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Objectives: To study changes in heart function and hemodynamics during the
transitional period in small for gestational (SGA) infants and appropriate (AGA)
healthier counterparts.
Design: A hospital based prospective observational study was performed at a perinatal
center. Echocardiograms were performed on the first postnatal day and again at 48 h
age. Term SGA infants were compared with those AGA newborns matched for the GA
and mode of delivery.
Results: Eighteen SGA infants were compared with 18 AGA infants [gestation 38 ± 1.5
vs. 38 ± 1.2 weeks, p > 0.05 and birthweight 2331 ± 345 vs. 3332 ± 405 grams, p < 0.05,
respectively]. Maternal weight and body mass index was higher among non-affected
pregnancies, 61% infants were born vaginally, and no differences in cord blood pH at
birth were noted. SGA infants had higher systolic and mean blood pressure at both
time points, lower indices of right ventricular (RV) performance [TAPSE (tricuspid
annular peak systolic excursion) 7.4 ± 2.8 vs. 9.3 ± 0.7 on day 1, 7.2 ± 2.8 vs. 9.2 ±
0.5 on day 2, p= 0.001], lower pulmonary acceleration time (PAAT) suggestive of
elevated pulmonary vascular resistance [56.4 ± 10.5 vs. 65.7 ± 13.2 on day 1, 61.4 ±
12.5 vs. 71.5 ± 15.7 on day 2, p= 0.01] and higher left ventricular (LV) ejection
fraction [62.1 ± 7.8 vs. 54.9 ± 5.5 on day 1, 61.9 ± 7.6 vs. 55.8 ± 4.9 on day 2, p=0.003].
Conclusions: SGA infants had evidence of higher pulmonary vascular resistance, and
lower RV performance during the postnatal transition. The relevance and impact of
these changes to hemodynamic disease states during the postnatal transition
requires prospective investigation.
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Introduction

Fetuses with an estimated fetal weight (EFW) less than 10th percentile are at increased risk of

adverse outcome such intrauterine death (1), preterm birth (2), and meconium-stained amniotic

liquid (3). After birth, there is a greater risk of neurological and neurodevelopmental morbidity

(4), and a 10-to-30-fold increase in the risk of developing cerebral palsy (5). In a multivariable

analysis of the temporal trends (2010–2019) in hypoxic ischemic encephalopathy (HIE) and
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peripartum risk factors, small for gestational age neonates were found

to be associated with increased odds of HIE (6). Recent studies

conclude that the fetus with intrauterine growth retardation

(IUGR) is at greater risk of abnormalities of cardiac size and shape

(7), arterial and ventricular wall thickness and cardiac dilatation

beyond neonatal period (8), metabolic abnormalities (9), and

permanently altered autonomic cardiovascular control (10). In

chronic hypoxemia, IUGR fetuses redistribute cardiac output to

maximize the oxygen and nutrient supply to the brain. The fetal

circulation is a parallel circuit where most of the right ventricular

(RV) output is shunted through the ductus arteriosus (DA) to the

descending aorta, and the left ventricular (LV) output mainly

supplies the upper body and brain. Vasoconstriction of the

peripheral vascular bed (11) and vasodilation of the cerebral

arteries result in a preferential shift of cardiac output towards the

brain (12, 13).

After birth, experimental studies on animals demonstrated a

progressive decrease in pulmonary vascular resistance (PVR) (14),

concomitant with the switch in the direction of flows at the level

of DA and patent foramen ovale (PFO) and, shortly after that, the

closure of transitional shunts without any discernible changes in

heart function during the first postnatal day in healthy term

neonates (15, 16). Failure of the normal postnatal decrease in PVR

immediately after birth results in continued right-to-left shunting

across the fetal shunts, and persistence of elevated pressure in the

pulmonary circulation (17). In a recent study, Young et al. (18)

demonstrated that IUGR is a major risk factor for chronic lung

disease and pulmonary hypertension (PH). In addition, Khemani

et al. demonstrated that PH in the setting small for gestational age

(SGA) was associated with worse survival rates amongst a preterm

population (19). Previous studies also reported that IUGR was

found in 40% of patients with BPD and PH and is therefore an

important risk factor for screening (20). Characterization of the

changes in heart function and hemodynamics during the

transitional period in SGA infants is a knowledge gap and

important for appraising disease susceptibility. In this study, we

hypothesized that SGA newborns will display modified indices of

pulmonary vascular and heart development during the transitional

period.
Material and methods

We conducted a prospective cohort study of pregnant women

detected during the first to second trimester of pregnancy with

EFW < 10th centile and group of matched for gestational age (GA)

healthy pregnant (control group). This study was performed at a

Level II neonatal intensive care unit (NICU) at Maternity

Department of County Hospital, Târgu Mures Romania between

June 2021, and January 2022. The total annual birth rate in this

center is approximately 1,500 cases; of these, 5% are SGA

newborns leading to 75 potential eligible infants/year. Pregnant

women during the first to second trimester of pregnancy, in whom

EFW < 10th centile, were examined closely during the third

trimester of pregnancy as part of routine care until spontaneous

labor or delivery. A control group, consisting of healthy pregnant

women with EFW between 10 and 90th centile, were matched one-
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to-one according to GA. Mothers were approached again at term

