extracellular nucleases,
thus prolonging its half-life and enhancing its biological activity,
exocrine body as its carrier can realize the exchange of genetic
information and cell-to-cell communication. Lee et al. found
that MSC-EVs are composed of miR-16, miR-21 and Let-7b pre-
miRNA (49). In another study, bone mesenchymal stem cells
(BMSC)-exosomes promoted miR-425 expression and attenuated
hyperoxia-induced lung injury (HILI) and H2O2 induced RLE-
6TN cell injury as evidence by alleviated lung cell injury, induced
cell viability and declined apoptosis (39). Besides, when miR-
425 was knocked-down, the protective role of BMSC-exosomes
in HILI was also reduced. It is suggested that MSC-EVs may
partially alleviate lung injury by RNA transfer in experimental
animals with BPD.

Immune Regulation and Inflammatory
Response
One of the pathogenesis of BPD is the disorder of inflammatory
reaction. MSC-EVs can regulate the out-of-control inflammatory
response through immunoregulation (50, 51). Alveolar
macrophages are critical mediator in the pulmonary immune
response to BPD, which is involved in the initiation and the
resolution of inflammation. Pulmonary macrophages have pro-
inflammatory M1 like and anti-inflammatory M2 like effects and
are important target cells of MSC-EVs. MSC-exosomes treatment
induced pleiotropic effects on gene expression associated with
inflammation and immune responses in hyperoxia exposed
newborn mice (52). MSC-exosomes modulate the macrophage
phenotype fulcrum, suppressing the proinflammatory “M1” state
and augmenting an anti-inflammatory “M2-like” state, both
in vitro and in vivo. Tumor necrosis factor alpha-stimulated
gene-6(TSG-6), involved in MSC-exosomes immunoregulation,
regulates inflammatory mediators such as Tumor necrosis
factors-α(TNF-α) and interleukin-1β(IL-1β), and is one of the
key factors of immunosuppression. TSG-6 has been shown to
protect rats from lipopolysaccharide(LPS)-induced pulmonary
inflammation and injury by inducing the phenotype of
macrophages from pro-inflammatory M1 to anti-inflammatory
M2 (40). In addition, TSG-6 siRNA-transfected MSC-exosomes
abrogated the therapeutic effects of exosomes, suggesting
TSG-6 as an important therapeutic molecule. Porzionato et al.
(53). found that hyperoxia exposure reduced CD163-positive
macrophages both in interstitial/alveolar and perivascular
populations and MSC-EV prevented these hyperoxia-induced
reductions. Further study suggested that intratracheally-
administered EVs could be an effective approach to prevent/treat
BPD, ameliorating the impaired alveolarization and pulmonary
artery remodeling also in a long-term model. Willis et al.
(54) found that MSC-EVs restored the apportion of alveolar
macrophages in the hyperoxia induced lung injury and
concomitantly suppressed inflammatory cytokine production.
In vitro and in vivo studies revealed that MSC-EVs promoted
an immunosuppressive in bone marrow-derived myeloid cells
phenotype. A study (55) demonstrated that MSC-EVs treatment
represents a promising restorative therapeutic approach
for oxygen-induced thymic injury, thus promoting normal
development of both central tolerance and adaptive immunity.

Hence, inflammatory response and immunoregulation may be
an important mechanism for MSC-EVs to reduce lung injury in
BPD experimental animals.

Regulating Abnormal Mitochondrial
Activity and Inhibit Oxidative Stress
Oxidative stress is one of the most predominant causes of
BPD (56). Oxidative stress induced by hyperoxia exposure is
regulated by the antioxidation in vivo. Due to the poor tolerance
to hyperoxia, premature infants are also vulnerable to reactive
oxygen species (ROS) mediated injury, which is more likely
to cause lung injury and development retardation, so that
oxidative stress participates in all links of the pathogenesis of
BPD in premature infants. Mitochondria have been considered
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TABLE 2 | Mesenchymal stromal cells derived extracellular vesicles (MSC-EVs) treatment for hyperoxia-induced rat model of bronchopulmonary dysplasia (BPD).

