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Expected small left heart size in
the presence of congenital
diaphragmatic hernia: Fetal
values and Z-scores for infants
confirmed to have no heart
disease postnatally
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Objectives: In fetuses with left-sided congenital diaphragmatic hernia (CDH),
left heart structures may appear small, but usually normalize after birth in the
absence of structural cardiac anomalies. To decrease the possibility of an
erroneous diagnosis of structural heart disease, we identify normal values
for left heart structures in the presence of left CDH and secondarily
investigate the relationship of left heart size and survival to neonatal
hospital discharge.
Methods: Left heart structures [mitral valve (MV) and aortic valve (AoV)
annulus diameter, left ventricle (LV) length and width] were measured by
fetal echocardiogram in fetuses with left CDH and no congenital
heart disease. We generated linear regression models to establish the
relationship of gestational age for each left heart structure using data from
fetuses who survived after birth. We calculated z-scores (normalized to
gestational age), and assessed the relationship of survival to the size of
each structure.
Results: One hundred forty-two fetuses underwent fetal echocardiogram
(median 25 weeks’ gestation, IQR 23, 27 weeks). Left heart structures were
deemed small when using published normative data from unaffected
fetuses (z-scores: MV −1.09 ± 1.35, AoV −2.12 ± 1.16, LV length −1.36 ± 1.24,
LV width −4.79 ± 0.79). CDH-specific models derived from log-transformed
values yielded left-shifted distributions, reflecting the small structures
(mean z-score lower by: MV 0.99 ± 0.30, AoV 2.04 ± 0.38, LV length 1.30 ±
0.36, and LV width 4.69 ± 0.28; p < 0.0001 for all comparisons). Non-
survivors had worse z-scores than survivors for all measurements, but this
did not reach statistical significance.
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Conclusions: Log-transformed linear models generated new normative data for fetal
left heart structures in left CDH, which may be used to allay antenatal concerns
regarding structural left heart anomalies. There were no significant differences in z-
scores between survivors and non-survivors, suggesting that in the absence of true
structural disease, cardiac evaluation is not predictive in isolation and that causes of
mortality are likely multifactorial in this population.
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Introduction

Congenital diaphragmatic hernia (CDH) is characterized by

bilateral lung parenchymal and vascular hypoplasia (1–9).

Associated anomalies may occur, including congenital heart

disease, which carries a worsened prognosis (10–14).

However, independent of structural cardiac defects, prior

work described small left-sided heart structures after birth,

particularly in infants with circulatory derangements

associated with persistent pulmonary hypertension of the

newborn (PPHN) (15–17). This physiology results in blood

shunting away from the pulmonary circulation with decreased

left heart filling and output, making definitive conclusions

regarding the underdevelopment of structures difficult.

Additional studies have described small fetal left-sided

structures, compared to gestational age (GA)-specific norms

from unaffected fetuses, although the size of these structures

significantly improves after neonatal repair of the

diaphragmatic defect (5, 16, 18–25).

Consistent with variation in the size of fetal left heart

structures, we and others have described differences in fetal

blood flow, as indicated by output measurements from the

right ventricle (RV) and left ventricle (LV), measured flows in

the pulmonary circulation and the ductus arteriosus (DA),

and the path of umbilical venous flow into the heart (22–25).

LV output is shown to be decreased in fetuses with both left

and right CDH, and fetuses with markers of more severe left

CDH have more profound discrepancies than less seriously

affected fetuses with left CDH and those with right CDH.

These alterations are associated with increased DA blood flow

(pulmonary artery-to-aorta), decreased pulmonary blood flow,

and variably decreased flow (right-to-left atrium) via the

foramen ovale (24, 25).

