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Glanzmann thrombasthenia (GT) is a rare inherited disease characterized by
mucocutaneous bleeding due to the abnormalities in quantity or quality of
platelet membrane GP IIb (CD41) or GP IIIa (CD61). GP IIb and GP IIIa are
encoded by the ITGA2B and ITGB3 genes, respectively. Herein, we described
a 7-year-old Chinese boy of the consanguineous couple who was diagnosed
with GT based on the typical clinical manifestations, absence of blood clot
retraction and the reduced expression of CD41 and CD61 in platelets. A
homozygous silent variant c.1431C > T (p. G477=) of the ITGB3 gene was
identified by the Whole-exome sequencing and confirmed by Sanger
sequencing. The variant was predicted to affect the splicing. RT-PCR and
sequencing revealed that the variant caused a deletion of 95 base pairs and
frameshift, and subsequently created a premature stop codon in exon 10 of
ITGB3 (p. G477Afs*30). It was indicated that the variant c.1431C > T (p.
G477=) of ITGB3 was the cause for Glanzmann thrombasthenia. Our findings
expanded the mutation spectrum and provided the information for the
genetic counseling, prenatal diagnosis and preimplantation genetic testing
(PGT).
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Introduction

Glanzmann thrombasthenia (GT) is an autosomal recessive disorder characterized

by mucocutaneous bleeding symptoms due to platelet defects. Ecchymosis,

haematomas, petechiae, nose and gum bleeding and menorrhagia are the most

common clinical manifestations (1, 2). According to previous publications, the

prevalence of GT is estimated to be approximately 1 in million, with increased rates

in high-consanguinity areas (3, 4). The main etiology of the disease is due to the

qualitative or quantitative reduction of platelet membrane GP IIb/IIIa (integrin

αIIbβ3). αIIbβ3 is a common dimeric complex, which promotes platelet adhesion,

platelet aggregation, and is involved in hemostasis (5). GP IIb (CD41) and GP IIIa

(CD61) are encoded by the ITGA2B and ITGB3 genes, respectively (6). Mutations in

the ITGB3 or ITGA2B genes damage the synthesis of GPIIb/IIIa, inhibit platelet
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aggregation, and subsequently lead to the development of

hereditary platelet incompetence (7, 8).

In the current investigation, we described a 7-year-old

Chinese boy with GT caused by a homozygous silent

mutation of the ITGB3 gene. The mutation c.1431C > T (p.

G477=) was identified by Whole-exome sequencing (WES)

and validated by Sanger sequencing. Moreover, RT-PCR and

sequencing demonstrated that the mutation created a

premature stop codon and the truncation of the ITGB3.
Materials and methods

Subjects

The consanguineous couple came to the Department of

Reproductive Genetics, Women’s Hospital, School of

Medicine, Zhejiang University for genetic counseling because

they had two children with generalized mucocutaneous

bleeding. The first child of the healthy couple was a female

who suffered from generalized mucocutaneous bleeding and

died when she was 5 years old. The couple provided no

detailed medical documents of the first child. The second

child was a healthy female. The third child was a male

(proband) at 7 years of age at the time of genetic counseling.

He presented with generalized scattered skin, petechiae, and

spots on his face after his birth. A blood clot retraction test

revealed that the clots did not shrink over 24 h. Furthermore,

the expression levels of CD41 and CD61 were significantly

reduced as compared with control while the expression of

CD42 was comparable with control (Supplementary

Figure S1).

The use of medical records of this family was approved by

the Institutional Review Board of the Women’s Hospital,

School of Medicine, Zhejiang University and the participants

provided their written informed consents.
Whole exome sequencing

Genomic DNA was extracted by a QIAamp DNA blood

mini kit (Qiagen, Hilden, Germany) according to the

manufacturer’s instructions and then was fragmented by

Covaris LE220 (Massachusetts, USA) to generate a paired-end

library (200–250 bp). All amplified libraries were performed

on the BGISEQ-500 platform (BGI, Shenzhen, China), the

single-strand DNA was mixed with MGIEasy™ DNA Library

Prep Kit V1 (BGI, Shenzhen, China) and then sequenced

using 100SR chemistry with BGISEQ-500RS high-throughput

sequencing Kit (BGI, Shenzhen, China).

Variants were assessed according to the protocol issued by

the American College of Medical Genetics and Genomics

(ACMG) (Richards et al., 2015). DECIPHER (http://decipher.
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sanger.ac.uk), OMIM (http://omim.org/), PubMed (http://

www.ncbi.nlm.nih.gov/pubmed), ClinVar (https://www.ncbi.

nlm.nih.gov/clinvar/), and HGMD (http://www.hgmd.cf.ac.uk/

ac/index.php) databases were used to investigate the clinical

relevance of the mutations (9).
Sanger sequencing

Sanger sequencing was carried out to confirm the variant of

ITGB3 gene. The primers were designed using Oligo Primer

Designer (Forward: 5′-GATACTATTCCCGTGCTTG-3′;
Reverse: 5′-CACATTGACCACAGAGGC-3′). The DNA was

amplified using the following procedure: 95°C for 10 min; 35

cycles at 95°C for 30 s, 60°C for 30 s, 72°C for 30 s; 72°C for

10 min. Sequencing was performed by an ABI 3130 DNA

analyzer (10).
Splicing assay

Total RNA was extracted from the peripheral blood cells of

proband and a healthy control using TRIzol (Takara, Japan) and

reverse-transcribed using RT Kit (Takara, Japan) following the

manufacturer’s instructions. RT-PCR was performed using

GoldStar Best Master Mix (CWBIO, Beijing) with the primers

designed using Oligo Primer Designer as following:

