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Amniotic fluid stem cells: A novel
treatment for necrotizing
enterocolitis
Felicia Balsamo, Yina Tian, Agostino Pierro and Bo Li*

Division of General and Thoracic Surgery, Translational Medicine Program, The Hospital for Sick
Children, Toronto, ON, Canada

Necrotizing enterocolitis (NEC) is a gastrointestinal disease frequently prevalent
in premature neonates. Despite advances in research, there is a lack of
accurate, early diagnoses of NEC and the current therapeutic approaches
remain exhausted and disappointing. In this review, we have taken a close
look at the regenerative medical literature available in the context of NEC
treatment. Stem cells from amniotic fluid (AFSC) administration may have the
greatest protective and restorative effects on NEC. This review summarizes
the potential protection and restoration AFSCs have on NEC-induced
intestinal injury while comparing various components within AFSCs like
conditioned medium (CM) and extracellular vesicles (EVs). In addition to
therapeutic interventions that focus on targeting intestinal epithelial damage
and regeneration, a novel discovery that AFSCs act in a Wnt-dependent
manner provides insight into this mechanism of protection. Finally, we have
highlighted the most important aspects that remain unknown that should be
considered to guide future research on the translational application of AFSC-
based therapy. We hope that this will be a beneficial frame of reference for
the guidance of future studies and towards the clinical application of AFSC
and/or its derivatives as a treatment against NEC.
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Introduction

Necrotizing enterocolitis (NEC) is a gastrointestinal disease frequently prevalent in

preterm neonates. Of those, 5%–12% of very-low birth weights are at an increased

risk (1). Risk factors include intestinal immaturity, impaired microvascular circulation,

abnormal intestinal microbiota, and a highly immunoreactive intestinal mucosa which

may lead to necrosis (1–3). With advances in the management of preterm neonates,

the overall incidence of NEC has decreased from 6.6% in 2007 to 3.9% in 2013 (4).

However, there remains a difficulty in accurate, early diagnoses, and innovative

treatment of NEC resulting in 27%–52% of very-low birth weight infants with NEC

developing advanced NEC and requiring surgical intervention and approximately half

of the infants developing neurodevelopmental damage (5). The mortality of advanced

NEC (30%–50%) remains one of the highest in neonatology (4). The impact NEC has

on the overall quality of life of patients and families is detrimental as diagnosis,

treatment, long-term outcomes, and the cumbersome financial burden have remained
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stagnant throughout the past decade, despite improvements in

neonatal intensive care. The cost of ongoing treatment has

averaged to be $500 million to $1 billion per year in the

United States (6).

In recent years, investigation into preventative actions have

shown to be promising in reducing the incidence, morbidity and

mortality of the disease (3). Breast milk is a significant factor in

countering the occurrence of NEC (7). Research has identified

components of the breast milk including milk-derived

exosomes (8, 9) and human milk oligosaccharides (HMOs)

(10) that regulate this beneficial effect. The use of

prophylactic probiotics, prebiotics, and synbiotics

administered to premature neonates is another plausible

strategy to prevent the onset of NEC (11). Lastly, recent

advances in remote ischemic conditioning (RIC) application

may prevent the progression of NEC, avoiding irreversible

damage to the neonate (12). However, the exact

pathophysiology and “curative” treatment strategy remains

unknown. Therefore, experimental and clinical research

continue to investigate the pathogenesis of NEC and develop

novel treatments to avoid disease progression and alleviate

morbidity and mortality.

The pioneering of regenerative medicine has become a novel

tool in understanding the pathogenesis of many diseases and

development of treatment strategies (13). Their mechanism of

action via cell surface markers and release of transcription

factors grants self-renewal capabilities (14, 15). The

administration of stem cells can regenerate tissue administered

in experimental and clinical settings. In inflammatory bowel

disease (IBD), evidence demonstrates successful autologous

stem cell transplantation and diminished intestinal damage

(16).

Recent research has suggested that stem cells, specifically

amniotic fluid stem cells (AFSCs), can potentiate the

treatment effects of experimental NEC. In this article, we will

review the current evidence and discuss how promising

regenerative medicine and stem cell therapy may be on the

clinical translation of AFSC-based therapy against NEC.

