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Spondyloarthritides (SpA) are a family of interrelated rheumatic disorders with a
typical disease onset ranging from childhood to middle age. If left untreated,
they lead to a severe decrease in patients’ quality of life. A succesfull
treatment strategy starts with an accurate diagnosis which is achieved
through careful analysis of medical symptoms. Classification criterias are
used to this process and are updated on a regular basis. Although there is a
lack of definite knowledge on the disease etiology of SpA, several studies
have paved the way for understanding plausible risk factors and developing
treatment strategies. The significant increase of HLA-B27 positivity in SpA
patients makes it a strong candidate as a predisposing factor and several
theories have been proposed to explain HLA-B27 driven disease progression.
However, the presence of HLA-B27 negative patients underlines the
presence of additional risk factors. The current treatment options for SpAs
are Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), TNF inhibitors (TNFis),
Disease-Modifying Anti-Rheumatic Drugs (DMARDs) and physiotherapy yet
there are ongoing clinical trials. Anti IL17 drugs and targeted synthetic
DMARDs such as JAK inhibitors are also emerging as treatment alternatives.
This review discusses the current diagnosis criteria, treatment options and
gives an overview of the previous findings and theories to clarify the possible
contributors to SpA pathogenesis with a focus on Ankylosing Spondylitis (AS)
and enthesitis-related arthritis (ERA).
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Introduction

SpA is a group of immune system related disorders predominantly causing sterile

inflammation at sacroiliac joints. In adults, patients often meet the definition of axial

spondyloarthritis. In addition to AS, reactive arthritis, psoriatic arthritis, enteropathic

arthritis, Reiter’s syndrome, Inflammatory Bowel Disease (IBD)-associated arthritis

and undifferentiated SpA can be included within this disease subset (1). The

classification and terminology of juvenile SpA (JSpA) patients differ from the adults.

Childhood onset patients are classified as ERA and juvenile onset psoriatic arthritis

(JPsA) and juvenile idiopathic arthritis (JIA) is used as an umbrella term for these
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arthritides (2). In Europe and North America 10% of JIA

patients are diagnosed as ERA (3, 4) whereas this ratio

increases further to 35%–40% in Asia (5–8).

SpAs affects up to 2% of the population (1). The prevalence

of the disease is highest in Europe followed by an Asian

population whereas it is uncommon in Africans (9). SpA

patients suffer from a significant decrease in their quality of

life and may even need surgical operations as a remedy. The

therapeutic agents used for the disease may cause side-effects

(i.e., infection) and a certain portion of patients fail to

respond to therapy (10, 11). Overall, it is clear that the

development of alternative treatment strategies are necessary

however, the obscure disease etiology plays a negative role in

this process. Although there are studies underlining the

possible contribution of HLA-B27 allele in disease

pathogenesis, the presence of HLA-B27 negative SpA patients

indicates the presence of extra risk factors (12).
Clinical features

Similar to other diseases the early diagnosis of SpA is

crucial. Delays may result in increased disease activity,

irreversible structural damage, low therapy response and

limited mobility (13). Physicians and patients should work

hand in hand for early diagnosis to eliminate undesirable

long-term effects. Diagnosis might be stalled if patients delay

visiting a doctor due to limited access or in the belief that

their symptoms will disappear spontaneously. Moreover,

seeing other specialists rather than a rheumatologist might

not only cause a delay but also may result in misdiagnosis (14).

Thorough and distinctive analysis of the symptoms plays a

fundamental role in the validity of diagnosis. SpA patients

display several common clinical and laboratory findings such

as arthritis (Figure 1A), psoriasis (Figure 1A), enthesitis,

anterior uveitis (Figure 1B), inflammatory low back pain and

family history of HLA-B27-related disease. Although the

common features remain the same, the clinical phenotype

differs across the ages in certain aspects with peripheral

arthritis being predominant in JSpA and axial manifestations

being more common in adult-onset disease (15).

Inflammatory back pain is the most common complaint of

SpA suggesting axial involvement. Shoulder and hip joint

involvement is also more common in ERA (16). In fact the

differences between childhood and adult- onset disease have

been highlighted in a number of studies. Both are more

common in males. Childhood cases typically present in

adolescent years with arthritis in the big joints and often

enthesitis (17). The most frequently involved joints are the

knee (40%–50%), hip (30%–40%) and ankle (25%–40%) (16,

18). Axial disease and back pain are less than expected in

adult-onset disease. The frequency of axial involvement differs

between studies. In a systematic review of the literature,
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comparing juvenile-onset AS (JoAS) and adult-onset AS

(AoAS) cohorts showed that axial disease is significantly more

frequent in AoAS than JoAS cases (4.3%–74% vs. 56%–95%)

(19). Again family history seems to be more common in

childhood-onset disease and may suggest a higher genetic

load associated with the disease. Despite these differences, the

pathogenesis of these two different onsets are similar; thanks

to the recent emerging data we know the main pathways

involved and it may not be appropriate to classify the

childhood-onset disease separately from the adult one, under

the “idiopathic” term anymore.

