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Intrauterine growth restriction (IUGR) remains a great public health challenge
as it affects neonatal survival and influences their normal biological
development and metabolism. Several clinical researches have revealed the
occurrence of metabolic syndrome, such as insulin resistance, obesity, type
2 diabetes mellitus, oxidative stress, dyslipidemia, as direct results of IUGR.
Therefore, it is essential to understand its underlying mechanism, impact and
develop effective therapies. The purpose of this work is to review the current
knowledge on IUGR induced metabolic syndrome and relevant therapies.
Here in, we elaborate on the characteristics and causes of IUGR by pointing
out recent research findings. Furthermore, we discuss the impact of IUGR on
different organs of the body, followed by preclinical studies on IUGR using
suitable animal models. Additionally, various metabolic disorders with their
genetic implications, such as insulin resistance, type 2 diabetes mellitus,
dyslipidemia, obesity are detailed. Finally, the current therapeutic options
used in the treatment of IUGR are summarized with some prospective
therapies highlighted.
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1. Introduction

Intrauterine growth restriction (IUGR), also called fetal growth restriction (FGR) is a

condition in which the fetus is unable to develop to its full genetic and biological

potential (1). This condition affects nearly 30%–50% of extremely preterm neonates

(2). IUGR can be caused by naturally occurring or adverse environmental factors as

revealed by studies conducted in livestock. To mimic human IUGR brought on by a

variety of factors, several experimental techniques have been applied using animal

models like sheep (3). Although hasty comparisons cannot be drawn between these

animal models and humans, the impromptu occurrence of IUGR via placental

insufficiency in pigs has been reported to be identical to that of humans (4, 5). IUGR

causes great changes from abnormal lipid metabolism, liver inflammation to

metabolic syndrome (MetS).
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MetS is a constellation of morbidities such as insulin

resistance, dyslipidemia, central obesity, hypertension, and

glucose intolerance that includes impaired glucose tolerance or

compromised fasting glycaemia and type 2 diabetes; all of

which are well-documented cardiovascular disease risk factors.

These metabolic abnormalities can simultaneously occur in an

individual more often than expected (6). The “Developmental

Origins of Health and Disease” theory evokes that a pernicious

environment during early developmental periods (including

fetal, infant and childhood) may lead to permanent alterations

of both physiological and metabolic functions leading to adult

metabolic syndrome (MetS) (7). In the principal etiology of

these metabolic abnormalities, excessive fat storage in non-

adipose tissues (e.g., liver) is a significant risk factor (8). The

abnormal lipid metabolism in the liver has proven to be closely

related to MetS (9). Except for diet and lifestyle, birth weight

(BW) is considered the main relationship between abnormal

hepatic accumulation of lipid and the increased incidence of

MetS with its associated diseases (10).

Given the impact of IUGR on the development of MetS,

there is a need to understand these conditions, review

different parameters affected in IUGR models, and give an

overview on current studied therapies.
2. Characteristics and causes of
intrauterine growth restriction

IUGR is characterized as symmetrical when the weight,

length, and head circumference are low compared with the

standard; and asymmetrical when the brain is spared, and the

head circumference is within the normal limits (11).

Chromosomal syndromes (trisomy 21, 13, and 18), congenital

infections (toxoplasma, other viruses, rubella, cytomegalovirus,

Herpes simplex infections), dwarfisms, maternal drug use

(both prescription and illegal), and some inborn metabolic
FIGURE 1

Predisposing factors to IUGR.
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errors (fatty acid oxidation disorders) can all cause

symmetrical IUGR. Asymmetrical causes of IUGR are

typically associated with placental insufficiency, placental

dysfunction, or nutrient deficiency (12, 13).

About 13% of children bornwith IUGRdonot “catch up”with

normal growth, i.e., do not reach body height greater than −2 z-

score (below the third centile) during the first two to four years

after birth (14). Many studies have demonstrated a clear

correlation between deficient in utero environment leading to

IUGR and the occurrence of cardiometabolic disease in

adulthood (15, 16). Poor gestational nutrition and low pre-

pregnancy weight are the strongest predictors of IUGR,

according to data from developing countries. While in developed

countries, cigarette smoking is the most important single factor

implicated in IUGR, followed by poor gestational nutrition (17).