Moreover, we have highlighted aspects that remain unknown,

which should be considered to guide future research of the

translational application of AFSC-based therapy.
Discovery of amniotic fluid stem cell
potential in NEC

Amniotic fluid in the context of NEC

During gestation, the fetus is encapsulated by amniotic fluid

(AF), which is principally composed of water and solutes (17).

These solutes include a variety of trophic factors, cytokines

and growth factors that modify intestinal nutrient absorption

and development, increase enterocyte proliferation, migration
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and differentiation, prevent apoptosis and promote mucosal

restoration. Ultimately, these solutes reduce intestinal injury

and aid in the protection against NEC (18). In addition, AF

contains antimicrobial proteins and peptides (APPs) that

support the microbial activity observed. Though often

discarded as “biological waste”, due its properties described,

AF has been hypothesized to protect the fetus from

gastrointestinal impairment and supports stable growth and

differentiation. It has been reported that Toll-like receptor 4

(TLR4) activation leads to mucosal injury via increased

enterocyte apoptosis in NEC (19). Interestingly, in 2012,

Good et al. demonstrated that AF inhibits TLR4 signalling in

the neonatal intestinal epithelium (20). This study provides

the foundation to amniotic fluid’s future application in NEC

prevention and treatment.
Discovery of amniotic fluid stem cell
potential in NEC

Evidence of the potential of stem cell therapy against

intestinal diseases has been a growing area of research

including NEC. Adult stem cells, such as the mesenchymal

stem cells (MSCs), were of the first to demonstrate protection

from experimental NEC in rats in 2011 (21).

Moreover, De Coppi et al. discovered a stem cell derived

from amniotic fluid in 2007 (22) (Figure 1). These cells

demonstrated pluripotency through the confirmation of

Oct-4, a marker for pluripotent human stem cells (23). The

pluripotent nature of these cells include: the ability to

differentiate into the three germ layers in vitro, to be

cultured infinitely in an undifferentiated state, and to

produce clonal lineages and teratomas in vivo (24, 25).

Remarkably, AFSCs do not have the same detrimental

effects as embryonic stem cells (ESCs) and adult stem cells

(26). Moreover, they show greater immunosuppressive

function and are capable of greater maintenance of

pluripotency (27). Furthermore, AFSCs are not bound by

the legal and ethical limitations that ESCs are subject to.

They prove to be the more attractive stem cell for clinical

use due to their greater differentiation capacity and

plasticity, lower immunogenicity, and lack of tumorigenicity

and ethical concerns (28).

Extraordinarily, AFSC-based therapy against NEC was

first discovered by Zani et al. in 2013 (25). AFSCs injected

in experimental NEC successfully integrated into the bowel

wall improving survival, clinical status, and gut

structure and function. Moreover, it was shown that

AFSCs function via a cyclooxygenase 2 (COX-2)

dependent mechanism. These unique therapeutic effects

and promising potential launched the focus on AFSC-

based therapy against NEC.
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FIGURE 1

Schematic of AFSC collection and administration. Following amniocentesis, amniotic fluid stem cells are cultured from the amniotic fluid, then
administered to the neonate suffering from NEC.
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Direct comparison of AFSC and other
stem cells in NEC

Several experimental animal NEC studies have been

conducted to identify the efficacy of different types of stem

cells, such as amniotic fluid-derived stem cells (AFSC), bone

marrow-derived MSC (BM-MSC), or enteric neural stem cells

(E-NSC). McCulloh et al. compared these stem cell types and

found that, generally, all demonstrate a reduction in the

incidence and severity of NEC (29, 30). In addition, they

found a similar rescue of barrier function in the injured

intestine (29). However, the individual mechanisms of action

remain unknown. AFSC are fibroblast-like, pluripotent stem

cells with a great capacity for differentiation and

immunomodulation (31). Their amniotic fluid origin renders

them less tumorigenic and immunogenic compared to the

other stem cells. BM-MSC function is dependent on

modulation of stromal cells; however, these BM-MSC lack the

potential to be effective in prolonging survival in the

experimental NEC model (25, 32). E-NSC are stem cells that

are a part of the enteric nervous system (ENS) that

differentiate into neurons and glial cells (33). It has been

proposed that ENS immaturity may predispose premature

neonates to NEC, but with neuro-transplantation of E-NSCs,

the injured ENS can be rebuilt.