In recent years MRI has improved the assessment and

diagnosis of axial disease. Axial disease was probably

underestimated before the widespread use of MRI both in

children and adults. Approximately half of the patients are

known to be first been diagnosed with sacroiliitis on MRI (20).
Classification criteria

Most juvenile SpA are classified as enthesitis-related

arthritis or undifferentiated arthritis, depending on whether

psoriasis is present in the patient or their family.

International League of Associations for Rheumatology

(ILAR) criteria are used for the classification of JIA subtypes

including ERA (Supplementary Table S1) (2, 21). According

to the ILAR, ERA classification criteria is arthritis plus

enthesitis or arthritis or enthesitis plus two of the following:

(1) Sacroiliac joint tenderness and/or inflammatory back

pain, (2) HLA-B27 positivity, (3) >6 years old boy and (4)

Acute anterior uveitis and (5) Family history in at least one

first degree relative of HLA-B27 associated disease like

ankylosing spondylitis, ERA, sacroiliitis with IBD, reactive

arthritis or acute anterior uveitis.

In adults the diagnosis is based on the Assessment of SpA

International Society (ASAS) classification (Supplementary

Table S1). ASAS criteria include both imaging and clinical

findings: if sacroiliitis is present on imaging [by radiographs

or magnetic resonance imaging (MRI)] (Figure 2) only one

other SpA feature is sufficent for classification. However, if

imaging evidence of sacroiliitis is absent, positive HLA-B27

along with at least two other SpA features is required for the

patient to be classified as having axial SpA. ASAS criteria for

peripheral spondyloarthritis include peripheral arthritis and/or

enthesitis and/or dactylitis plus 1 SpA feature (uveitis,

psoriasis, Crohn’s/colitis, preceding infection, HLA-B27,

sacroiliitis on imaging) or ≥2 other SpA features (arthritis,

enthesitis, dactylitis, inflammatory back pain, family history of

SpA).

The ASAS and ILAR criteria set indeed overlap in the

defined features and they share several clinical and laboratory

findings for classification. However, there are also important

differences between the two. Firstly, the ILAR system does not
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FIGURE 1

Clinical findings in SpA patients. (A) Black arrow shows the arthritis and white arrow shows the psoriasis. (B) A patient with anterior uveitis.
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specifically address children who have SpA by fulfilling the

criteria for ankylosing spondylitis, or who have coexisting

conditions such as inflammatory bowel disease (22). Reactive

arthritis, IBD-related arthritis, and psoriatic arthritis are not

among the diagnostic criteria in ERA. While psoriatic arthritis

in children is a different subgroup of JIA, both psoriatic

arthritis, reactive arthritis, and IBD are included in the SpA

group in adults (23). Secondly, the ILAR classification criteria

focus on the importance of extra-axial manifestations such as

peripheral arthritis and enthesitis, while SpA classification

pays attention to the presence of axial and spinal involvement.

Finally, elevated inflammatory markers is one of the criteria

in SpA, whereas that is not the case in ERA.
FIGURE 2

MRI findings in SpA patients. (A) On T2-weighted fat-suppressed coronal sect
observed on the facing sides of the bilateral sacroiliac joint (white arrows). (B)
the level of the left sacroiliac joint (white arrow) and pseudo-widening (star)
appearance of fat replacement (black arrow) in the sacral region.
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Indeed the ILAR criteria has important limitations

regarding the classification of patients in the

spondyloarthropathy group. Enthesitis-related JIA was

considered an undifferentiated SpA in ILAR, whereas all the

different forms of adult SpA can be found in children, with

the major difference being the higher proportion of

undifferentiated forms in children. Thus a new classification

criteria have been proposed by researchers from PRINTO,

suggesting fundamental changes, in the classification of

enthesitis-associated arthritis (24). This new criteria was called

“Enthesitis/spondylitis-related JIA and included the following

criteria: peripheral arthritis and enthesitis, or arthritis or

enthesitis, plus ≥3 months of inflammatory back pain and
ions, areas of bone marrow edema consistent with acute sacroiliitis are
On T1-weighted fat-free coronal sections, erosion and irregularities at
of the joint space are observed. In the right sacroiliac joint, there is an
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sacroiliitis on imaging, or arthritis or enthesitis plus 2 of the

following: (1) sacroiliac joint tenderness; (2) inflammatory

back pain; (3) presence of HLA-B27 antigen; (4) acute

(symptomatic) anterior uveitis; and (5) history of a SpA in a

first-degree relative. Of note, if peripheral arthritis is present,

it should persist for at least 6 weeks.

The current PRINTO definition has been partly harmonized

with the adult one, and an imaging criterion for radiographs

(25) or magnetic resonance imaging (26) has been introduced.

The adult definition of inflammatory back pain has been

adopted. Because the term ERA could wrongly suggest the

existence of a form of SpA that is specific to childhood, it was

initially proposed to name this condition juvenile SpA and

was later changed to enthesitis/spondylitis-related JIA.