(37–41 weeks) and asked to participate in the study. The informed

consent process took place before active labor, and only those who

agree to participate and signed a consent form were included. The

study was approved by the Ethics of Research of University of

Medicine, Pharmacy Science, and Technology George Emil Palade

of Targu Mures, Târgu Mures,̦ Romania (Institutional Review

Board Number 1241/14.01.2021). Pregnancies where absent or

reversed diastolic flow on UA and MCA Doppler was detected

were excluded, as these babies usually are delivered prematurely.
Concealment and blinding

The health care providers who attend the pregnant women at

birth were blinded to the subject’s participation into the study. In

addition, data abstractors were blinded to group allocation. To

minimize operator dependency error, the maternal scans were

performed by a single experienced obstetrician (C.M) and the

neonatal scans were performed by a single sonographer (L.M.S).

The sonographers were not blinded to group allocations and echo

order; however, all 72 neonatal scans used for this study were de-

identified, digitally stored and all the measurements were performed

off-line in a random order at the completion of recruitment. To

ensure blinding, clinical data were collected separately and were

merged with echocardiography data prior to statistical analysis.

Eligibility Criteria:

SGA cases were included if they satisfied the following eligibility

criteria:

(i) Birth Weight (BW)≤ 10th percentile on Fenton growth charts

(ii) Evidence of EFW≤ 10th percentile in first to second trimester

(iii) Born after 37 completed weeks GA and clinically asymptomatic

(iv) Singleton pregnancy with documented GA based on the LMP

date and first trimester ultrasound exam

Appropriate for Gestational Age (AGA) controls were included if

they satisfied the following eligibility criteria:

(i) AGA infant with BW > 10–90th centile on Fenton growth charts

at birth

(ii) Evidence of EFW > 10th centile in first to second trimester

(iii) Low-risk singleton pregnancy with documented GA based on

the LMP date and first trimester ultrasound exam and were

followed up until spontaneous or induced labor and delivery

(iv) Born at term gestation and clinically asymptomatic

(v) All eligible fetuses had documented umbilical artery (UA) and

middle cerebral artery (MCA) Doppler tracings prior to birth

Exclusion criteria were as follows:

(i) Maternal age < 18 years

(ii) Fetuses with structural anomalies.

(iii) Infants detected with genetic or dysmorphic abnormalities

(iv) Infants born less than 37 weeks GA

(v) Evidence of perinatal hypoxia-ischemia (arterial cord blood pH

< 7, 5-min Apgar score < 7, and/or need for bag and mask

ventilation)

(vi) Evidence of significant congenital heart disease [except patent

foramen ovale (PFO), patent ductus arteriosus (PDA)]
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EFW was calculated from measurements of the biparietal diameter,

head circumference, abdominal circumference and femur length

using Hadlock formula (21, 22). Subsequently UA and MCA PI

were measured. Doppler analyses were performed for all study

participants using the same ultrasound machine (Voluson GE

Model) and by the same physician. Pulsatility index (PI) = peak

systolic velocity -end diastolic velocity/ time averaged maximum

velocity. For this study, the last ultrasound examination prior to

delivery was used for the analysis. Per convention, the UA Doppler

waveform was recorded in free loop, while MCA Doppler

waveform was recorded as close possible to the vessel originating

from the circle of Willis.

Arterial cord blood pH measurement after birth was standard of

care for all newborns in our institution; specifically, blood analysis

was performed with I-STAT Analyzer (MN:300-G, Abbot Point of

Care Inc). Immediately after birth, the clinical status of newborn

infants was evaluated by the attending neonatologist according to

the Apgar score at 1 and 5 min. Other data including birthweight,

cranial perimeter and length were assessed.

Arterial blood pressure was measured at two different time points

(24- and 48-h postnatal age), prior to each echocardiographic

evaluation exam was performed, using a noninvasively

oscillometric method (B40 Monitor, GE Medical System

Information Technologies, Inc Milwaukee, WI, USA) with the

infant in a calm state. An appropriate size cuff for the arm was

used. An average of two consecutive measurements were included

in analysis. We choose to report this parameter because it is widely

used to define hypotension; however, there are a number of factors

that can affect interpretation (23, 24).