Thus as the left heart is expected to be small in the fetus

with CDH, it is difficult to interpret fetal heart measurements

obtained using published normative values derived from

fetuses without CDH. Standardized values for left heart

structures in fetuses with CDH but without congenital heart

disease have not been defined. We first aimed to define the

normal size of left-sided heart structures in fetuses with left

CDH without significant structural cardiac disease who
02
survived postnatally and were confirmed to have no heart

disease. We hypothesized that normal CDH-specific curves

would be left-shifted compared to curves generated from

normal fetuses. Secondarily, we investigated whether the size

of left-sided heart structures [mitral valve (MV) and aortic

valve (AoV) annulus diameters and LV length and width]

normalized for gestational age using CDH-specific data, was

associated with neonatal survival in fetuses without congenital

heart disease.
Materials and methods

We conducted a retrospective study of fetuses evaluated by

the University of California San Francisco (UCSF) Fetal

Treatment Center with diagnosis of CDH (2000–2010). All

fetuses underwent ultrasound evaluation at UCSF, with

anatomic description of the CDH [including lung-to-head

ratio (LHR) (26)], and documentation of other associated

anomalies. Fetal echocardiography was performed by

sonographers with expertise in fetal echocardiography under

the supervision of pediatric echocardiographers with expertise

in fetal diagnosis using ultrasonography systems (Siemens

S2000 or Acuson Sequoia C256 and C512; Siemens Corp.,

Mountain View CA, USA) equipped with a combination of

curvilinear and phased array probes operating at 6–8 MHz.

All studies included a complete two-dimensional evaluation of

cardiac structures and systolic ventricular function with

complete pulsed-wave and color Doppler examinations

including venous and umbilical cord investigations. Fetal

echocardiograms were retrospectively reviewed and

measurements made offline using a commercially available

workstation (Syngo Dynamics, Siemens Healthcare GmbH) by

a single pediatric cardiologist (FAB) blinded to clinical

outcome, from digital images stored in standard DICOM

format. Measurements were as previously described (25, 27)

and included:

• The mitral valve and tricuspid valve (TV) annulus diameters

in the 4-chamber view during the peak filling in early diastole

at maximum excursion of the leaflets from inner edge to

inner edge at hinge points of the leaflet attachments,
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• The aortic valve and pulmonary valve (PV) annulus

diameters in long axis views at the inner edge of the

annular hinge points at maximal opening in systole,

• Left ventricle major axis length (LV length) measured at end-

diastole, defined as the frame at which the MV and TV

closes, taking care not to foreshorten the ventricles, from

the middle of the annulus level to the apical endocardium,

and

• Left ventricle short axis (LV width) dimension at end-

diastole (maximal size) at the level of the papillary muscles

GA-specific z-scores were generated for each measurement

based on prior studies of fetuses unaffected with CDH or

congenital heart disease, with GA specified as completed

weeks by best obstetrical dating. We used published equations

for predicted left heart parameters from McElhinney and

colleagues and we assessed the robustness of our findings and

any influence on right heart structures with application of

widely-used equations derived by Schneider et al. (28, 29).

The study was conducted under UCSF Institutional Review

Board approval with expedited review and waiver of consent.

Measurements from a single evaluation of consecutive

fetuses were included if newborn was liveborn and cared for

at UCSF Children’s Hospital after birth, and fetal cardiac

structural measurements were possible from the available

stored echocardiogram images. Fetuses with abnormal

karyotype, suspected or confirmed genetic syndromes, and

those undergoing fetal tracheal occlusion were excluded (27).

Neonatal inclusion criteria included confirmation of left CDH

and exclusion of congenital heart disease (other than patent

ductus arteriosus and patent foramen ovale), based on clinical

examination and postnatal echocardiogram, and no need for

cardiac surgery or catheter intervention. Data were maintained

in a REDCap (Research Electronic Data Capture) database.

Statistical analyses were undertaken for each cardiac

parameter (Stata version 11.2, College Station TX). Cardiac

parameters were plotted vs. GA to assess for linearity with

and without log transformation with a goal of identifying the

best approach for all parameters; prior published work

presents models with both non-transformed and transformed

data (28, 29). Linear regression equations for each predicted

parameter measurement were generated for two groups. First,

we considered all fetuses without significant congenital heart

disease that ultimately survived to hospital discharge. Residual

plots confirmed the best fit models overall for the parameters

(non-transformed vs. transformed models), and z-scores for

the structures for fetuses with CDH were generated from

these models. Regression equations were generated using all

available data, with observations omitted only from equations

specific to the absent measurement. Next, since mortality in

newborns with CDH is not always directly related to

cardiopulmonary development, we similarly evaluated models

using data from all fetuses without significant congenital heart
Frontiers in Pediatrics 03
disease, regardless of survival. We assessed for an interaction