Multiple fetuses from twin pregnancies or assisted

conception may result in nutrient competition between the

two fetuses, predisposing them to IUGR; adolescent mothers

are also at risk of having IUGR babies because their bodies

compete for nutrients with the fetus (11, 17). Additional

potential causes of intrauterine growth restriction (IUGR)

include in utero inflammation, maternal malnutrition as low

food intake and starvation result in a reduced nutrient stream

from the mother to the fetus, thus restricting fetal growth;

and placental insufficiency caused by fetal–placental perfusion

dysfunction, which results in hypoxia and acidosis in the fetal

circulation (18–20) (Figure 1).
3. Effects of IUGR on different organs

When exposed to in utero undernourishment, the available

nutrients tends to be diverted to the growth and functional

preservation of vital organs, e.g., brain, at the expense of

organs such as the liver and pancreas (21). Even a slight

reduction in nutrient supply limits fetal glycogen and fat
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formation, muscle and bone growth, with redistribution of

cardiac output favoring delivery to the brain (2). The effects

of environmental challenges are determined by their severity,

duration, gestational age and probably the fetus’s gender (22).

The liver, the principal organ involved in the metabolism of

dietary nutrients becomes a major target undergoing

epigenetic, structural, and functional changes due to early

exposure to unfavorable environment (23). The liver is

essential in regulating gene expression for key transcription

factors (24). Piglets with IUGR suffer from the hepatic

disorder of lipid catabolism (25), with a significantly

upregulated hepatic inflammatory factor under mRNA

expression (26). It has been documented that IUGR piglets

are presented with increased hepatic lipid concentrations,

higher levels of serum pro-inflammatory cytokines, impaired

growth, insulin resistance and inflammation (18).

Fatty hepatic infiltrates and cytoplasmic vacuolization has

been reported in the livers of newborn IUGR piglets (27). An

examination of the hepatic proteome revealed that the IUGR

fetus had lower lipoprotein lipase activity (LPL) (28). IUGR

piglets, compared to the normal birth weight (NBW) piglets,

displayed low liver weight and compromised growth

performance, decreased plasma free fatty acid (FFA) level,

elevated hepatic oxidative stress (OS), abnormal hepatic lipid

accumulation and compromised hepatic immune function.

Some genes such as heme oxygenase 1, stearoyl-CoA

desaturase 1, liver fatty acid- binding proteins 1, superoxide

dismutase 1, toll-like receptor 4, sterol regulatory element-

binding protein 1c, and tumor necrosis factor-alpha (TNF-α)

have abnormal transcriptional expression in the liver of IUGR

models (29). Therefore, it is a major requirement to improve

the hepatic lipid metabolism, redox and immune status in the

IUGR piglets’ model as it will be instrumental in developing

new strategies for IUGR infants to prevent or/and slow the

progression of non-alcoholic fatty liver disease (NAFLD) (29).

Through these findings, it is observed that among major

defects occurring due to IUGR, lipid metabolism is greatly

affected, followed by the immune function and its correlated

genetic expressions. Thus, a hostile milieu can greatly impact

an organism’s normal biological function and development.

The changes undergone by the organ for proper adaptation to

the environment can be long-lasting and irreversible.
4. Preclinical IUGR investigations
using different models

Diverse animal models of IUGR have been employed to

investigate the mechanisms of intrauterine adaptation and

programming, including maternal stress, uteroplacental

insufficiency, hypoxia, nutrient (protein) restriction and

glucocorticoid treatment (30). As the genetic background in

animal models can be controlled, it is possible to explore the
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effects of the environment on long-term health during

gestation or early postnatal life (22).

In multifetal mammals, IUGR has been reported to have

lasting and harmful impacts on neonatal birth weight,

postnatal growth, development, and liver function (31, 32).