Peripheral Oxygen saturation (SpO2) was measured because

several studies reported SpO2 screening of critical congenital heart

disease (CCHD) to be feasible and cost effective (25), and also has

been found to reduce missed diagnosis of CCHD (26, 27).
Echocardiography Assessment

Paired echocardiography evaluations were performed at 24-h

(Echo 1) and 48-h (Echo 2) postnatal age. These two time points

were specifically chosen because healthy term newborns are usually

discharged after 2 complete days of hospitalization. Exams were

performed with the Versana active ultrasound system using a 12-

MHz neonatal transducer (GE Medical System, Milwaukee,

Wisconsin). Each echocardiogram was performed with the infants

in the supine position, either asleep or in a resting state, without

prior sedation, and lasted less than 40 min. Small volumes (2–

5 ml) of Glucose 10% were administered by mouth and/or

swaddling techniques to help the infant reach a quiet state. Image

acquisition was conducted in accordance with the guidelines for

targeted neonatal echocardiography (28). Comprehensive evaluation

of heart function, pulmonary and systemic hemodynamics, shunt

hemodynamics were performed according to a standardized protocol;

specific details of echocardiography indices are described in

Supplementary Appendix Table S1. Five consecutive cardiac cycles

were recorded and for pulse-wave Doppler (PWD) measurements

three representative waveforms were measured, averaged, and

included in the analysis. Data on flow velocities, velocity time
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integral (VTI) and heart rate were analyzed. The values of peak

systolic velocity (PS), end-diastolic velocity (ED) and V mean

(traced), were recorded, and included in the analyses. Resistive index

(RI) was calculated according to the formula RI = (Vs-Vd)/Vs.

Pulsatility index was calculated according to formula PI = (Vs-Vd)/V

mean.
Specific echocardiography measurements

Pulmonary Acceleration Time (PAAT) and Right Ventricular

Ejection Time (RVET) were measured from Doppler spectral flow

velocity envelope obtained by placing a pulsed Doppler sample

volume at the pulmonary valve annulus. PAAT is defined as the

interval between the onset of systolic pulmonary arterial flow and

peak flow velocity. RVET is measured from the interval between

the onset of RV ejection to the point of systolic pulmonary arterial

flow cessation. Pulmonary Vascular Resistance index (PVRi) was

calculated by dividing RVET to PAAT to account for the impact of

heart rate of time-dependent indices. Mean PAAT and RVET,

from three well-defined waveforms, were used for data analysis.

A RVET: PAAT ratio > 4 was considered abnormal (29). Right

ventricular systolic function was assessed using both tricuspid

annular peak systolic excursion (TAPSE) and fractional area

change (FAC) measured from the RV 3-chamber view. Abnormal

RV systolic function was defined be TAPSE <8 mm (30) and FAC

< 35% (23) based on normative data in the transitional period. Left

ventricular systolic function was assessed by calculating ejection

fraction using the Simpson biplane method. A threshold LV-EF

(%) value <55% was used as a threshold abnormal LV systolic

function (29) Diastolic RV and LV function was assessed by

measuring the ratio of the peak velocities of early (E) and late (A)

diastolic inflow across the respective atrioventricular valve. A ratio

of E:A < 1.0 has been associated with poor compliance of the

corresponding ventricle, denoting altered diastolic function (31). In

addition, LV isovolumic relaxation time (IVRT) was obtained from

the apical 4-chamber view using pulse wave Doppler with the

sample gate placed at the level of the tips of mitral valve leaflets.

A IVRT value higher than 50 msec was considered representative

of abnormal LV diastolic function (32).
Outcomes

The primary outcome was pulmonary vascular resistance index

(PVRi = RVET: PAAT), an echocardiography parameter of the

pulmonary vascular disease. Secondary outcomes included

echocardiography indices of pulmonary hemodynamics (PAAT,

RVET, end-systolic eccentricity index, right ventricular systolic

pressure), LV systolic performance [shortening fraction (SF),

ejection fraction (EF), LV output (LVO)], RV systolic performance

[RV output (RVO), RV fractional area change (FAC), and tricuspid

annular peak systolic velocity (TAPSE)], left heart diastolic

function [left atrial to aortic root ratio (LA: Ao); pulmonary vein

peak systolic and diastolic velocities; mitral E and A velocities, E:A

ratio, isovolumic relaxation time (IVRT)] and systemic
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hypoperfusion [celiac, superior mesenteric and middle cerebral artery

peak systolic and diastolic velocity].
Statistics

Values were presented as mean (standard deviations) unless

stated otherwise. Independent sample T test was used to assess the

differences between SGA and AGA groups. Continuous data were

reported as mean (SD) and categorical data are presented as n (%).