Furthermore one of the main differences of PRINTO

classification criteria is that sacroiliitis on imaging was added

among the list. Albeit definition of sacroiliitis on MRI for

adult patients well-defined, the use of this definition of MRI

findings for pediatric cases may cause false-positive results

due to the physiologic bone marrow changes of growing bone.

Recently, MRI definitions for active and structural sacroiliac

joint lesions in juvenile cases are published (27).

Although there is a lack of substantial molecular omics

studies, most pediatricians would regard ERA more like a

juvenile AS, especially once sacroiliitis is detected. There is a

need for more follow-up data on patients with peripheral

disease -fulfilling the ERA criteria, to understand whether

they constitute a separate pediatric group. Moreover,

sophisticated studies are crucial to understand whether axial-

ERA is truly an early onset AS or SpA.
Etiology

The lack of knowledge on SpA etiology has been a major

concern in diagnosis and disease treatment. The diagnosis is

dependent on clinical manifestations which shows

heterogeneity between patients whereas the therapeutic

interventions were developed based on observational studies.

In this section we will discuss the possible risk factors for

SpAs and theories related with them.
HLA-B27

The immune system acts as a safeguard to protect our body

from the invasion of harmful intruders. These foreign entities’

proteins should be presented as peptides to our immune cells

to activate a potent immune response. Peptides loaded on

Major histocompatibility complex (MHC) molecules located on

cell surface can be recognized by T cells which in turn cause

their activation. All nucleated cells have MHC class I molecules

that take part in the presentation of intracellular antigens (i.e.,
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viral, tumor) to CD8+ T lymphocytes and their heavy chains

are encoded by genes at HLA-A, HLA-B and HLA-C loci (28).

Antigen presenting cells (APCs) play a significant role in

activating the adaptive immune system and are specialized cells.

MHC class II molecules are expressed on these cells and are

involved in the presentation of exogenous peptides (i.e.,

bacteria, parasites) to CD4+ T cells. These molecules are

encoded by HLA-DR, HLA-DP and HLA-DQ (29).

The first report showing the association of the MHC class I

molecule HLA-B27 with SpAs was published in 1973 (30). Since

then many studies were conducted to obtain more information

on disease etiology and underlying mechanisms. HLA-B27

positive population constitutes 6%–8% of the general

population whereas this ratio increases to more than 80% in

AS patients (31, 32) implementing its strong plausible

contribution to disease etiology. HLA-B27 has different

variants with aminoacid substitutions mostly in their peptide

binding cleft (33). Among these variants, HLA-B*27:05, HLA-

B*27:02 and HLA-B*27:04 show association with SpA whereas

this is not the case for HLA-B*27:06 and HLA-B*27:09 (34,

35). HLA-B*27:05 is more common in Caucasian, HLA-

B*27:04 in Chinese and HLA-B*27:02 in Mediterranean

population (36).

The importance of HLA-B27 in SpA etiology was also

recapitulated using animal models. Rats having high levels of

HLA-B27*05 and human beta 2 microglobulin (B27-Tg)

partially phenocopy the human disease with inflammatory

bowel condition, inflammatory peripheral arthritis and skin

lesions (37). Interestingly, genetic factors seems to play a role

in the process based on the fact that SpA related symptoms are

only manifested in rats having Lewis or Fischer background

but not in Dark Agouti background. Mice with same genetic

modifications also display spontaneous arthritis (38) and the

lack of β2-microglobulin (β2m) or TAP1 gene does not impair

the manifestation of disease related phenotype (39, 40). The

background of the mice has been found to be relative for the

development of the disease as well (41).

The HLA-B27 levels seems to be a pivotial factor regulating

disease susceptibility. Higher levels of HLA-B27 are typically

seen in the peripheral blood mononuclear cells (PBMCs) of

patients compared to healthy controls positive for this allele

(42). Moreover, individuals homozygote for HLA-B27 are

associated with an increased risk of AS development

compared to heterozygotes (43). The same phenomenon is

also observed in animal models. Disease susceptibility shows a

positive correlation with HLA-B27 copy number and its

relative expression in lymphoid cells (44) that can be

upregulated via pro-inflammatory stimuli. Of note, this dose

dependent effect might also explain why only 2% of HLA-B27

positive patients develop the disease.

The positivity of HLA-B27 also has an influence on disease

manifestation. In more than 80% of AS patients, symptoms

emerge at ≤30 years of age. Interestingly, HLA-B27 positive
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AS patients show an earlier disease onset compared to negative

ones (45) and have a worse prognosis with elevated disease

activity and duration (46). The frequency of specific

symptoms also depends on HLA-B27 status. Psoriasis and

IBD are more common in HLA-B27 negative patients whereas

peripheral arthiritis and uveitis are observed more frequently

in HLA-B27 positive ones (47).