Pigs have been widely researched for human health regulation

and animal nutrition. They have been extensively used as an

animal model for IUGR studies due to their biological

similarity to humans (33). Studies have shown that due to

nutritional deficiencies during gestation, IUGR piglets

displayed the most severe naturally occurring conditions; they

have a higher risk of IUGR than other animals (25, 34).

The sheepmodel is attractive in studying themechanistic basis

of fetal adaptations that occur during fetal hypoxia, hypoglycemia,

and IUGR caused by poor placentation (3). Other strengths of the

sheepmodel include the availability of a singleton fetus, duration of

pregnancy, similarities with humans in regard to organ and body

development regulatory pathways and homeostasis. Most

importantly, just like in humans, prenatal malnutrition in sheep

has an extended impact on the endocrine, cardiovascular, and

postnatal homeostasis systems (35).

Rodents offer a significant advantage in terms of relatively

short gestation and lifespan (22). Malnutrition during critical

early life periods has been shown to affect subsequent

development (36) and perinatal adverse challenges have led to

long-term consequences. For example, in both males and female

rats, maternal caloric restriction results in low-birth-weight

offspring with accelerated neonatal growth, early vaginal opening

and sexual dimorphism (37, 38). However, some findings

indicate that regardless of postnatal diet, male growth-restricted

rats are resilient to impaired glucose homeostasis while female

growth-restricted rats are more vulnerable to metabolic

dysfunction (39). In another study the results demonstrated an

intrauterine growth retardation and hypercholesterolemia in

male adult offspring rats following prenatal nicotine exposure

(PNE) (40). These findings highlight the role of gender in the

development of IUGR associated Mets.

In summary the availability of various animal models makes

it possible to study IUGR associated Mets. However, these

models have their own advantages and disadvantages,

therefore they are selected based on the research interest, need

and available resources. Understanding the characteristics of

each model is highly useful for the development of preventive,

diagnostic and therapeutic strategies.
5. Impacts of intrauterine growth
restriction

5.1. Restricted growth and development

IUGR is one of the leading causes of perinatal morbidity,

affecting approximately 7%–15% of pregnancies worldwide
frontiersin.org
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(41, 42). Low birth weight (LBW) can be passed down through

two generations; a low-birth-weight mother is 2.8 times more

likely to have a low-birth-weight baby (43). LBW and IUGR

are linked to preconception anemia (44). A large number of

epidemiological and animal studies have reported that LBW

caused by IUGR is mainly associated with an elevated risk for

the development of NAFLD in both children and adults (45–

48). IUGR can present with a SGA accompanied by LBW,

enhancing lipid accumulation and other metabolic

abnormalities. Stunted growth and development affects

approximately 7%–9% of newborns, and may be responsible

for up to 50% of unexplained stillbirths (19). About 86% of

children born with small gestational age (SGA) catch-up with

normal developmental pace and reach normal adult height

with the others end up as short adults (49). Metabolic

aberrations have been noticed in adult IUGR rats exhibiting

catch-up growth (50). Children with IUGR, especially if they

achieve catch-up growth in childhood, as well as SGA

subjects, are at a higher risk for long-term developmental

consequences or developing diseases later in life such as short

stature, metabolic syndrome, Type 2 diabetes, hypertension,

dyslipidemia, insulin resistance, and cardiovascular disease (7,

51). An enormous economic loss has been recorded in pig

production due to the decreased survival rate of low-birth-

weight piglets induced by IUGR (52).
5.2. Altered hepatic redox status

Oxidative stress is implicated in the IUGR-induced liver

injury (53). Oxidative stress, particularly in the pancreas may

be a common mechanism by which an adverse intrauterine

milieu influences the development of the fetus and subsequent

development of type 2 diabetes (54). An increase in the

concentration of acidic metabolites (g-glutamyl leucine and 2

hydroxybutyric acids) may be associated with oxidative stress

which might result in insulin resistance in the child (55). A recent

study by Cheng et al. revealed increased plasma concentrations of

malondialdehyde (MDA) and protein carbonyl (PC), and

decreased total superoxide dismutase (T-SOD) in IUGR pigs

(longissimus lumborum) compared with NBW pigs (52).
5.3. Genetic implications

The epigenetic adaptation of the fetus during the gestational

period has lasting impacts on its growth and development.