Changes in variables with repeated measurements were assessed

using two-way repeated measures analysis of variance. A p value

less than 0.05 was considered statistically significant. We used SPSS

21(Chicago, IL) to conduct the analysis. A predefined sample size

of 25 pregnant women was selected for convenience purposes.
Results

In total, 25 pregnant women were serially assessed for eligibility

during the study period and closely examined during the third

trimester of pregnancy. Subsequently, 7 newborns with low Apgar

score, preterm birth, and prolonged echocardiography examination

were excluded. Ultimately, 36 patients were allocated into two

groups of 18 cases (SGA Group) and controls (AGA Group).

(Figure 1) The final postnatal cohort for echocardiography

evaluation consisted of 36 infants (16 males), whose mean (SD)

GA and weight at birth were 38 ± 1.3 weeks and 2.8 ± 0.6 kg

respectively. Twenty-two (62%) infants were born vaginally. None

of the studied patients required admission to the NICU.

Maternal baseline characteristics (Table 1): Maternal weight

and body mass index were higher among non- affected

pregnancies. Umbilical artery Doppler pulsatility index was lower

and middle cerebral artery pulsatility index higher among affected

pregnancies (p < .001).

Neonatal cardiorespiratory variables (Table 1): Neonatal

birthweight, head circumference and body surface area were lower

among SGA group (p < .05) but no differences in APGAR score at

1- and 5-min and cord pH at birth were noted. Systolic and mean

blood pressure were higher in SGA infants at both time points (p

< 0.05), but no intergroup differences in either pre- or post -ductal

oxygenation were noted (Table 2).

Right ventricular function (Tables 3, 4): Indices of RV systolic

function were lower in SGA infants (p < 0.05); specifically, RV-

FAC and TAPSE were lower at both time-points. The rate of

abnormal TAPSE or RV-FAC, suggestive of RV systolic

dysfunction were 44% and 27.8% respectively in SGA infants.

None of the AGA group reached abnormal thresholds of RV

systolic function. In addition, tricuspid E/A ratio was also lower in

the SGA group compared to AGA infants (p < 0.05). Although the

incidence of abnormal tricuspid E/A ratio <1 was higher, this did

not reach the statistical significance (p > 0.05).

Left ventricular function (Tables 3, 4): Although SGA infants

had higher mean value of EF (p < 0.01), 22% satisfied the criteria

for LV systolic disfunction (EF < 55%). Indices of LV diastolic

function were also different between groups; specifically, IVRT was

longer and mitral valve peak E and A wave velocity was lower in
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SGA infants. No difference in mitral E/A ratio, however, was noted

(p > 0.05). A strong trend towards higher rate of abnormal mitral

E/A peak velocity ratio <1.0 and IVRT >50 msec were noted in

SGA group (p = 0.06).

Pulmonary and systemic hemodynamics (Tables 4, 5): SGA

infants had longer PVRi (p < 0.01), lower RVO (p < 0.05) and

higher rate of abnormal PVRi (>4) threshold compared to AGA

infants. Similarly, the rates of bidirectional atrial and PDA shunt

were higher in SGA infants at both time-points (p < 0.01 vs. time

and group) indicating different loading condition of the RV in the

SGA group (Table 6). Although SVRi was lower (p < 0.01), no

differences in LVO were noted. No differences in systemic blood

flow velocities, resistance and pulsatility indices were noted

between groups over time (Supplementary Appendix Table S2).
Discussion

In a prospective cohort of 18 term infants with an antenatal

diagnosis of SGA we demonstrated higher systolic and mean blood

pressure in the first 48 postnatal hours. In addition, SGA infants

had evidence of higher PVR, lower RV systolic performance and

more abnormal LV diastolic function.

Characterizing the normal postnatal cardiovascular adaptative

changes is important to understand mechanism of illness and their

relationship to illness severity. To date, knowledge is limited to

preclinical studies. In a model of FGR affected preterm lambs,

reduced LV output, higher systemic vascular resistance (SVR), and

a lesser drop in PVR after birth were noted compared to AGA

counterparts (33–35). In the setting of human FGR, SGA preterm

had higher LV dimensions and LV output immediately after birth

and were less able to increase LVO in the 1st four days after birth

(36). These findings are consistent with Fouzas (37) et al., who

demonstrated higher LV stroke volume and signs of LV diastolic

dysfunction but no differences of the LV myocardial performance

among an FGR affected population. On the contrary, Sehgal et al.