MSC-EVs Dose Effect Mechanism References

Umbilical cord
MSC-EVs

0.64 × 1010 Reduced hyperoxia-induced damage Promoting alveolarization and pulmonary
vascular remodeling

(37)

Rat bone marrow
MSC- exosomes

4.76 × 107 Prevented disruption of alveolar growth, increased small blood
vessel number, and inhibited right heart hypertrophy

Both anti-inflammatory and pro-angiogenic
mechanism

(38)

Rat bone marrow
MSC- exosomes

800 µg Relieved lung injury MiR-425 in exosomes suppressed HILI by
targeting PTEN and upregulating the
PI3K/AKT axis

(39)

Umbilical cord
blood
MSC-exosomes

2.4 µg Resulted in robust improvement in lung, cardiac and brain
pathology

TSG-6 in exosomes decreased
proinflammatory cytokines IL-6, TNF-α and
IL-1β and cell death

(40)

MSC-EVs Unknown Ameliorated hyperoxia-induced lung injury in a dose-dependent
manner, and high-dose MSC-EVs ameliorated alveolar
simplification, fibrosis.

MSC-EVs suppressed the
transdifferentiation of AT2 cells by
downregulating WNT5a.

(41)

Umbilical cord
MSC-small EVs

80 µg Restored alveolar structure and lung function, and ameliorated
pulmonary hypertension

Improved alveolarization and angiogenesis
by inhibiting PTEN and activating Akt
signaling pathway

(43)

Umbilical cord
MSC-small EVs

Corresponded
to 1 × 106 cell
equivalents

Improved core features of experimental BPD, restoring lung
architecture, decreasing pulmonary fibrosis and vascular
muscularization, ameliorating PH and improving exercise capacity

Promoting alveolarization and angiogenesis (44)

Umbilical cord
blood MSC-EVs

20 µg Ameliorated neonatal hyperoxic lung injuries, such as impaired
alveolarization and angiogenesis, increased cell death, and
inflammatory responses

EV mediated VEGF transfer (46)

Umbilical cord
MSC-EVs

10 µg Inhibited lung inflammation, vascular remodeling and right heart
failure, and reverses PH

Suppressed STAT3 activation in lung
vascular cells and upregulated miR-204
levels

(49)

Umbilical cord
MSC-exosomes
and bone marrow
MSC- exosomes

Corresponded
to 1 × 106 cell
equivalents

Resulted in alleviation of inflammation, improvement of lung function
and alveolarization, decrease in fibrosis and pulmonary vascular
remodeling, and amelioration of pulmonary hypertension

Modulated the macrophage phenotype
fulcrum, suppressing the proinflammatory
"M1" state and augmenting an
anti-inflammatory "M2-like" state.

(52)

MSC-EVs Unknown Ameliorating the impaired alveolarization and pulmonary artery
remodeling

Promoted M2 macrophage polarization,
and inhibited inflammatory response

(53)

Umbilical cord
MSC-exosomes

Corresponded
to 1 × 106 cell
equivalents

Restored alveolar architecture, blunted fibrosis and pulmonary
vascular remodeling, and improved exercise capacity

Promoted M2 macrophage polarization
though epigenetic and phenotypic
reprogramming of myeloid cells.

(54)

Umbilical cord
MSC-exosomes

Corresponded
to 0.5 × 106

cell equivalents

A promising restorative therapeutic approach for oxygen-induced
thymic injury, thus promoting normal development of both central
tolerance and adaptive immunity

Promoted T cell development to realize
immune regulation

(55)

as a main ROS source and as a key intracellular buffer that
protects against oxidant stress (57). Hyperoxia is known to inhibit
pulmonary mitochondrial bioenergetic function and impair
alveolar development in animal models of lung injury (58, 59).

Recent studies (52, 60) have reported that MSCs can
release extracellular vesicles containing mitochondria, and they
mediated mitochondrial transfer to macrophages. The protection
of MSC-EVs against lung injury can be attributed to the
interaction between mitochondria and alveolar macrophages.
Mitochondrial transfer increases the bioenergy and function of
macrophages. MSC-EVs may partially reduce lung injury in BPD
experimental animals through mitochondrial transfer. Phinney
et al. (60) reported that bone mesenchymal stem cells (BMSCs)
manage intracellular oxidative stress by targeting depolarized
mitochondria to the plasma membrane via arrestin domain-
containing protein 1-mediated microvesicles. In addition, the
vesicles are then engulfed and re-utilized via a process involving
fusion by macrophages, resulting in enhanced bioenergetics.
Furthermore, this study also showed that MSCs simultaneously

shed microRNA-containing exosomes that inhibit macrophage
activation by suppressing Toll-like receptor signaling, thereby
de-sensitizing macrophages to the ingested mitochondria.