Forward:5′-AAGATTGGAGACACGGTGAG-3′ and Reverse:

5′-GCAGTAACGGTTGCAGGTAT-3′. The procedure of the

PCR was as follows: 94°C for 10 min followed by 35 cycles at

94°C for 30 s, 60°C for 30 s, 72°C for 30 s, and a final

extension step at 72°C for 10 min. Sequencing was performed

by an ABI 3130 DNA analyzer.
Results

Identification of novel silent mutation
of ITGB3

A homozygous silent mutation on exon 10 of ITGB3:

c.1431C > T (p. G477=) was identified in proband by WES

and confirmed by Sanger sequencing. The parents and the

second elder sister were heterozygous carriers, in accordance

with the autosomal recessive inheritance pattern (Figure 1).

The mutation has never been reported in any database

(gnomAD, ClinVar or HGMD) or literature.
Prediction of the variant c.1431c > T

NetGene2 Server (http://www.cbs.dtu.dk/services/NetGene2/)

was used to predict the effects of the variation c.1431C > T (p.
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FIGURE 1

Pedigree of the family and sanger sequencing validation. (A) II3(proband) had a homozygous mutation (c.1431C > T) in exon 10 of ITGB3 gene.
I1(mother), I2(father) and II2(the second elder sister) were all heterozygous carriers. II1 died at 5 years old and did not carry out any genetic test.
(B) Sanger sequencing results of the family members (red arrows indicate the mutation site).

FIGURE 2

Predict results of the c.1431C > T variant site. (A) The predict result of wild type ITGB3 by using NetGene2 Server (the red square represented). (B) The
predict result of ITGB3: c.1431C > T by using NetGene2 Server (the red square represented). (C) The predict result of wild type ITGB3 by using ASSP
(the red square represented). (D) The predict result of ITGB3: c.1431C > T by using ASSP (the red square represented).

Wang et al. 10.3389/fped.2022.1062900
G477=) on splicing. A new splicing site was found with

confidence score of 0.82 (Figures 2A,B). Alternative Splice

Site Predictor (ASSP) (http://wangcomputing.com/assp/index.

html) was also used to predict the mutation, which was in

accordance with the NetGene2 Server (Figures 2C,D).
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Pathogenicity of the variant c.1431c > T

Based on the highly consistent genotype–phenotype

correlation and splicing prediction, RT-PCR was performed to

verify the pathogenicity. With the designed primers, the exon
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FIGURE 3

Analysis of silent variant c.1431C > T (p. G477=) of ITGB3 gene. Sequencing results of ITGB3 cDNA from a healthy control (A) and proband (B). The
mutation caused 95 base pairs deletion (c.1430_1524del) and frameshift and then ITGB3 was truncated by a creation of a premature stop codon. (C)
Splicing schematic representation of exon 10 organization in wild type of ITGB3 gene. (D) Splicing schematic representation of exon 10 organization
in mutant type (ITGB3: c.1431C > T). The amino acid encoded at position 477 was changed from Glycine to Alanine, and caused frameshift. ITGB3 was
truncated after 30 amino acids translation (p. G477Afs*30).
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10 of ITGB3 was amplified. It was showed that the mutation

c.1431C > T resulted in a new donor splice site at the position

of 1,430–1,431 and a new acceptor splice site at the position

of 1,523–1,524 base pairs, which caused a deletion of 95 base

pairs (c.1430_1524del, Figure 3A,B). Therefore, the amino

acid encoded at the position 477 was changed from Glycine to

Alanine and then frameshift was found. ITGB3 was truncated

by a creation of a premature stop codon after 30 amino acids

translation (p. G477Afs*30) (Figure 3C,D). According to

ACMG recommendations (11), the mutation ITGB3: c.1431C

> T (p. G477=) was classified as likely pathogenic.
Discussion

In the current investigation, we described a Chinese boy

with GT due to the homozygous silent mutation of the ITGB3
Frontiers in Pediatrics 04
gene. A heterozygous mutation was detected in his healthy

parents and sister. The silent mutation c.1431C > T (p.

G477=) was proved to affect splicing, which resulted in a

premature stop codon and truncation of the ITGB3. In

addition, the CD41 and CD61 of the proband were nearly

absent, which significantly damaged the function of αIIbβ3.

Therefore, the platelet adhesion, platelet aggregation and clot

retraction were affected and consequently caused GT. The

mutation has never been reported in any database or

literature, indicating our findings expand the spectrum of the

diagnosis for the GT and provide insight and information for

the genetic counseling.