Overall, it is clear that HLA-B27 somehow plays a role in

disease pathogenesis. Its possible contribution to disease

progression and related theories are discussed below.
Arthritogenic peptide/molecular mimicry hypothesis
The mature MHC I molecule is composed of a heavy chain

(HC), a β2m light chain and a peptide, 8–10 amino acids in

length. Its formation involves a series of protein assembly and

disassembly within the complex. First, newly synthesized

heavys chains are translocated to the endoplasmic reticulum

(ER) and glycosylated. This post-translational modification

acts as a signal for incomplete folding which in turn triggers

HCs interactions with chaperones calnexin and calreticulin.

As HCs gain the correct tertiary structure, they associate with

β2m resulting in the dissociation of calnexin (48, 49). Next,

the complex further interacts with a transporter associated

with antigen processing (TAP) via tapasin which is bound to

ERp57 to form the peptide loading complex (48). Eventually,

Erp57 and calreticulin dissociate to allow the binding of

peptides to the MHC I. Although, MHC class I molecules are

responsible for the presentation of the peptides to CD8+ T

cells, these peptides should be trimmed before they are loaded

on the complex. For that, purpose proteasome performs the

initial trimming process causing the formation of peptides

∼15 aa in length. These peptides enter ER through TAP

transporter and furher cleaved by ERAP1 and ERAP2 to have

the optimal length for the loading (50). Finally, as MHC I is

loaded with the peptide, the complex is sent to the surface of

nucleated cells in particular APCs to perform a successful

round of peptide presentation.

The plausible contribution of APCs in disease pathogenesis has

been the center of many studies. The increased abundance of

macrophages in sacroiliac (51) and enthesis (52) biopsies of AS

patients attain a possible role for these cells. The level of

circulating CD141+ dendritic cells (DCs) show a positive

correlation with BASDAI in AS patients (53). Moreover, lower

levels of MHC class II expression in DCs of AS patients (54) and

animal model (55) implies that distortions in antigen presentation

might very well be a key factor in disease pathogenesis.

Previous studies suggested that HLA-B27 binds to a

distinctive set of peptides that show similarity to self-peptides

(Figure 3). Their presentation to CD8+ T lymphocytes

triggers the breakdown of self tolerance which in turn

activates a destructive immune response in affected sites (56).

In support of this notion, HLA-B27-restricted CD8+ T cells
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were detected in the synovial fluid of AS patients (57, 58).

They are also found to be directed against self-peptides

derived from vasoactive intestinal peptide type 1 receptor

(VIP1R, aminoacids 400–408) and glucagon receptor (GR,

aminoacids 412–420) (59, 60). A controversial finding pointed

out that HLA-B*27:09 subtype that is not associated with the

disease also presents the VIP1R-derived peptide (61).

However, further investigations revealed that peptide’s

conformation differs from the one presented by the disease

relevant variant HLA-B*27:05 (59).

The molecular mimicry between HLA-B27 and gram-

negative bacteria was also suggested to be a key element in

autoreactive T cell activation and autoimmune reaction.

Indeed, the sequence homology between HLA-B27 and

arthritogenic bacterias Klebsiella pneumoniae (62), Yersinia

enterocolitica, Salmonella typhimurium, Shigella flexneri and

Shigella sonnei was described (63). This theory is further

supported by a study by Ramos et al. showing that a peptide

derived from the intracytoplasmic tail of HLA-B27 shows

similarity to Chlamydia trachomatis and acts as a ligand only

for disease associated HLA-B27 variants (64).

Although presentation of unusual peptides by HLA-B27 was

suggested in disease pathogenesis, the ongoing presentation of

disease related symptoms in CD8+ T cell depleted B27-Tg

rats or TAP1−/− mice argues strongly against the importance

of antigen presentation in disease etiology (65, 66) thus other

theories were also developed (40, 65, 66).

Homodimeric HLA-B27 molecule
As mentioned above, the major function of a MHC class I

molecule which is composed of a heavy chain, β2m and a

peptide, is to present these peptides to CD8+ T cells. Rather,

HLA-B27 was reported to be recognized by Natural Killer

Cells (NKs) and CD4+ T lymphocytes in the form of β2m-

free homodimers (67) which is established through an

unpaired cysteine at position 67 (68) (Figure 3). Strikingly,

the B27-Tg rats with functional NK cells do not present

disease symptoms indicating that these cells act in concert

with lymphoctes in disease manifestation (69). As a matter of

fact the critical involvement of CD4+ T cells in disease

progression was recapitulated in many studies. Transfer of

different T lymphocyte populations to athymic nude B27-Tg

mice revealed that CD4+ T cells are the major cell population

inducing colitis (70). Moreover, their levels shows an

increment in the lymph nodes draining the sites of

inflammation in animal model (71) and in peripheral blood

of SpA patients (72). Higher levels of activated CD4+ T cells

is also observed in B27-Tg rats compared to healthy ones (65).