(38) demonstrated impaired LV myocardial performance and lower

arterial compliance among term SGA affected newborns evaluated

on days 2 and 5 compared to healthier AGA. Both animal

experimental and human natural history transitional studies

demonstrated a progressive fall of PVR over the first 48–72 h after

birth. In our cohort we demonstrated higher pulmonary artery

acceleration time and lower RV output among SGA infants.

Pulmonary artery acceleration time is a reliable marker of PVR

and was previous validated among older children (39) and adults

(40). Given the major changes in heart rate in the transitional

period, indexing PAAT is an important consideration. In addition,

persistent bidirectional flow across the PDA and PFO is further

evidence of the differential adaptive changes in PVR. Our results

are consistent with the findings of Sehgal et al. (41), who

demonstrated higher baseline PVR indices before surfactant

replacement and a lesser drop of PVR after surfactant among SGA

affected preterm newborns compared to AGA controls. The

discordance in magnitude of decline in PVR after birth in SGA

infants, in the absence of primary lung disease, is noteworthy. It is

plausible that pulmonary vasculature is subjected to arterial wall

remodeling as noted in systemic arteries (42–44) or altered
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FIGURE 1

Recruitment flowchart for study participants.
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production of endogenous pulmonary vasodilators (PGI2 and

bradykinin) (45, 46). These changes place the IUGR infant at

higher risk of pulmonary vascular disease, particularly during the

transitional period.

In the present study the systolic but not diastolic BP was higher

among SGA neonates. The study by Fouzas et al. (37) showed

differences in BP between SGA and AGA infants on postnatal day

2, whereas Zanardo et al. (47), which shows higher systolic BP but

not diastolic BP among a formerly SGA population evaluated at

28-month of age. Other authors have demonstrated higher systolic

and diastolic BP in newborns (48, 38), infants (49), and adults (50)
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of formerly affected SGA fetuses. The relationship between SGA

population and higher BP may related to the known association

with early endothelial dysfunction, impaired arterial vasodilation,

and aortic wall intimal media thickening (aIMT) occurring in

utero. The exact mechanisms of these associations are yet

unknown, but evidence from recent studies indicates that impaired

growth in utero triggers an adaptative process of arterial wall

remodeling caused by increased pressure on fetal circulation in

context of placental insufficiency (42–44). Second, chronic fetal

tissue hypoxia itself induces proliferation of vascular smooth

muscle and the adventitial fibroblast of precapillary vessels (51).
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TABLE 1 Demographic indices of the SGA infants and AGA controls.

Variable SGA group
n = 18

AGA group
n = 18

p value
(Group)

Maternal characteristics

Maternal age 25.2 (7.2) 28.2 (6.1) 0.85

Maternal height, cm 160.6 (5.7) 161.1 (4.8) 0.75

Maternal weight, kg 63.8 (11.3) 74.6 (12.5) 0.01

Maternal BMI, Kg/m2 24.7 (4.3) 28.7 (4.4) 0.01

Maternal smoking 5 (27.8) 7 (38.8) 0.49

Maternal nulliparity, % 10 (55.6) 5 (27.7) 0.09

Maternal diabetes 0 1 (5.5) 0.32

Maternal hypertensive 0 2 (11.1) 0.15

Mode of delivery, %

Vaginal 11 (61) 11 (61) 0.9

Cesarean 7 (39) 7 (39)

Fetal Characteristics

Gestational age at
enrollment, weeks

32 (1) 31(2) 0.4

Fetal MCA PI 1.5 (0.2) 1.1 (0.2) <.001

Fetal UA PI 1.1 (0.2) 2.1 (0.3) <.001

Neonatal Characteristics

Gestational age at
delivery, weeks

38 ± 1.5 38 ± 1.2 0.41

Birth weight, grams 2331 ± 345 3332 ± 405 <.001

Birth weight percentile 2.1 (2.6) 46.6 (26.1) <.01

Birth weight < 3rd
centile

14 (77.8) – <.001

Head circumference, cm 31 ± 1.8 33 ± 1.4 <.001

BSA 0.17 ± 0.01 0.22 ± 0.01 <.001

Male sex, n 8 (44.5) 8 (44.5) 0.9

Apgar score at 5 min 8 (8–9) 9 (8–10) .09

Apgar score at 10 min 9 (9–10) 9 (9–10) 0.27

Cord blood pH 7.2 (0.1) 7.2 (0.1) 0.15

BMI, body mass index; MCA, middle cerebral artery; UA, umbilical artery; PI, pulsatility

index. Data are presented as mean ± SD, median (range) or frequency (percentage). P

values are the result of independent-samples T test with significance set at p < 0.05.