In summary, MSC-EVs can transfer mitochondria,
microRNAs, and protein to macrophages to improve
mitochondrial dysfunction and oxidative stress damage.

PROSPECT AND CHALLENGE

As mentioned above, more and more experimental studies have
found MSC-EVs can promote the development of pulmonary
vessels and alveoli and reduce pulmonary hypertension and
inflammation and play an important role in the repair of lung
injury in BPD. MSC-EVs are more superior than MSCs is mainly
manifested in: First, MSC-EVs are derived from cells and have
non-immunogenic, which can avoid tumor transformation and
immune response activation, so more safe; Second, as a new type
of cell-free therapy, MSC-EVs are small in size and go deep into
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most tissues; Third, it has good biological stability and can be
modified and loaded with drugs of interest; Fourth, MSC-EVs
maintain good biocompatibility and can carry many types of
biomolecules; Fifth, the surface specific receptors or antibodies
can be processed to deliver therapeutic molecules to target cells.
Obviously, MSC-EVs have a good application prospect in the
treatment of lung injury and BPD. Although many scholars have
conducted in-depth research on the components and functions
of MSC-EVs, the mechanism of them in disease has not been
completely cleared and needs to be further explored. Many
studies have shown that EVs mainly induce regeneration and
therapeutic effects through the biomolecules they carry, such as
protein, nucleic acid molecules, which can regulate the biological
behavior of target cells, for example cell proliferation, survival,
migration, differentiation, angiogenesis, immunoregulation and
anti-inflammatory, mitochondrial activity, oxidative stress.

At present, the clinical research of mesenchymal stem cells
in the treatment of bronchopulmonary dysplasia are widely
carried out all over the world, but the clinical research on
extracellular vesicles of mesenchymal stem cells is very limited.
However, there are still many challenges to make MSC-EVs
really enter clinical application (61–63). At first, the research
evidence of MSC-EVs in the treatment of BPD almost comes
from preclinical studies. Next, the mechanism of MSC-EVs in the
treatment of BPD is still unclear. What’s more, the preparation
process of MSC-EVs lacks unified standards (64), such as MSC-
EVs source, purification methods of MSC-EVs, composition
of MSC-EVs, MSC-EVs purity. For the quality control of
extracellular vesicles, we can refer to The International Society
for Extracellular Vesicles (ISEV) proposed Minimal Information
for Studies of Extracellular Vesicles (“MISEV”) guidelines for
the field in 2014 and 2018 (29, 65). Most important of all, the
appropriate children, treatment time, appropriate pathway, and
effective dose of MSC-EVs need to be determined (66–68). The
main delivery methods of extracellular vesicles are intratracheal
administration, nasal inhalation, Intraperitoneal injection, and
intravenous administration (37, 38, 69, 70). As for which pathway
of administration is better and how much are the dosage, further
research is still needed. The influence of the origin of EVs
on their distribution in organisms also needs to be discussed.
The holistic analysis (71) has shown that, regardless of the

source or size of EVs or the species into which the EVs were
delivered, EVs typically accumulate in a restricted number of
organs: liver, lungs, kidneys, and spleen. The physiological or
pathological state of the donor affects the functional plasticity
of the EVs. The microenvironment of cells and the biological
processes occurring in cells will affect the contents contained
in exosomes. For example, exosomes secreted by mesenchymal
stem cells under hypoxia contain high levels of HIF-1a and
microRNAs that promote angiogenesis, such as mir-210, mir-
216 (72, 73). In addition, hypoxia also promote the release
of exosomes by MSCs. EVs have high heterogeneity, including
source heterogeneity, size heterogeneity, content heterogeneity
and functional heterogeneity. These heterogeneities also affect
the function of extracellular vesicles (30). In the future,
multidisciplinary comprehensive cooperation and large sample
research are needed to accumulate more data and experience, and
repeatedly evaluate the safety and effectiveness of treatment, so as
to provide sufficient theoretical basis for clinical trials.

CONCLUSION

In conclusion, many related studies have shown the great
prospect of MSC-EVs in the treatment of lung injury, which is
expected to become an effective treatment for BPD. However,
there are still many difficulties in its real application in clinic, and
more research and exploration are needed.
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