between survival and gestational age at measurement, to

identify if the change in these structures over gestation

differed based on survival status. In the case of a significant

interaction, stratified models generated from only survivors

might better represent normal values. Then, the relationship

of fetal z-scores to survival to discharge from the neonatal

hospitalization was assessed for each left heart structure by t-

test, using both published GA-specific norms for unaffected

fetuses and the left CDH-specific norms generated from the

current study. Finally, logistic regression was used to derive

area under the receiver-operator characteristic (AUROC)

curve with CDH-specific z-scores, to further assess the utility

of fetal left heart structures for survival.
Results

Patient characteristics

Of referrals to the UCSF Fetal Treatment Center during the

study period, 197 with documented left CDH without abnormal

karyotype or genetic syndrome underwent imaging evaluation

by ultrasound and echocardiogram (including measures of

cardiac structure). Nine underwent fetal tracheal occlusion, 15

had a diagnosis of congenital heart disease, and 31 had

incomplete follow up or inadequate images available for

review, leaving 142 fetuses eligible for the study, with

evaluation at 18–37 weeks’ GA. At the time of the evaluation,

136 fetuses had LHR measured. Cardiac parameters obtained

at fetal echocardiogram performed at median of 25 weeks’ GA

(range 18–37 weeks) are shown, with no missing data for MV

and TV diameters, and limited missing data for other

parameters (Table 1). There were no significant differences in

LHR or survival after birth between those with (n = 22) and

without one or more missing parameters (1.07 ± 0.32 and

1.27 ± 0.76, p = 0.22% and 59% vs. 66%, p = 0.54, respectively).

The distribution of right-sided cardiac measurements was

similar to that of unaffected fetuses. Left-sided cardiac

measurements, however, were generally small, with LV width

the most affected measurement. Differences in predicted

parameters by the two sets of prediction equations were not

substantial, with Schneider predictions slightly higher than

McElhinney predictions for MV annulus diameter, and

slightly lower for AoV annulus diameter (mean differences

0.08 ± 0 cm and −0.05 ± 0.02 cm for mitral and aortic valves,

respectively). However, these differences translated into a

more substantial, inverted, difference in z-scores, with the

standardized Schneider scores lower than McElhinney scores

for MV annulus diameter and higher than McElhinney scores

for AoV annulus diameter (mean −0.82 ± 0.30 and 0.87 ± 0.27

for mitral and aortic valves, respectively).
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TABLE 1 Fetal echocardiographic parameters from fetuses with left CDH with z-scores from published equations derived from unaffected fetuses.

Echocardiographic parameter Measurement z-scorea (McElhinney et al. 2009) z-scoreb (Schneider et al. 2005)

Gestational age at exam (weeks, n = 142) 25 (23, 27)

Mitral valve diameter (cm, n = 142) 0.59 ± 0.14 −1.09 ± 1.35 −1.91 ± 1.27

Aortic valve diameter (cm, n = 133) 0.34 ± 0.07 −2.12 ± 1.16 −1.25 ± 1.20

Left ventricle length (cm, n = 140) 1.55 ± 0.36 −1.36 ± 1.24

Left ventricle width (cm, n = 124) 0.34 ± 0.13 −4.79 ± 0.79

Tricuspid valve diameter (cm, n = 142) 0.78 ± 0.19 −0.07 ± 1.24

Pulmonic valve diameter (cm, n = 136) 0.50 ± 0.11 0.35 ± 1.04

Data presented as median (interquartile range) or mean ± SD.
az-score determined by published equations from McElhinney et al. 2009 (29). Data presented as mean ± SD.

bz-score determined by published equations from Schneider et al. 2005 (28). Data presented as mean ± SD.

TABLE 2 Equations for prediction of echocardiographic parameters in
fetuses with left CDH that survived after birth.

Parameter Coefficient
(β)*

Constant Root
MSE

Adjusted
R2

MV diameter
(n = 92)

1.2883 −4.6913 0.1521 0.62

AV diameter
(n = 87)

1.1508 −4.8060 0.1513 0.57

LV length
(n = 90)

1.1145 −3.1666 0.1771 0.47

LV width
(n = 81)

1.3237 −5.3737 0.3022 0.31

TV diameter
(n = 92)

1.2398 −4.2647 0.1702 0.54

PV diameter
(n = 89)

1.2327 −4.6852 0.1256 0.68

Mean predicted value = exp [(β * gestational age) + constant].