Maternal genes play a very important role in offspring

development. For instance, pleckstrin homology-like domain-

family A member (PHLDA2) regulates placental growth,

growth receptor binding protein (GRB10) is associated with

insulin receptor signal transmission, the IGF1 receptor

inhibits the insulin receptor signal and placental acid-labile
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subunit (ALS) (56, 57). It has been reported that pigs

suffering from IUGR displayed marked upregulation of

mRNA expression for sterol regulatory element-binding

protein-1 (SREBP-1), liver-x receptor α (LXRα), and

peroxisome proliferator-activated receptor α (PPARα) (25). In

mice, increased expression of CoA desaturase 1 (SCD1) gene,

and decreased expression of carnitine palmitoyl transferase 1

alpha (CPT1α), acyl-CoA oxidase 1 (ACOX1), IGF-1 and

IGF-2 genes have been reported (58).

Insulin and fatty acid regulation by lipogenic gene

expression are largely mediated by transcription factors (such

as SREBPs) and to a lesser extent, by nuclear receptors (such

as LXRs) (59, 60). In mice, the insulin-like growth factor 2

(IGF-2) gene is regulated by the maternal H19 gene, encodes

IGF-2 synthesis and contributes to fetal growth. In contrast,

the IGF2R gene, which encodes the IGF2R receptor, may

cause intrauterine growth restriction (61).
5.4. Metabolic syndrome induced by IUGR

5.4.1. Insulin resistance and its genetic
correlation

The concentration of insulin in the serum is increased

significantly due to IUGR, leading to low serum glucose

concentration and a significantly decreased glycogen

concentration in the liver (25). Children exposed to IUGR

have increased insulin resistance, and low birth weight has

also been linked to altered insulin sensitivity (62, 63). Insulin

sensitivity is commonly defined as insulin’s ability to

stimulate glucose uptake in peripheral target tissues (64).

Insulin resistance is regarded as the damage to insulin signal

transduction occurring when normal hormone concentrations

in the blood are insufficient to regulate metabolic pathways

(25). In white adipose tissue, insulin increases fatty acid flux

to the liver, resulting in ectopic fat deposition in hepatocytes

(65). The increased visceral fat deposition eventually lead to

insulin resistance in patients with growth hormone deficiency

(GHD) (66). Insulin resistance can develop as early as one

year of age in SGA children (67). Young men born with

IUGR have 30% lower insulin secretion in comparison to

their insulin sensitivity, indicating a lower insulin deposition

index (68). Additionally, when postnatal nutrient availability

exceeds prenatal predictions, there is increased postnatal

growth and fat deposition resulting in insulin resistance (69).

The “survival” hypothesis claims that peripheral insulin

resistance occurs in order to redistribute glucose to vital

organs (e.g., the brain) of a malnourished fetus (70).

Insulin receptor dysfunction caused by abnormal

phosphorylation of the β-receptor subunit’s tyrosine kinase

also leads to insulin resistance (71). IGF-1 levels are related to

beta cell function and growth in the first year, and at age

three, IGF-1 is related to BMI and insulin resistance (72).
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Studies have shown that insulin resistance in a child with IUGR

is linked to higher IGF-1 and BMI levels during postnatal catch-

up growth (14). Insulin resistance is also common in people

with severe IGF-1 deficiency (73).

5.4.2. Type 2 diabetes mellitus and its genetic
correlation

Infants born with severe IUGR and weighing less than 1.5 kg

have lower beta cell mass resulting in Type 2 diabetes (74).