Both AFSC and MSC have been investigated as potential

treatment strategies in lowering NEC incidence and reducing
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the intestinal inflammation. However, AFSCs, not MSCs,

administered prior to the onset of NEC have beneficial effects

on prevention of intestinal epithelial injury (34), which is in

line with a previous study comparing AFSCs and MSCs (30).

In addition, AFSCs can “home” in on the intestinal epithelia

while MSCs fail to do the same (25). Proteomics analysis of

both AFSCs and MSCs suggested that AFSCs are primarily

involved in cell development and growth, while MSCs are

more immunomodulatory within the gut. These findings

further support previous evidence that MSCs are effective in

other inflammatory gastrointestinal diseases (35, 36). The

protective effects of AFSCs in reducing intestinal damage were

accompanied by increasing epithelial cell and intestinal stem

cell proliferation, which results in epithelial regeneration.

Remarkably, AFSCs were found to protect a healthy

gastrointestinal tract with unseen damage compared to MSCs.

These findings present AFSCs to be the more protective and

attractive option for clinical use in NEC via stable intestinal

proliferation, multipotency, and immunomodulatory abilities.
Mechanism of action: amniotic fluid
stem cell potential in NEC

Upon retrieval of the AF from the pregnant mother donor

via amniocentesis, the AFSCs are isolated in cultured medium

then administered via an intraperitoneal injection. The AFSCs
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can integrate into the injured bowel acting on the damaged

intestinal area due to its preferential attraction to areas of

intestinal injury. There are various modes of action by AFSCs

(Figure 2); to elucidate these effects we refer to the various

elements of NEC pathophysiology. The development of NEC

includes intestinal barrier dysfunction, ER stress associated

apoptosis, inflammation, and decreased mucosal regeneration.

AFSCs can restore lost function and rescue the injured intestine.
Barrier dysfunction

The intestinal epithelial injury seen in NEC involves a

weakened integrity of the epithelial barrier, thus allowing for

the translocation of potentially harmful intestinal bacteria into

circulation, leading to the inflammation observed (37). The

epithelial barrier contains tight junctions (TJs) which serve as

a blockade for control over the translocation of microbial

products into the gut wall (38). Claudin 2 is an ileum TJ

protein important in the paracellular transport of cations and

water. A previous study found this TJ protein to be elevated
FIGURE 2

Schematic of the mechanism of action of AFSC in preclinical study. (1) Inc
differentiation (2) Inhibited inflammatory pathways and subsequent cyto
(4) Restored function of ISCs to induce cell proliferation and differentiation.
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in the urine and decreased in the intestinal tissue of neonatal

NEC patients, creating selective pores within the epithelial

wall contributing to the weakened integrity of the epithelial

barrier. Moreover, Claudin 7, another TJ protein, is an

important indicator of intestinal barrier injury and decreased

expression is exhibited in NEC (39). With this knowledge, a

recent study identified further insight into pathogenesis by

experimentally attenuating disrupted intestinal barrier

function during NEC-induced intestinal injury via

administration of AFSCs (40).
Endoplasmic Reticulum (er) stress and its
induced apoptosis

The ER stress response becomes activated upon

accumulation of misfolded or unfolded proteins leading to

decreased synthesis of functional proteins (41). To cope with

ER stress, an adaptive response attempts to restore protein

homeostasis and ER function via the unfolded protein

response (UPR), governed by the ER stress central regulatory
reased production of mucin levels by goblet cells due to increased
kines (3) Inhibited ER stress response and subsequent apoptosis

frontiersin.org

https://doi.org/10.3389/fped.2022.1020986
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Balsamo et al. 10.3389/fped.2022.1020986
protein binding immunoglobulin protein (BiP). BiP controls

three downstream ER transmembrane stress sensor proteins:

inositol-requiring enzyme 1α (IRE1α), activating transcription

factor 6 (ATF6) and pancreatic endoplasmic reticulum kinase

(PERK). Furthermore, BiP activates these proteins with anti-

apoptotic properties and promotes cell survival. However,

prolonged ER stress activates the C/EBP homologous protein

(CHOP), a part of both pro- and anti-apoptotic pathways

which include encoding genes within the BCL2-family

proteins. Since NEC is associated with increased intestinal

epithelial cell and TJ apoptosis, inhibiting apoptotic signaling

via CHOP activation may rescue barrier function (42).