MV, mitral valve; AV, aortic valve; LV, left ventricle; TV, tricuspid valve; PV,

pulmonic valve.

*All coefficients were statistically significant (p < 0.001).

Moon-Grady et al. 10.3389/fped.2022.1083370
Statistical analysis and generation of Z-
scores

The best linear representation for the relationship of GA to

the four left heart parameters was by log transformation, as

applied in prior studies (28). Equations for all measured

parameters are presented (Table 2). Derived predicted mean

values and z-score for a given gestational age for each cardiac

parameter are:

(1) Mean predicted value = exp [(β * gestational age) +

constant]

(2) z-score = [(ln(measured value)− ln(predicted value)]/root

MSE

In general, models derived from data limited to fetuses with

survival after birth (n = 92) better explained the relationship

between gestational age and each measurement than models

including all fetuses (n = 142, Supplementary Table). For

each parameter, actual measurements are plotted vs.
Frontiers in Pediatrics 04
gestational age, with the overlying linear CDH-specific

prediction for survivors and non-survivors (Figure 1).

Interaction terms for survival and gestational age at time of

measurement were significant for mitral valve annulus

diameter (p = 0.009) and left ventricular width (p = 0.02) in

models generated with data from both survivors and non-

survivors, supporting the generation of normative values from

models developed with data from only survivors (also shown

with 95% confidence intervals, Figure 2). There were weak

positive correlations between concurrent LHR and MV and

AoV diameter (Table 3) though only LHR vs. AoV reached

statistical significance. Right heart structures did not correlate

with LHR measurements. The distributions of fetal z-scores for

each parameter derived from unaffected fetuses and the left

CDH-specific equations are also shown (Figure 3 for models

generated from survivors only, and Supplementary Figure for

models generated from both survivors and non-survivors). As

expected from these graphs, CDH-specific z-scores generated

with data from survivors only were significantly worse than z-

scores from unaffected fetuses for all left heart parameters,

with the largest differences for LV width, followed by AoV

diameter: MV diameter 0.99 ± 0.30, AoV diameter 2.04 ± 0.38,

LV length 1.30 ± 0.36, and LV width 4.69 ± 0.28; p < 0.0001 for

all comparisons by paired t-test.

Though the focus was to generate normal values for left

heart dimensions in the presence of CDH and clear absence

of structural heart disease (hence limitation to a cohort who

survived the neonatal period with normal postnatal cardiac

examination for generation of equations) we secondarily

evaluated the relationship of the size of fetal cardiac structures

to survival to hospital discharge in our larger cohort. We used

both z-scores from unaffected fetuses and the z-scores derived

from our left CDH cohort for these analyses. Overall survival

after birth was 65% (92/142). Although fetal z-scores from

infants who died were lower than z-scores for those who

survived for all parameters, the differences were not

statistically significant, regardless of the equation used to

derive z-scores (Table 4). Consistent with these findings,

AUROC demonstrated that z-scores derived from the CDH
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FIGURE 1

Measured left heart structures and left CDH-specific regression lines versus gestational age at measurement in survivors (solid circles, solid line) and a
comparison group of non-survivors (open triangles, dashed line), (A) mitral valve diameter; (B) aortic valve diameter; (C) left ventricle length; (D) left
ventricle width. Regression lines are back-transformed from natural log models. *P-value for interaction between survival and gestational age.
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equations had limited utility for the outcome of mortality: MV

diameter 0.57 (95% CI, 0.46, 0.67), AoV diameter 0.57 (95% CI,

0.47, 0.68), LV length 0.55 (95% CI, 0.45, 0.65), LV width 0.58

(95% CI, 0.47, 0.69). We further evaluated performance of fetal

left heart measurements for mortality with a threshold z-score <

−1. This z-score corresponds to the 16th percentile for a normal

distribution, it encompassed 14%–22% of observations from

this cohort (depending on the individual measurement), and

it included varying proportions of those observations with a

z-score <−2 (<2.5% of normal values) when using data from

unaffected controls: MV diameter, 31/37 (84%); AoV

diameter, 28/66 (42%); LV length, 20/43 (47%); LV width, 23/

123 (19%). CDH-specific left heart parameters performed

modestly with a cut-off of z-score <−1; for all parameters,

61%–63% of newborns were classified correctly (Table 5).