Animals with impaired beta cell activity and low islet

mass develop gestational diabetes, primarily caused by

insulin deficiency (75). Fowden hypothesized that adult

diseases, including diabetes, are caused, at least in part, by

changes in the development of key endocrine axes, specifically

the hypothalamic–pituitary–adrenal (HPA) axis, during

suboptimal intrauterine conditions associated with impaired

growth (76).

It has been demonstrated that intrauterine growth patterns

can be linked to specific adult diseases; for example, a thin

infant with a low ponderal index is more likely than a

symmetrically small baby to develop type 2 diabetes as an

adult (77). Low birth weight is associated with reduced

expression of insulin signaling proteins in muscle and adipose

tissue preceding the development of diabetes (22). In IUGR

rats, altered hepatic glucose metabolism may contribute to the

onset of fasting hyperglycemia prior to the development of

obesity and diabetes (78). Fetal hyperglycemia is caused by

severe maternal diabetes, puppies born to severely diabetic

mothers with stunted intrauterine growth remain small until

they reach adulthood (22).

Unfavorable intrauterine environment and the

accumulation of DNA methylation errors over time may

result in premature “epigenetic aging”, contributing to an

increased susceptibility to diabetes in adulthood (79). Diabetes

develops in IUGR rats with a phenotype similar to type 2

diabetes in humans, namely progressive dysfunction in insulin

secretion and action (22). In adults with IUGR, Cyclin-

dependent kinase inhibitor 1C (CDKN1C), a cell proliferation

regulator that affects pancreatic β cells, can have a mutation

at chromosome 11p15, resulting in decreased fetal growth,

growth deficiency, and the onset of diabetes at a young age (80).

5.4.3. Dyslipidemia
The key steps in intra-fetal lipid synthesis and lipid

catabolism are regulated by total cholesterol (TC) and total

triglycerides (TG) (81). Hepatic lipid accumulation is caused

by an imbalance between lipid availability and lipid disposal,

eventually leading to lipoperoxidative stress and hepatic injury

(82). The disproportion of lipid metabolism plays a critical

role in hepatic defect and injury in IUGR individuals (29).

Lipoprotein lipase (LPL) catalyzes the triacylglycerol

hydrolysis in circulating chylomicrons and very low-density

lipoproteins (83). Hepatic lipase (HL) is essential for the
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hydrolysis of circulating triglycerides and phospholipids (28).

Lipogenesis is increased in IUGR piglets (84). Some studies

on lipid parameters showed that the concentration of free

fatty acids (FFA), total cholesterol (TC) and total triglycerides

(TG) was increased while a decrease was found in the activity

of lipoprotein lipase (LPL), hepatic lipase (HL) and total

lipase (TL) in IUGR piglets’ liver (25, 29, 52).

Furthermore, adipocytokines have been linked to adult

diseases associated with IUGR. Leptin plays a permissive role

in pubertal development and reproductive function

maintenance. Adiponectin has been shown to play a role in

linking energy homeostasis and hypothalamo-pituitary-

gonadal axis control. Ghrelin, an orexigenic compound,

stimulates growth hormone secretion as well. PYY 3e36 is a

gastrointestinal hormone that regulates food intake and

energy balance; it has also been shown in animal studies to

modulate GnRH and gonadotropin release (51).

Also, hyperinsulinemia is known to increase hepatic very-

low-density lipoprotein synthesis, which may contribute to

higher plasma triglyceride and LDL-c levels, and resistance to

insulin action on lipoprotein lipase in peripheral tissues may

also contribute to higher triglyceride and LDL-c levels [56].

Brown adipose tissue, which protects against metabolic

disorders, was found abnormal in SGA children (85).

5.4.4. Obesity
Obesity and overweight are linked to a variety of comorbid

disorders, including cardiometabolic diseases (hypertension,

diabetes, and insulin resistance), as well as some malignancies

(86). The negative effects of “catch-up” growth in humans

have been connected to the development of obesity (87).