Studies aiming to understand the involvement of dimer

formation in disease pathogenesis unearthed that HLA-B27

variants associated with SpA have an increased tendency for

dimer formation (73). The receptors for HLA-B27

homodimers were found to be KIR3DL1, LILRB2 (74),
frontiersin.org

https://doi.org/10.3389/fped.2022.1074239
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


FIGURE 3

HLA-B27 related theories in SpA pathogenesis.
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KIR3DL2 (75) and LIR6 (68) and expressed on lymphocytes,

monocytes and Natural Killer Cells (NKs) (75). The level of

KIR3DL2 positive NK and CD4+ T cells increases in the

peripheral blood and synovial fluid of SpA and ERA patients.

The receptor engagement also shows a survival and activation

profile in NKs and T cells respectively (73, 76) whereas the

dissociation between KIR3DL2 and HLA-B27 decreases the

survival/proliferation of NKs and the release of disease related

cytokine IL17 from the PBMCs of AS patients (77). In line

with this finding, KIR3DL2+ CD4+ T cells collected from the

synovial fluid of SpA patients displays enhanced levels of IL17

secretion (78).

Unfolded protein response (UPR) activation
UPR activation was suggested to be a major explanation in SpA

pathogenesis. Proteins are biomolecules that orchestrate many

cellular processes. To fulfill their task, they need to be folded
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properly in the organelle called Endoplasmic Reticulum (ER).

Proteins with folding deficits can be removed via autophagy

or Endoplasmic Reticulum Associated Degradation (ERAD)

(79). However, the accumulation of misfolded proteins may

also take place which in turn activates a stress response

machinery namely UPR. This stress is regulated through 3

transmembrane proteins located on ER: Inositol-requiring

enzyme 1 (IRE1), PKR-like ER kinase (PERK) and Activating

Transcription Factor 6 (ATF6). Upon its activation, IRE1

cleaves Xbp mRNA leading to the formation of an active

transcription factor sXbp. This factor is responsible for the

synthesis of chaperones and ERAD components to achieve

cellular homeostasis whereas an increase in magnitude and

duration of stress results in the activation of the apoptotic

IRE1-JNK pathway. Activation of PERK leads to the

phosphorylation of eIF2α which in turn put a halt to

translation whereas activating selective translation of the
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ATF4 transcription factor. Similar to IRE1 pathway, ATF4 is

also responsible for the activation of homeostatic genes yet

unresolved stress promotes the expression of pro-apoptotic

CHOP. ATF6 is translocated to Golgi upon UPR and cleaved

with S1P and S2P proteases. The newly formed cytosolic

domain of ATF6 is a transcription factor and is involved in

the transcription of chaperones (80).

HLA-B27 is unique in a way that it misfolds even in the

presence of β2m and peptides which in turn activate UPR

(Figure 3). There are several bodies of evidence proving this

aberrant feature of HLA-B27:

- Folding rate: HLA-B27 has a slow folding nature which in

turn induces homodimer formation and its retention in the

ER. These molecules can then activate the UPR. The B

pocket which is located at the peptide binding groove of

HLA-B27 seems to be crucial for this machinery. Altering

residues in this region not only enhances HLA-B27’s

folding but also alleviates homodimer formation (81).

- ERAD: Another clue showing the misfolded nature of HLA-

B27 is its enhanced predisposition to undergo ERAD (82) in

which EDEM1, and HRD1 were found to be pivotal

regulators (83, 84). In support of this notion, the use of

ERAD blocking reagents results in an increment in the

levels of HLA-B27 dimers/oligomers.

- Interaction with chaperones: The chaperones help misfolded

proteins to gain a proper tertiary structure. The prolonged

interaction between HLA-B27 multimers and chaperone Bip

indicates the improper folding of HLA-B27 which in turn

activates the stress response (85). In addition, the enhanced

interaction between HLA-B27 and oxidoreductase Erp57 is

also involved in dimer formation which again may turn on

UPR (86).

Macrophages residing in the peripheral joints of AS patients

have increased levels of Bip compared to osteoarthritis

patients (87) and mononuclear cells collected from the

synovial fluid of SpA patients shows an activation state for

UPR (88). In B27-Tg rats, bone marrow derived macrophages

shows prominent UPR activation status which shows a

positive correlation with HLA-B27 levels (89, 90). The UPR

induction was also observed in B27-Tg rats’ dendritic cells

(55). Strikingly, ERAP1 deficient B27-Tg rats remained

healthy due to the blockade of UPR activation (91).

The pathogenesis of SpA clearly involves the activation of

the immune system thus UPR-driven immune modulation has

also been the subject of extensive investigation. NFκB was

shown to be activated during UPR (92) that mediates Th17

differentiation via IL23, a cytokine that is elevated in the

serum and synovial fluid of SpA patients (93, 94). The

activated Th17 cells in turn produce cytokines such as IL17,

TNF and IL6 (95). A strong activation for IL23/IL17 axis was

detected in the colon of B27-Tg rats (96) and overexpression

of IL23 causes a disease phenotype similar to AS in mice (97).
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In addition, Th17 cells were found to be enriched in the

peripheral blood of AS patients (98). Furthermore, DCs, a

major source for IL23, contribute to Th17 cells’ expansion in

the B27-Tg animal model (71). Although, macrophages with

prominent UPR activation are destined to produce higher

levels of IL23 (96), there are also studies showing that IL23

production is independent of UPR activation thus further

studies are warranted (99).