There was low sensitivity but good specificity, indicating that

survivors were likely to have a z-score of −1 or higher.

Positive and negative predictive values were poor and

moderate, respectively.
Frontiers in Pediatrics 05
Discussion

Fetal evaluation of CDH provides important information for

families and clinicians as they consider fetal and neonatal

interventions and outcomes. Fetuses with anomalies in addition

to the CDH, and in particular cardiac anomalies, have a

significantly worse prognosis. Many fetuses with CDH may

appear to have small left heart structures, but though relative

hypoplasia of the mitral and aortic valves and left ventricle raise

the possibility of true structural heart disease in these fetuses,

the size of most structures will in fact normalize after birth (23).

We present normative values for left heart structures in fetuses

with left CDH without significant congenital heart disease, from

a large group of fetuses undergoing comprehensive evaluation;

our proposed normative curves are left-shifted compared to

standardized curves from unaffected fetuses (29). And, although

left heart development is substantially impacted, the degree of

fetal left heart underdevelopment alone was not related to

survival in this single center study. Use of these CDH-specific
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FIGURE 2

Predicted left heart structure size versus gestational age from left CDH-specific models, with regression line and 95% confidence interval shown, (A)
mitral valve diameter; (B) aortic valve diameter; (C) left ventricle length; (D) left ventricle width. Predicted values are back-transformed from natural
log models.

TABLE 3 The relationship of low lung-to-head ratio (≤ 1.0) and cardiac
structure z-scores, based on CDH-specific prediction equations.

Parameter LHR > 1.0 LHR≤ 1.0a p-value*

MV diameter 0.08 ± 1.10 −0.27 ± 1.11 0.07

AV diameter 0.16 ± 0.98 −0.27 ± 1.01 0.02

LV length 0.04 ± 1.09 −0.14 ± 0.90 0.31

LV width 0.06 ± 0.99 −0.27 ± 0.88 0.06

TV diameter 0.05 ± 0.99 −0.10 ± 1.00 0.37

PV diameter −0.06 ± 1.16 0 ± 0.82 0.73

Data are presented as mean ± SD.

LHR, lung-to-head ratio; MV, mitral valve; AV, aortic valve; LV, left ventricle; TV,

tricuspid valve; PV, pulmonic valve.
aOverall, there were 71 fetuses with LHR≤ 1.0 and 65 fetuses with LHR > 1.0.

Data were complete for MV and TV diameter. For AV diameter, there were

data on 67 with LHR≤ 1.0 and 60 with LHR > 1.0, for LV length, there were

data on 70 with LHR≤ 1.0 and 64 with LHR > 1.0, for LV width there were

data on 62 with LHR≤ 1.0 and 56 with LHR > 1.0, and for PV diameter, 66

with LHR≤ 1.0 and 64 with LHR > 1.0.

*p-value by t-test.

Moon-Grady et al. 10.3389/fped.2022.1083370
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normative values when assessing a fetus with CDH should help

the clinician to better interpret the echocardiographic data

present in the fetal period and to avoid erroneously arriving at

a diagnosis of structural heart disease when in fact the heart is

normal for this condition.

The lack of association between left heart size and survival

in this contemporary cohort is consistent with prior reports

(5, 23). Z-score differences of up to 0.3 ± 1.0 would require

190–200 fetuses to demonstrate a statistically significant

difference between survivors and non-survivors if ∼2/3 of the

fetuses survive after birth, but even a proposed cut-off z-score

<−1 provided only modest outcome prediction. Of left heart

structures, Vogel and colleagues found only AoV diameter,

with a cut-off z-score <−2 (curves from unaffected fetuses),

was associated with survival, although it was not an

independent predictor (23). Multiple investigators have

hypothesized that distorted anatomy and compression due to

herniated thoracic contents account for differences in left
frontiersin.org
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FIGURE 3