It has been shown that ex vivo intestinal organoid model of

NEC epithelial permeability and TJ disruption following NEC-

induced injury were prevented by AFSCs (40). Claudin 2

expression was upregulated, while Claudin 7 was

downregulated. In addition, the three ER stress sensor

proteins (ATF6, IRE1α, PERK) were elevated in these AFSC-

treated organoids, thus leading to the upregulation of

activating transcription factor 4 (ATF4), which is important in

the activation of CHOP and the pro-apoptotic pathway (40).

Interestingly, the central controller, BiP, remained unaffected.

Further, Li et al. analyzed whether the epithelial barrier

restoration is dependent upon ER stress activity through

administration of HA15, an inhibitor of the ER stress response,

to the organoids (40). Any rescue observed by AFSCs was

reverted to NEC injury phenotype, therefore AFSC-mediated

intestinal barrier protection is dependent on the ER stress

response. Remarkably, cell necrosis and apoptosis were reduced

following AFSC treatment. Thus, AFSC-mediated anti-

apoptotic effects are dependent on the ER stress response. In

an in vivo NEC model, TJ function was restored, rescuing

intestinal barrier function (40). Like the ex vivo model, AFSC-

mediated ER stress was activated, while sequestering apoptotic

effects. This differential effect of the ER stress response occurs

because of different intestinal damage intensity points. When

damage is at its highest, ER stress markers that would normally

increase apoptosis decline. AFSCs proves to rescue intestinal

permeability in experimental NEC via AFSC-induced ER stress

without inducing apoptosis.
Immunological regulations

Intestinal inflammation is another common marker of NEC,

which is closely correlated with barrier dysfunction, ER stress,

and apoptosis. Upon intestinal injury, endotoxins released

from intra-luminal bacteria bind to Toll-like receptor 4

(TLR4) present on intestinal epithelial cells (3). TLR4

expression is increased on intestinal epithelial cells in

premature neonates (3) and recognize gram-negative

lipopolysaccharide (LPS). Once bound to LPS, TLR4 activates

pathogen-associated molecular pattern (PAMP) receptors
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for the observed intestinal permeability. The increased ability

of bacterial translocation results in both a heightened innate

and adaptive immune response, recruiting macrophages,

dendritic cells, neutrophils, tumor necrosis factor-alpha

(TNFα), IL-6 and other inflammatory cytokines. Additionally,

the disruption of the balance between T helper 17 (Th17)

cells and FoxP3+ regulatory T (Treg) cells further

characterizes this inflammatory phenotype (43). In NEC, a

decrease in Treg cells disrupts the equilibrium and increases

proinflammatory Th17 cell response (44). However, when

AFSCs are administered, TLR4-mediated signaling is inhibited

(44) and inflammatory markers such as TNFα and IL-6 are

significantly decreased (45).
Stem cell and regeneration ability

The rescue of intestinal stem cell (ISC) function and

differentiation is paramount to intestinal epithelial rescue and

impairment as a lack of cell proliferation and differentiation

grants further destruction of epithelial integrity. Leucine-rich

repeat-containing G-protein coupled receptor 5 (Lgr5) is a

well-studied stem cell proliferation marker. During

homeostasis, Lgr5+ ISCs located at the crypt base are

responsible for mediating the constant renewal of the

intestinal epithelium. These stem cells undergo self-renewal to

maintain an undifferentiated ISC reservoir, and differentiation

to give rise to major intestinal epithelial cell types, such as

absorptive enterocytes, goblet cells, Paneth cells, tuft cells and

enteroendocrine cells (46).