Another NFκB dependent cytokine TNF-α is also a critical

component of the disease and also used as a target for therapy.

Similar to IL23, overexpression of TNF results in

spondyloarthritis formation in mice and this process was

found to be regulated through mesenchymal cells (100). The

level of Bip in the macrophages collected from the synovial

fluid shows a positive correlation with TNF levels indicating

that immune modulation by UPR might be the basis for

elevated TNF levels in disease (87). TNF is detected in the

inflamed tissues of SpA patients and also is elevated in

PBMCs and serum (101).
Other susceptibility genes

Studies on families revealed that SpAs may have a heritable

component. For JIA the recurrence risk in first cousins was

determined to be 5.8 fold whereas the sibling relative risk is

estimated to be 11.6 fold (102). AS’s heritability is ≥90% (103,

104) with a sibling recurrence risk of 8.2% (105). The

prevalence increases dramatically with the presence of a first

degree relative suffering from the disease (106, 107) and the

concordance rate was determined to be 25%–75% and 4%–

15% in monozygotic and dizygotic twins respectively (103,

104, 108). Overall, these findings strongly indicate that genetic

factors are key determinants in disease pathogenesis. As

mentioned above the presence of HLA-B27 showed the

highest association with disease susceptibility. However, the

fact that only 2% of the HLA-B27 positive population

develops SpA is a strong indicator that there are additional

genetic risk factors for the development of the disease (109).

To understand this phenomenon better genome wide

association studies (GWAS) were performed in SpA patients.

The second well established susceptibility locus for AS and

ERA was found to be ERAP1 (110, 111) which is involved in the

presentation of peptides with optimal length. Several studies

made it apparent that defects in ERAP function might be

involved in disease pathogenesis. ERAP1 variants with a loss

of function shows a protective effect for disease which

provides strong evidence for the involvement of atypical

processing of antigenic peptides (112). Indeed, HLA-B27 was

shown to bind extended peptides with protruding C-terminus

(113) which in turn may activate a potent T cell response

thus leading to SpA development. The deficits in peptide

trimming might also decrease the level of peptide- loaded
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MHC molecules which in turn increase the levels of misfolded

HLA-B27 molecules, UPR activation and disease progression.

Elevated UPR levels might also be regulated through other

mechanisms including damaged ubiquitin-ERAD machinery.

Previous studies clearly show that ubiquitin conjugating

enzyme UBE2J1 is involved in targeting of MHC class I

molecules for ERAD (83) thus further studies aiming to

unveil the link between another susceptibility gene UBE2E3

(114) and ERAD in disease etiology would be valuable.

Shaping immune response is indispensable in AS

pathogenesis. As mentioned above, the IL23/IL17 axis is a

crucial component of this machinery. Its importance was also

verified in GWAS studies. Molecules related with this pathway

(IL23R, IL12B, IL6R, IL1R1, IL1R2, TYK2, IL27A, STAT3,

JAK2) are among the gene loci that shows association with

AS (83, 114). This also holds true for the TNF-α pathway.

Research revealed the presence of disease associated SNPs

near to/in TNFRSF1A (83, 114), TNFSF15 (115) and TRADD

(116). Genes related to T cell regulation, RUNX3, IL7R,

EOMES, ZMIZ1, ICOSLG, SH2B3 and BACH2, are also

among the AS risk loci (9). Other genes showing association

with AS are GPR25, GPR65, GPR35, TBKBP1, PTGER4,

BACH2, NOS2, FCGR2A, NKX2-3 (9), CARD9 (117, 118),

KIF21B (119), ANTXR2 (120), ANO6 (121).

For JIA, ERAP1and IL23R are among the disease susceptibility

genes for ERA and juvenile psoriatic arthritis respectively (111).

The lower prevalence of JIA subtypes hampers the construction

of well-powered cohorts for GWAS analysis. Thus combining all

JIA subtypes rather than investigating them separately was used

to detect genetic associations. PTPN2, ANGPT1, COG6 (122),

CD80, JMJD1C (123), TRAF1-C5 (124), VTCN1 (125), IL2RA,

IL2RB, STAT4 (126), TNFAIP3 and TRAF1/C5 (127) were

found to be JIA-predisposing loci.
Gender

Many rheumatic diseases display gender predominance. Both

the incidence of AS (109) and ERA (128) are higher in males.

However, the male to female ratio has showed decrement over

time (129). This gender predominance indicates that sex-

specific factors might play a role in SpA pathogenesis. Among

these factors the impact of hormones in SpA progression was

extensively analyzed. Of note, the age interval for ERA patients

is 6–16 and it is well known that the level of sex hormones

increases with puberty thus the following observations may

partially explain the male dominance of ERA.