TABLE 2 Effects of group and time on preductal blood pressure and pre- and

SGA Group n = 18 AG

Day 1 Day 2 Day

Systolic BP (right arm), mmHg 69.8 (5.1) 73.1 (4.9) 55.2 (

Diastolic BP (right arm), mmHg 38.1 (3.1) 40.8 (3.7) 36.9 (

Mean BP (right arm), mmHg 48.3 (3.6) 51.2 (3.1) 43.5 (4

Oxygen Saturation (right arm), % 98.3 (0.7) 98.7 (0.8) 98.8 (

Oxygen Saturation (foot), % 98.3 (1.1) 98.8 (0.9) 98.9 (

BP, blood pressure. Values are presented as mean (SD). P values are the results of gene

*P value (time) represents the significance of changing values over the two different tim
#P value (group) represents the significance of the difference between the two groups.

Suciu et al. 10.3389/fped.2022.1045242
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After birth, the thickened arteries will be responsible, at least in part,

to elevated high blood pressure. The decreased ability of the neonatal

LV to cope with sustained exposure to increased afterload is a

concern, but data are limited. Leipälä et al. (36) demonstrated

higher LV stroke volume immediately after birth but altered

capacity to increase further LVO during the first postnatal week

compared to healthier AGA. High blood pressure and, more

recently, increased carotid-media thickening are demonstrable risk

factors for adverse cardiovascular outcomes in adult life (52).

These findings, along with arterial wall remodeling, raised SVR and

higher blood pressure support the Barker hypothesis of in utero

programming of chronic diseases (53). The long term ramifications

of altered BP profiles in childhood and beyond requires prospective

evaluation.

During fetal life the RV output bypasses the lungs through the

DA into the descending aorta (54). In the setting of FGR,

abnormalities of cardiac shape and poor RV contractility have been

noted (55). After birth, echocardiography studies during the

postnatal transition showed higher RV vs. LV mass index (56) and

higher RVO vs. LVO (57), which underline the dominant role of

RV in the transition. In a prospective observational study of

healthy term infants, Jain et al. (15) demonstrated a delayed

increase in RV, but not LV, performance (FAC-3C and FAC-4C)

from 5 h age to 35 h age. This observation of differential response

to changes in loading conditions may reflective intrinsic RV

potential or paradoxical intolerance of the RV to the increase in

SVR while the PDA remains open. Regardless, these findings

suggest an intrinsic vulnerability of the RV during the transitional

period which may be exaggerated in the setting of acute

pulmonary hypertension (58) or hypoxic ischemic encephalopathy

(59). Of importance, the newly born SGA infant may need a

longer time to adapt to extrauterine environment and may have

heightened RV vulnerability which justifies future studies with long

term follow up to characterize child and adulthood repercussions.

The transitional changes in RV systolic performance are consistent

with observational data from Sehgal et al. (41) in a preterm cohort

of SGA evaluated 5 h after birth. The higher rate of abnormal

TAPSE vs. RV FAC threshold requires additional consideration. As

heart dimensions are likely to be smaller in IUGR infants, these

data suggest the need to index TAPSE or develop unique

normative datasets for this population. Due to advances in

neonatal echocardiography, the clinical relevance of the impaired

RV systolic performance in neonatal disease is becoming more
postductal oxygen saturation.

A Group n = 18 p value (Time)* p value (Group)#

1 Day 2

4.8) 58.5 (3.7) 0.001 0.001

3.1) 38.2 (3.7) 0.001 0.07

.61) 44.8 (2.9) 0.003 0.001

0.5) 98.8 (0.5) 0.05 0.09

0.5) 99.6 (0.5) 0.02 0.18

ral linear model repeated measures.

e points.
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TABLE 3 Effect of group and time on ventricular function.