In premature infants there is a decrease in Lgr5+ ISCs which

inhibits intestinal epithelial reconstitution and increases NEC

susceptibility (47). AFSC medicated intestinal recovery via

Wnt signaling can be attributed to canonical Wnt pathways as

demonstrated by blocking Wnt signaling via inhibitors of

Porcupine (Porcn) protein (44). It has been well established

that transforming growth factor β1 (TGFβ1) activates the

canonical Wnt signaling (48). TGF-β1 is downregulated in

NEC and has been suggested to be used as a biomarker for

early diagnosis and to assess disease severity (49). Intestinal

stem cell Lgr5+ is upregulated in the embryonic intestinal

specimens (50) and gastrointestinal cancer (51) exposed to an

exogenous TGFβ1, which is in line with studies demonstrating

that AFSC upregulated the expression of Lgr5 through the

Wnt signalling pathway.

The administration of AFSCs rescued ISC function, the

differentiation of goblet cells is readily increased, thus the

creation of mucins to restore gut function and protection (44).

Thus, AFSCs ultimately promote intestinal recovery by

activating the Wnt/β-catenin signaling pathway to increase

Lgr5+ ISCs, reduce inflammation and regenerate the intestinal

epithelium (44).
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AFSC derivatives in NEC

Although AFSCs improved safety, accessibility and ethical

requirement of stem cell therapy, concerns continue to arise

in clinical translation due to undesired differentiation, possible

pro-tumorigenic and other detrimental effects (28). Thus,

research has shifted its focus more to derivatives of the AFSC.

For example, administration of the conditioned medium (CM)

or extracellular vesicles (EVs) derived from AFSCs provide the

same benefit as administering the stem cells themselves (52, 53).
Conditioned Medium (CM)

CM is essentially a cell-free “soup” of factors secreted by

cells, including growth factors, cytokines, enzymes, nucleic

acids and bioactive lipids (54). However, a gap in knowledge

remained whether CM cultured with AFSCs would provide

the same alleviation in experimental NEC.

A recent study demonstrated that administration of human

AFSC conditioned medium (hAFSC-CM) improved NEC

survival and reduced intestinal injury (45). Specifically,

intestinal mucosal inflammation and epithelial apoptosis were

significantly reduced. Remarkably, hAFSC-CM restored

intestinal regeneration capabilities via increased expression of

epithelial proliferation and intestinal stem cell markers. In

addition, intestinal microvasculature and angiogenesis was

restored.

Moreover, the secretome of the hAFSC-CM was assessed to

gain a further understanding of its composition to explain the

beneficial effects within in vivo models of NEC. Over 1500

proteins were found in the CM, mostly enriched by exosomes.

In addition, several clusters included immunomodulation, cell

cycle and stem cell regulation, which is in line with study

results previously described. Interestingly, a large functional

cluster of this secretome analysis was vesicle-mediated

transport, which led to the interest in the function of these

extracellular vesicles in the context of NEC.
Extracellular vesicles (EV)

The paracrine communication of AFSCs, as widely

discussed in previous research findings, has now been

accredited to the function of EVs (55–58). EVs are

membrane-limited vesicles released from the outward budding

of plasma membranes into the extracellular space with the

capacity of intercellular communication and component

exchange (59, 60). Some of these components include proteins

and nucleic acids, reflecting the phenotype of parental

cells (61). AFSC-CM, as previously described, has beneficial

effects on experimental models of NEC, which include the
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paracrine function of these EVs. Recent studies went further

and established that EVs alone were efficacious in the

treatment of experimental NEC (9, 62).

Experimental NEC-induced intestinal damagewas rescued via

administration of human AFSC-derived EVs (hAFSC-EVs) (63).

This study focused, however, on the most known affected

intestinal area in experimental NEC, the ileum. In this

experimental model, EVs improved ileal morphology, decreased

markers ileal inflammation (IL-6; TNFα), increased ileal

proliferation and regeneration by rescuing the stem cell niche,

which is in line with their previous work on hAFSC-CM.