The effect of TNF inhibitors on SpA progression underlines

TNF’s importance in disease progression. Interestingly, estrogen

was shown to decrease inflammation in SpA patients via

downregulating TNF alpha levels (130). Estrogen

supplementation was also shown to decrease disease severity

both in human (131) and animal female subjects (132) whereas
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there are other studies showing no evident association (133).

Testosterone levels on the other hand did not show any

difference between SpA patients and healthy controls and were

not likely to regulate disease progression (131, 134). Sex

hormones were also shown to regulate the microbiome (135)

and immune system (136). The fact that both of these factors

play a role in disease progression (see below) underlines the

presence of a possible hormone-driven microbiome and

immune system related axis however, further studies are needed.
The gut and microbiome

The gut is one of the affected sites in SpA. Inflammatory

bowel disease (Crohn’s disease and ulcerative colitis) occur

concomitantly in up to 10% of SpA positive population (137).

Patients display inflammatory lesions at intestinal mucosa

(138) and the gut is also inflamed in the animal model (139)

indicating that an active immune response in the gut and SpA

might be interlinked. In support of this notion, macrophages

expressing the CD163 scavenger receptor increases in the

colonic mucosa of SpA patients (140) and IL23/IL17 axis is

exacerbated in the colon of B27-Tg rats (96).

The relation between SpA development and microbiota has

been the center of attention for decades. In animal models,

housing of the animals in pathogen-free conditions alleviated

the formation of several disease related symptoms including

colitis and arthritis. However, their transfer to conventional

conditions caused their manifestation. Moreover, treating B27-

Tg rats with antibiotics hampered colitis formation (141)

indicating that the microbiome is a key player in disease

pathogenesis (39, 142). Indeed, there are studies showing the

differences in microbiome of SpA patients and healthy controls

(143–145) and ileal biopsies from AS patients revealed the

presence of adherent and invasive bacteria which is

accompanied by the decreased barrier function of the gut (146).

Mucins play a major role in barrier function. Mucin-degrading

Akkermansia muciniphila species was found to be elevated in

B27-Tg rats indicating that SpA related dysbiosis may be

involved in impaired gut barrier (147). T cells are another key

player for maintaining the tolerance against commensal bacteria

(148). Interestingly, CD4+ T cells isolated from B27-Tg rats

produces higher levels of IFN-γ in response to antigens derived

from these organisms implying that there might be a loss of

tolerance for the microbiome (149, 150). Moreover, the

defective stimulation of T cells by APCs might also contribute

to the loss of tolerance for microbial flora (151, 152).

The link between treatment response and microbiome was

also investigated. Patients receiving 3 months of anti-TNF

therapy did not show a significant difference in their

microbiata composition. However, having higher levels of

Burkholderiales prior to therapy and an increment in genus

Dialister after therapy was observed in responders (153).
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Diet

Diet plays a crucial role in the development and progression

of many diseases. Diet has also been investigated in SpA however,

most studies were not replicated. A study by Haugen et al.

indicated that many AS patients reported that diet plays a role

in the manifestation and severity of their symptoms (154) and

they follow certain diets to decrease their intensity (155).

Starch consumption was suggested to be an exacerbating

factor in SpAs and a low starch diet was found to lower

disease activity whereas there are also studies showing no

impact (155, 156). Salt and dietary fat consumption did not

show any correlation with the severity of the symptoms (155,

157). Although quitting dairy products seem to have an

ameliorating role in disease (158) there are also studies

showing no effect (157).

In human subjects, the impact of prebiotic uptake in SpA

progression was analyzed. SpA patients with concomitant

quiescent ulcerative colitis receiving Lactobacillus acidophilus

and Lactobacillus salivarius displayed lower disease activity

(159). In contrast, a meta-analysis by Sanchez et al. opposed

this finding (160). In animal model the severity of colitis was

diminished with the supplementation of diet with prebiotics

(161). The constituent, fructo-oligosaccharides was found to

have the greatest anti-inflammatory effect in this regard (162,

163). Fibre-rich diets also showed a remedial effect on disease

by upregulating short chain fatty acids. Indeed, administration

of propionate to B27-Tg animals attenuates intestinal

inflammation (164).
TABLE 1 ERA treatment algorithm.
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Treatment and outcome

There are several treatment options used in clinics for SpAs.

However, the current therapy options do not always result in

full remission. Treatment of ERA varies according to whether

the disease is axial or peripheral, the number of active joints,

the presence of risk factors, and accompanying extra-articular

features (Table 1). NSAIDs are used as the first-line treatment

in enthesitis and sacroiliitis because of their analgesic and

anti-inflammatory effects. For peripheral disease, DMARDs,

especially methotrexate or salazopyrin are recommended.