SGA Group n = 18 AGA Group n = 18 p value (Time)* p value (Group)#

Echo 1 Echo 2 Echo 1 Echo 2

Right ventricle function

Tricuspid E (cm/s) 43 (9) 41 (14) 49 (11) 46 (9) 0.22 0.07

Tricuspid A (cm/s) 57 (9) 55 (17) 62 (13) 59 (9) 0.36 0.25

Tricuspid E/A 0.7 (0.1) 0.6 (0.2) 0.8 (0.1) 0.8 (0.1) 0.04 0.03

RV ESA-3C (cm2) 3.4 (0.4) 3.5 (0.6) 3.7 (0.5) 4.1 (0.5) 0.004 0.011

RV EDA-3C (cm2) 5.4 (0.5) 5.6 (0.8) 6.3 (0.7) 6.6 (0.7) 0.02 0.001

FAC-3C, % 36.9 (2.2) 37.3 (2.1) 40.5 (0.8) 38.5 (0.9) 0.03 0.001

TAPSE 7.4 (2.8) 7.2 (2.8) 9.3 (0.7) 9.2 (0.5) 0.71 0.001

Left ventricle function

PV D wave (cm/s) 45 (27) 42 (21) 53 (18) 42 (9) 0.01 0.08

PV S wave (cm/s) 51 (27) 43 (21) 63 (16) 52 (9) 0.07 0.47

Mitral E (cm/s) 47 (14) 45 (18) 59 (10) 54 (10) 0.16 0.01

Mitral A (cm/s) 48 (14) 44 (16) 59 (7) 53 (6) 0.06 0.001

Mitral E/A 0.9 (0.2) 0.8 (0.3) 1.1 (0.1) 1.1 (0.1) 0.74 0.09

IVRT (ms) 47.5 (9.3) 48.1 (15.4) 38.6 (4.4) 42.4 (3.3) 0.34 0.002

SF (%) 39.3 (11.6) 34.8 (10.7) 37.8 (4.1) 34.4 (13.5) 0.13 0.68

EF (%)-Simpson’s biplane 62.1 (7.8) 61.9 (7.6) 54.9 (5.5) 55.8 (4.9) 0.9 0.003

E, early; A, atrial; 3 C, three chamber view; RV ESA, right ventricle end systolic area; RV EDA, right ventricle end diastolic area; FAC, fractional area change; TAPSE, tricuspid

annular systolic peak excursion; PV, pulmonary vein; EF, ejection fraction; SF, shortening fraction; IVRT, isovolumic relaxation time. Values are presented as mean (SD).

*P value (time) represents the significance of changing values over the two different time points.
#P value (group) represents the significance of the difference between the two groups.

TABLE 4 Frequency of abnormal hemodynamic thresholds for SGA infants compared to term neonates during transitional period.

SGA Group n = 18 AGA Group n = 18 p value (Time)* p value (Group)#

Day 1 Day 2 Day 1 Day 2

Abnormal Right Heart Thresholds

PVRi > 4 6 (33.3) 4 (22.3) 2 (11.2) 1 (5.5) 0.77 0.47

Tricuspid E: A < 1 17 (94) 16 (88) 16(88.9) 14(77.8) 0.57 0.56

RV FAC-3C < 35% 5(27.8) 4 (22.2) 0 0 0.71 0.002

TAPSE < 8 mm 8 (44.4) 8 (44.4) 0 0 0.9 0.001

Abnormal Left Heart Thresholds

IVRT > 50 msec 1 (5) 5 (22) 0 0 0.07 0.04

Mitral E: A < 1 8 (44) 10 (56) 5 (28) 4 (22) 0.38 0.06

EF (%)-Simpson’s biplane < 55 4 (22.2) 3 (16.6) 2 (11.1) 1 (5.5) 0.26 0.03

PVRi, pulmonary vascular resistance index; RV-FAC-3C, right ventricle fractional area changes in three chamber view; TAPSE, tricuspid annular peak excursion; LV-EF, left

ventricle ejection fraction. Values are presented as numbers and percentages. P values are the results of general linear model repeated measures.

*P value (time) represents the significance of changing values over the two different time points.
#P value (group) represents the significance of the difference between the two groups.
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apparent. Human studies of asphyxiated term newborns

demonstrated that RV dysfunction was an independent predictor

of death or severity of brain injury (59). The authors demonstrated

an important relationship of impaired RV performance to
Frontiers in Pediatrics 07
abnormal cerebral hemodynamics, higher SNAPPE-II scores, and

greater encephalopathy. In addition, survivors were more likely to

have abnormal neurodevelopmental outcome at 2 years (60).

Therefore, it is plausible that early recognition of the RV impaired
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TABLE 5 Effect of group and time on pulmonary and systemic hemodynamics.