Left heart parameters (data derived from survivors only): distribution of z-scores and kernel density estimates from all fetuses with left CDH derived
from (1) published data from unaffected fetuses (29) (white bars, solid line) and (2) left CDH-specific data (gray bars, dashed line). CDH-specific
equations were derived with data only from survivors, (A) mitral valve diameter, n= 92; (B) aortic valve diameter, n= 87; (C) left ventricle length,
n= 90; (D) left ventricle width, n= 81.
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heart size and output, primarily supported by the observations

by ourselves and others that alterations in fetal blood flow

patterns are related to fetal anatomic measures of CDH

severity (15, 16, 23–25). In support of this decrease in left

heart output being physiologically important, we have recently

reported that middle cerebral artery (MCA) pulsatility index

values are significantly lower in fetuses with L-CDH

compared to normal control fetuses, and that lower left heart

output was correlated with lower MCA vascular impedance

(24). The neurodevelopmental effect of such changes in

MCA-PI in response to decreased LVCO is unknown.

A growing body of literature is focused on development of

the pulmonary circulation and fetal pulmonary vascular

hypoplasia, aimed to better understand pathophysiology and

provide more precise information for decision-making (4–8,

21–25, 30). Fetal blood flow alterations in CDH may be

related to pulmonary vascular physiology in addition to

intracardiac fetal blood flow and compressive effects. Fetal
Frontiers in Pediatrics 07
lung hypoplasia is associated with structural and functional

pulmonary vascular changes, including alterations in

hemodynamic parameters and reactivity (4, 7, 31–33).

Endothelial nitric oxide synthase expression is decreased in

fetal hypoplastic lungs, consistent with demonstrated lack of

response to oxygen (mediated via nitric oxide) (4, 8, 33, 34).

Recently, we demonstrated additional alterations in the fetal

environment in CDH, with differences in levels of cord blood

growth factors and inflammatory mediators, related to the

persistence of neonatal PH, also associated with anatomic

markers of severe CDH (35, 36). Thus, fetal blood flow

alterations and abnormal vascular reactivity in CDH could

mimic the circulatory derangements of PPHN due to

increased pulmonary vascular resistance (PVR); relatively

increased fetal PVR from a small pulmonary vascular bed and

vascular biochemical changes will result in decreased left-

sided blood flow and ventricular loading (16). The neonatal

increase in left-sided structures following CDH repair may be
frontiersin.org
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TABLE 4 Survival to discharge and z-scores for cardiac structures derived from equations from CDH-specific and unaffected fetuses.

Parameter CDH-specific McElhinney et al.a Schneider et al.b

Survivors Non-survivorsc Survivors Non-survivors Survivors Non-survivors

MV diameter 0 ± 0.99 −0.27 ± 1.28 −0.99 ± 1.22 −1.27 ± 1.55 −1.78 ± 1.16 −2.14 ± 1.44
p = 0.16 p = 0.24 p = 0.11

AV diameter 0 ± 0.99 −0.22 ± 1.03 −2.08 ± 1.13 −2.19 ± 1.21 −1.17 ± 1.18 −1.39 ± 1.24
p = 0.23 p = 0.60 p = 0.33

LV length 0 ± 0.99 −0.17 ± 0.96 −1.30 ± 1.28 −1.47 ± 1.17
p = 0.33 p = 0.44

LV width 0 ± 0.99 −0.28 ± 0.91 −4.72 ± 0.83 −4.91 ± 0.72
p = 0.12 p = 0.20

TV diameter 0 ± 0.99 −0.18 ± 1.00 −0.01 ± 1.23 0.18 ± 1.26
p = 0.31 p = 0.44

PV diameter 0 ± 0.99 −0.06 ± 0.98 0.35 ± 1.04 0.34 ± 1.04
p = 0.75 p = 0.96

Data presented as mean ± SD.

MV, mitral valve; AV, aortic valve; LV, left ventricle; TV, tricuspid valve; PV, pulmonic valve.
az-score determined by published equations from McElhinney et al. 2009 (29).
bz-score determined by published equations from Schneider et al. 2005 (28).
cOverall, there were 92 survivors and 50 non-survivors. Data were complete for MV and TV diameter. For AV diameter, there were data on 87 survivors and 46 non-

survivors, for LV length, there were data on 90 survivors and 50 non-survivors, for LV width, there were data on 81 survivors and 43 non-survivors, and for PV diameter,

89 survivors and 47 non-survivors.