Sulfasalazine or methotrexate is used for enthesitis or active

peripheral arthritis (165). The response to these non-biologic

DMARDs varies in a wide range (166). Non-biologic

DMARDs can also be used to prevent the development of

anti-drug monoclonal antibodies against TNF inhibitors

(TNFis) (167). Methotrexate and Salazopyrin monotherapy is

not recommended in active sacroiliitis whereas they can be

used as an adjunct therapy. If arthritis does not respond to

non-biologic DMARDs or for patients who develop the axial

disease then biologic DMARDs would be indicated, often

along with the NSAID treatment. Among these, anti-TNF

drugs are the first choice. Since etanercept and adalimumab

are licensed for pediatric use, the present data is mainly

focused on the effectiveness and safety of these two

monoclonal anti-TNF drugs (168, 169).

Recently anti-IL17 has become an alternative treatment in ERA

as well. A total of 86 patients (52 ERA, 34 JSpA 34 patients; median

age, 14 years) were enrolled for an open-label secukinumab trial in
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the first treatment period. In the second period, responders received

secukinumab or placebo. Secukinumab demonstrated a significantly

longer time to disease flare and a consistent safety profile similar to

adults (170). Moreover, there are ongoing clinical trials for

ixekizumab (NCT04527380).

Bridging therapy with systemic glucocorticoids might be

used during the initiation or escalation of therapy.

Intraarticular glucocorticoid injections of the sacroiliac joints

as an adjunct therapy are conditionally recommended (165).

Physiotherapy is also a crucial element in the treatment

process thus should be offered to all SpA and JIA patients.

Another important aspect of the treatment is to monitor the

side-effects of the drugs. For NSAIDs, gastrointestinal problems

may arise thus proton pump inhibitors might also be prescribed.

On the other hand, adequate fluid intake is essential to

circumvent renal injury (171). Anti-TNF drugs make patients

prone to infections thus in countries where tuberculosis is still

encountered, routine screening should be performed.

Disease activity has to be followed to evaluate the response

to treatment. For JIA patients, Juvenile Arthritis Disease

Activity Score (JADAS) and Bath Ankylosing Spondylitis

Disease Activity Index (BASDAI) are screened whereas

BASDAI and Ankylosing Spondylitis Disease Activity

(ASDAS) are used for the assessment of therapy success in

adult SpAs (172, 173). These are applied for childhood

diseases with axial involvement as well. Finally, Weiss et al.

have developed and validated the first disease activity

assessment for JSpA through international input and

consensus formation techniques: this new criterion was called

the Juvenile Spondyloarthritis Disease Activity (JSpADA)

Index. This outcome tool had a good performance in

discriminating between subjects with active vs. inactive disease

and responded well to changes in the disease activity (174).

For adults, many therapeutics have been used and published.

The reader is referred to excellent reviews on the subject. The

primary treatment for SpA is NSAIDs and TNFis (certolizumab,

etanercept, infliximab, adalimumab, and golimumab). Of note,

SpA patients have higher levels of TNF-α (101) and HLA-B27

positive patients have a better response rate to TNF therapy

(175) that might be explained by higher TNF levels in these

patients (176). Therefore having TNF levels above a certain

threshold value may help to estimate a better response and

analysis of TNF levels before treatment might be beneficial.

wIL17 inhibitors (secukinumab and ixekizumab) can also be

used for patients. Anti-IL17 is not recommended in patients

with IBD or recurrent uveitis. If the patient has tuberculosis or

recurrent infections, sulfasalazine is preferred over secukinumab

and ixekizumab. Tofacitinib (a JAK inhibitor) is a second-line

option for patients with contraindications to TNFi or anti-IL17.

Co-treatment with low-dose methotrexate is not generally

recommended except with infliximab (177). Brodalumab

(IL17RA), bimekizumab (dual inhibition of IL17A and IL17F),

and upadacitinib (selective JAK1 inhibitor) demonstrated
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improvement in active axial SpA (178–180). Although IL23

inhibitors (tildrakizumab, risankizumab and guselkumab) are

effective in the treatment of psoriatic arthritis (181), in phase 2

and phase 3 studies, the use of ustekinumab and risankizumab

did not show any improvement on SpA disease activity (182,

183). Of note, discontinuation of these biologic disease-

modifying drugs (DMARDs) is not recommended due to the

risk of flare (177) and all these biological DMARDs may be

studied in adolescent patients as well.
Conclusion

As summarized above, studies ongoing for more than 4

decades have led to the discovery of many risk factors for

SpA development. Among these factors HLA-B27 seems to be

the spearhead helping us to better understand the etiology of

the disease. HLA-B27 driven mechanisms are thought to

involve UPR activation and switching on the IL23/IL17 axis.

The fact that only a part of HLA-B27 positive people

develop SpA indicates that there are additional factors

contributing to disease pathogenesis. Although the threshold

effect for HLA-B27 might be a possible explanation for this

observation, it is most likely that further investigation of

factors other than HLA-B27 is required that will also pave the

way for the development of alternative therapies. The current

treatment regimen involves NSAIDs, TNF inhibitors and

possibly DMARDs. However, only some patients respond to

the treatment which in turn causes a significant decrease in

the non-responders’ quality of life. Therapies targeting UPR

and IL23/IL17 axis have recently gained attention but clinical

trials are needed for further validation.
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