SGA Group n = 18 AGA Group n = 18 p Value (Time)* p Value (Group)#

Echo 1 Echo 2 Echo 1 Echo 2

Right ventricle hemodynamics

PAAT, ms 56.4 (10.5) 61.4 (12.5) 65.7 (13.2) 71.5 (15.7) 0.02 0.01

RVET, ms 208.3 (13.3 211.1 (13.7) 210.5 (34.8) 211.8 (35.1) 0.64 0.84

PVRi = RVET/PAAT 3.8 (0.7) 3.5 (0.5) 3.2 (0.7) 3.1 (0.5) 0.03 0.008

PA VTI (cms) 11.2 (1.7) 12.1 (2.3) 12.1 (1.3) 12.4 (1.6) 0.05 0.24

Heart rate 114.1 (15.9) 118.7 (18.7) 120.9 (11.5) 118.1 (11.6) 0.72 0.48

RVO (ml/kg/min) 163.4 (66.9) 191.43(75.9) 211.1 (47.8) 224.5 (58.4) 0.01 0.04

EI end systole = D1/D2 0.9(0.1) 0.9 (0.1) 0.9(0.1) 1.1 (0.1) 0.04 0.16

Left ventricle hemodynamics

AoAcT 51.1 (4.8) 52.1 (4.8) 44.6 (6.1) 47.1 (5.4) 0.01 0.002

LVET 214.4 (18.3) 208.4 (19.3) 204.5 (15.8) 197.8 (13.1) 0.01 0.06

SVRi = LVET/AoAcT 4.2 (0.4) 3.9 (0.3) 4.6 (0.6) 4.2 (0.5) 0.001 0.04

Aortic VTI (cms) 12.5 (1.7) 13.1 (1.7) 10.8 (0.7) 12.9 (1.4) 0.001 0.05

Heart rate 115.6 (13.1) 122.6 (15.6) 125.5 (11.5) 116.5 (9.1) 0.61 0.61

LVO (ml/kg/min) 190.7 (36.3) 211.1 (39.2) 193.5 (24.7) 180.3 (20.8) 0.35 0.15

LA: Ao 1.4 (0.7) 1.2 (0.5) 1.4 (0.2) 1.1 (0.5) 0.04 0.81

PAAT, pulmonary acceleration time; RVET, right ventricular ejection time; PVRi, pulmonary vascular resistance index; AoAcT, aortic acceleration time; LVET, left ventricle ejection

time; SVRi, systemic vascular resistance index; VTI, velocity time integral; HR, heart rate; EI, eccentricity index; Values are presented as mean (SD).

*P value (time) represents the significance of changing values over the two different time points.
#P value (group) represents the significance of the difference between the two groups.

TABLE 6 Effect of group and time on transitional shunts.

SGA Group n = 18 AGA Group n = 18 p value (Time) p value (Group)

Echo 1 Echo 2 Echo 1 Echo 2

Foramen ovale

Open overall 18 (100) 17 (94.4) 17 (94.4) 16 (88.9)

Small restrictive with L–R shunt 15 (83) 10 (61) 13 (72.2) 15 (83.3) 0.33 0.31

Bidirectional shunt 3 (17) 7 (39) 4 (22.2) 1 (5.6) 0.001 0.005

Ductus arteriosus

Open overall 14 (78) 6 (33) 16 (88.9) 5 (27.8)

Small restrictive with L–R shunt 9 (50) 6 (33) 14 (77.8) 5 (27.8) 0.006 0.79

Bidirectional shunt 5 (28) 0 2 (11.1) 0 0.001 0.007

PFO, patent foramen ovale; PDA, patent ductus arteriosus. No patient had unrestrictive left to right shunt and pure right to left shunt. NS = p > 0.05; p values are the results of

general linear model repeated measures. Values are presented as numbers and percentages.
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function in early stage of the transitional period may play an

important role in timely management of these vulnerable

population and a modifiable outcome.

Strengths of our study is that study subjects were included in fetal

life, they had a close prenatal care and monitoring until birth and

followed up during the immediate transition to extrauterine life up

to 48 h age when the major changes in cardiopulmonary

physiology occur. Second, all variables were recorded prospectively
Frontiers in Pediatrics 08
in a cohort of infants, detected to be SGA before 32 weeks of

gestation, born at term and matched according to mode of delivery

with healthy term infants. Furthermore, primary, and secondary

outcomes were evaluated based on comprehensive TnECHO, which

is an essential tool to facilitate diagnostic precision and to provide

physiologically appropriate treatment choices (61). There are,

however, some important limitations. First, spectral Doppler is

operator dependent (62, 63). However, spectral Doppler analysis is
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known to be reliable in infants compared to other invasive methods

in measuring the cardiac output (64). This work provide hypothesis

generating data, with a small cohort and with no subsequent follow

up of hemodynamic variables. Second, the relationship to adverse

neonatal health outcomes and whether the changes noted are

permanent remains unknown. Third, advanced imaging technique

i.e., Tissue Doppler (would have provide much needed information

on diastolic disfunction) and Speckle tracking echocardiography

(an angle independent technique) or a combination of high frame

color Doppler data with speckle tracking analysis blood speckle

imaging (BSI) were not used in this study.
Conclusions

Characterization of the cardiovascular adaptative changes during

transitional period is important among SGA infants for appraising

disease susceptibility. Our study showed that SGA infants had

higher PVR, lower RV performance and impaired LV diastolic

function. The clinical relevance and impact of these changes to

hemodynamic disease states during the postnatal transition

requires prospective investigation.
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