TABLE 5 Test diagnostics of CDH-specific fetal left heart measurement
using a threshold of z-score <−1 for mortality prior to discharge from
neonatal hospitalization.

Parameter Sensitivity Specificity PPV NPV Correctly
classified

MV diameter 26% 80% 42% 67% 61%

AV diameter 24% 80% 39% 67% 61%

LV length 16% 87% 40% 65% 61%

LV width 23% 84% 43% 67% 63%

PPV, positive predictive value; NPV, negative predictive value; MV mitral valve; AV

aortic valve; LV left ventricle.
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attributable to normalization of both mechanical and

hemodynamic mechanisms, as PVR decreases over time (23,

36, 37). These hemodynamic effects are consistent with the

paradigm wherein blood flow contributes to fetal cardiac

development (22, 23, 38).

Interestingly, we demonstrated poorer left heart

development with advancing gestation by survival status,

consistent with prior fetal cardiac studies (19), that showed

more pronounced abnormality at later gestation and as was

previously shown for other fetal CDH anatomic markers that

portend worse prognosis (5, 6, 39, 40). LV width was the most

impacted left heart measurement in our cohort. In addition to

the abnormalities in non-survivors, the CDH-specific LV

width distribution demonstrated the greatest difference of all

of our measurements from the distribution derived from

unaffected fetuses. It may be that LV width, reflecting LV

filling, is impacted by both anatomic compression and fetal

pulmonary vascular physiology, whereas other measures may
Frontiers in Pediatrics 08
be more affected by a single mechanism. We speculate that the

relationship between anatomic CDH severity and left heart

development results in unfavorable cardiopulmonary

interactions at birth, but fetal ultrasound measurements may

be too crude to identify the distinct contribution of these factors.

Consistent with the physiology of fetal intervention for

CDH (accelerated fetal lung growth), tracheal occlusion can

impact fetal markers of severity (8, 41). Left heart structures

relatively increase in size (with increased preload) and,

pulmonary vascular responsiveness is restored among

survivors (8, 27). Fetal tracheal occlusion also improves some

neonatal outcomes, including survival and decreased incidence

of PPHN, supporting the relationship of left heart

development to pulmonary vascular physiology (42, 43).
Limitations

Our findings are based on single-center data, which may

limit generalizability. However, experienced ultrasonographers

may be required for the consistent ascertainment of important

fetal markers of CDH severity, with strong agreement between

expert evaluators (5, 8, 27, 44–47). Our prior work

demonstrated acceptable interobserver variability for the

measurements in the current study (25, 44). Further, our data

are confined to left CDH (more common than right CDH),

consistent with prior fetal studies. However, evaluation of data

from fetuses with right CDH could be useful, as we previously

demonstrated fetal hemodynamic alterations are more

pronounced in left CDH, compared to right CDH (25). Given

the smaller numbers of these fetuses evaluated at any single
frontiersin.org
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center, collaborations among experienced centers may be

informative. Finally, the number of fetuses that ultimately

were used to generate our normative curves was not large,

with observations obtained predominantly during mid-

gestation. However, this is the usual timing of the mid-

gestation routine anatomic ultrasound evaluation that

identifies the CDH and thus the most common time that

these fetuses are referred for clinical evaluation, and our

curves demonstrate similar shape to those generated from

unaffected fetuses.
Conclusion

Normative data on left heart structures from fetuses with

left CDH without congenital heart disease result in z-scores

that are significantly left-shifted compared to normal curves

from unaffected fetuses. We suggest the use of these CDH-

specific equations during fetal evaluation, as this may mitigate

antenatal concern regarding structural left heart disease, since

measurements of these structures in CDH have been shown

to normalize after birth (23). However, the development of

left heart structures in fetuses with CDH and without

congenital heart disease has limited bearing on survival after

birth, as an isolated consideration. Future work could evaluate

the relationship of these measurements to other neonatal

outcomes, including cardiac physiology and diastology

(representing ventricular interaction) (17, 48), and the

persistence of pulmonary hypertension, as well as the

combination of left heart markers with additional fetal

anatomic and physiologic measurements, to refine fetal risk

for adverse neonatal outcomes.
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