GT is a rare inherited abnormal platelet function disorder

(12, 13). Patients with GT may experience mild to severe

bleeding symptoms, including easy bruising, epistaxis,

mucosal bleeding, and increased bleeding after trauma or

surgery (14, 15). Most of the children may die at their early
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age due to severe excessive bleeding (3). Heavy menstrual

bleeding (HMB) is common in adolescent and adult females

(16). In this study, the 7-year-old boy diagnosed with GT

presented generalized scattered skin, petechiae and spots on

his face after his birth. A blood clot retraction test revealed

that the clots did not shrink over 24 h. Furthermore, the

expression levels of CD41 and CD61 were significantly lower

than those in normal while the expression level of CD42 was

the same as healthy people.

GT is caused by the mutations of ITGA2B or ITGB3 genes

encoding the αIIbβ3 integrin (6, 11). αIIbβ3 integrin is made up

of CD41 and CD61. Low expression of CD41 and CD61 on

platelets severely influence platelets functions, including

platelet adhesion, platelet aggregation and clot retraction (17,

18). Autosomal recessive inheritance is the general rule.

Clinically, people with GT are classified into three groups out

of the different expression and function of αIIbβ3. Most

patients are originally identified as type I, with less than 5%

αIIbβ3. Some people belonging to type II GT express low but

residual αIIbβ3 (5%–20%) (19, 20). Furthermore, in type III

GT patients, also named variant-type patients, αIIbβ3

expression reaches 100% of normal level while the αIIbβ3 fails

to function. The most common subtype is GT type I which

accounts for 78% of patients, while GT type II and type III

constitute 14% and 8% of cases, respectively (11). As a result

of loss of αIIbβ3 function, platelets are unable to bind

fibrinogen (Fg) and other adhesive proteins after vessel injury,

which may lead to loss of thrombus formation and clot

retraction in some cases (21, 22). In the present study, a

homozygous silent mutation c.1431C > T (p. G477=) of

ITGB3 gene was identified and confirmed in proband by WES

and Sanger sequencing. His parents and sister carried the

heterozygous ITGB3 c.1431C > T (p. G477=) mutation and all

of them did not present bleeding symptoms. Based on the

genotype–phenotype correlation and the results of the effect

on splicing by two online prediction tools (NetGene2 and

ASSP), RT-PCR was carried out to identify the pathology of

the mutation. It showed that the mutation caused 95 pairs

base deletion and a premature termination codon of ITGB3,

which might lead to absence of ITGB3 protein out of

nonsense-mediated decay (NMD) or truncated ITGB3 protein.

To our best acknowledgement, the silent mutation c.1431C >

T (p. G477=) has never been reported before. Taken together,

the homozygous silent mutation c.1431C > T (p. G477=) of

ITGB3 in proband may explain the cause for GT and the

proband belongs to the type I GT.

Nowadays, platelet transfusions, anti-fibrinolytic agents

infusion (aminocaproic acid or tranexamic), recombinant

activated factor VII (rFVIIa) infusion and hematopoietic stem

cell transplantation (HSCT) have been the mainstay of

therapies for GT patients (23, 24). However, the treatment of
Frontiers in Pediatrics 05
GT patients remains unsatisfactory. Patients’ quality of life is

significantly impaired by multiple, spontaneous

mucocutaneous bleeding episodes, and the high risk of

hemorrhaging with surgery or any trauma (3). Because the

therapies mentioned above focus on bleeding relief episodes

rather than providing a cure except the costly HSCT (3).

More importantly, the diagnosis of GT is often overlooked, as

it shares common clinical and laboratory features with other

platelet disorders. Therefore, it is of great value to carry out

genetic diagnosis as early as possible (25). In addition,

prenatal diagnosis or PGT is significant in families with GT

history.

The gene ITGB3 was located on chromosome 17q21.32 with

15 exons. According to HGMD (released February 2022), all

223 mutations have been reported in ITGB3. Among them,

are 144 missense or nonsense mutations (118 pathogenic

mutations, 21 uncertain significance mutation and 5

polymorphic mutations), 18 splicing mutations (17 pathogenic

mutations and 1 uncertain significance mutation), 3

regulatory substitutions (3 polymorphic mutations), 37 small

deletions (36 pathogenic mutations and 1 uncertain

significance mutation), 8 small insertions/duplications

mutations (pathogenic mutations), 4 small insertions

mutation (pathogenic mutations), 4 gross deletions

(pathogenic mutations), 4 gross insertions (pathogenic

mutations), 1 complex rearrangement (pathogenic mutation).

More than 70% of the mutations are associated with GT.
Conclusion

In conclusion, we report a novel homozygous silent variant

c.1431C > T (p. G477=) in exon 10 of the ITGB3 gene in a GT

family by the combined applications of WES, Sanger sequencing

and bioinformatics analysis. Furthermore, RT-PCR is necessary

to perform if the genotype–phenotype correlation is consistent

while only a homozygous silent mutation in autosomal

recessive disease is detected. The RT-PCR and sequencing

verify that the mutation causes a premature termination

codon of the ITGB3, upgrading pathogenicity evidence of the

silent mutation. These findings are helpful for prenatal

diagnosis and preimplantation testing for GT.
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