Insulin resistance in particular, is usually associated with

obesity (88). Fetal malnutrition, pancreatic ß cell dysfunction,

altered insulin metabolism, and, as a result, obesity are all

associated to epigenetic regulation (89).

Obesity causes lower HDL cholesterol levels, higher systolic

and diastolic blood pressures, higher triglyceride levels, and

higher hemoglobin A1c (HbA1c) (90). Triglycerides are

normally stored in adipocytes, but when energy intake exceeds

the body’s capacity, they can be stored in the liver, muscle

cells, and visceral adipocytes (adipocytes surrounding vital

organs), resulting in central obesity (91). Dams subjected to a

much more severe food restriction of 30% of ad-lib intake

results in IUGR offspring who develop hyperphagia and

obesity as adults (92).

A cohort study showed that weight gain in the first

three months of life was associated with more fat, central

adiposity, lower insulin sensitivity, and higher insulin

resistance in early adulthood, including in SGA children with

catch-up growth (93). Also, low leptin levels, low or normal

adiponectin levels, and higher ghrelin and visfatin levels in

the IUGR sate may put an individual at risk for obesity

development (94).
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TABLE 1 Intrauterine growth restriction preclinical experimentation.

Drugs (dosage) Description Observed Metabolic Therapeutic effects Refs

Choline (180 mg/
kg)

A precursor of PC involved in the
formation of VLDL in the liver

Improved growth and decreased liver lipid in pigs. IUGR pigs require supplementary
choline to improve PC production and maintain normal lipid metabolism.

(98)

Curcumin (400 mg/
kg)

A phenolic compound derived from
turmeric.

The dietary curcumin supplementation reduces subacute stress, improves the growth
performance, intestinal mucosal barrier integrity, morphology, and immune status of
pigs.

(18, 99)

DHA (0.25 mg/kg) Antimalarial drug Antibacterial, antitumorigenic, and antifibrotic properties. Prevention and treatment
of obesity-related metabolic diseases.

(100–
103)

GH Primary regulator of postnatal growth. Lipolytic effects, treats growth failure in SGA children who do not catch up until the
age of two.

(100, 104,
105)

RSV (80 mg/kg
body weight/d)

A natural polyphenol Anti-oxidation, anti- inflammation, anti-cancer, lipid- lowering effect, anti-stress feed
additive.

(29, 58–
62, 63)

TB (0.1%) A triglyceride Attenuates insulin resistance and abnormal levels of lipid. (25, 106)

PC, phosphatidylcholine; VLDL, very low-density lipoprotein; DHA, dihydroartemisinin; GH, growth hormone; RSV, resveratrol; TB, tributyrin.

Mutamba et al. 10.3389/fped.2022.1040742
6. Recent and prospective IUGR
therapies

Presently, IUGR has no known effective therapies (95).

However, numerous treatments are being investigated to

support the improvement of growth performance, immune

status, lipid and glucose metabolism, prevention as well as

treatment of obesity-related metabolic diseases and so on. In

humans, therapies such as antenatal corticoids, aspirin, low

molecular weight heparin, phosphodiesterase type 5 inhibitors,

nitric oxide donors, N-acetylcysteine, proton pump inhibitors,

and Maternal vascular endothelial growth factor (VEGF) gene

therapy have been used to improve poor placentation and

uterine blood flow (95, 96). Other drugs such as statins and

melatonin were reported to have anti-inflammatory and

antioxidant properties (96). Magnesium sulfate on the other

hand has been widely used as prophylaxis for neuroprotection

(95, 97). Similarly, in preclinical animal experiments several

compounds are being investigated and could pave the way to

future effective therapy. Table 1 summarizes some of these

drugs.
7. Concluding remark

Although the data used are not exhaustive and conflicting,

an in-depth understanding of the occurrence and

development of metabolic disorders in IUGR models is

key to promoting therapies that will ultimately tackle

and mediate the consequences caused by these metabolic

aberrations. Even though a clear knowledge of the

underlined mechanism is still a challenge to overcome, the

present studies are helpful in grasping the clinical impact

of IUGR.
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