A recent study indicates that AFSC-EVs counteract NEC-

induced intestinal injury through the stimulation of the Wnt/

β-catenin signaling pathway (Figure 3) (44). It is known that

intestinal stem cell (ISC) impairment is attributed to a lack of

Wnt signaling in NEC pathogenesis (48). In an ex vivo NEC

model, following hAFSC-EV administration, ISC and

epithelial proliferation were increased via Wnt signaling in

intestinal organoids (44). In an in vivo NEC model, Wnt-

producing AFSCs administered to mouse pups were able to

rescue epithelial injury, reduce inflammation and increase ISC

and epithelial proliferation (44). However, Wnt-deficient

AFSCs administered to mouse pups did not show these same

results. Interestingly, AFSC-secreted factors were both able to

increase ISC activity and Wnt signaling in a healthy and

injured gut. Furthermore, when administering AFSC-EVs to

both ex vivo and in vivo NEC models, similar results were

observed as previously described. In addition, the authors

concluded that timing is significant in EV-induced intestinal

recovery, even though theywere unable to prevent this injury (44).
Challenges of clinical translation of
AFSC-based therapy in NEC: What’s
next?

Overall, AFSC-based therapy has proven to be a novel

therapeutic option in the context of experimental NEC. The

pluripotent nature of these cells allows for their vast

differentiation capabilities. In addition to its direct benefits to

patients, the significant reduction of ethical issues of this less

invasive tool in comparison to embryonic stem cells and other

stem cell origins increases its attractiveness in tissue

engineering and treatment of suffering neonates. Though

there is a significant amount of evidence proving AFSCs to be

valuable in the treatment of NEC, there remains a lack of

clinical trials as indicated by our recent search in

ClinicalTrials.gov.

Optimization of stem cell and stem cell derivative expansion

is vital to clinical application. Moreover, various factors must be

considered prior to the induction of experimental animal model

techniques of AFSC administration, such as identifying: (1) the

ideal gestational age to harvest AFSCs, (2) markers eliciting
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FIGURE 3

Schematic of mechanism of action of hAFSC-EVs. Wnt signalling becomes enhanced upon administration of hAFSC-EVs, which in turn increases
stem cell activity and decreases inflammatory responses.
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optimal cells, (3) an optimized standard for AFSC expansion (4)

optimized dose concentrations of AFSC derivatives, (5) stem

cell conditioning for enhanced applications, (6) proving that

animal study results can be translated to a human setting

without detrimental effects. In the following paragraphs, these

factors are explained in more detail.

The general quality of AFSC cultures is significantly

correlated with gestational age of the fetus when AF is

harvested. In studies with experimental spina bifida patients,

MSCs and neural SCs show to have been affected by

gestational age (27). Recent studies with AFSCs show a

similar trend, however gestational age is shown to affect

paracrine signalling capabilities. For example, differential

modulation of lymphocyte proliferation is most affected in the

second trimester of pregnancy. Expression levels of HLA

molecules and sensitivity to natural killer (NK) cell-mediated

lysis are decreased, while T and NK cell proliferation is not

efficiently inhibited but B cells are, which is not seen in first

or third trimester cells (64). Immunomodulation, especially

the suppression of inflammatory responses, is a meaningful

attribute of AFSCs. Thus, the communication between
Frontiers in Pediatrics 07
lymphocytes and these cells must be optimized, and

gestational age may allow for this to occur. While gestational

age yields different effects, cell cultures stratified based on

maternal age yielded no significant differences in the quality

or repair capabilities (27).

On the quality of these cell cultures, AFSC morphology

yield differential properties in protecting the neonate. There

are two types of AFSCs: spindle-shaped and round-shaped.

Those that are spindle-shaped possess greater neuroprotection

to the developing fetal brain via analysis of CD90 and CD105.

It is well studied that the consequences of NEC go on to

affect neurodevelopment and brain morphology, therefore,

these results support AFSC-mediated protection via the use of

optimal cells (65). In addition, Oct-4 is a common biomarker

of pluripotency capabilities and should be used when

analyzing harvested hAFSC cultures. Optimizing the quality of

cell cultures harvested via ideal gestational age and predictable

cell markers will increase the confidence researchers have in

the induction of AFSC cultures in clinical application.

However, it remains unknown whether quality of these cell

cultures is hindered when harvested from diseased sources.
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For example, harvesting AFSCs from a fetus with NEC. Baughn

et al. studied whether the use of AFSCs harvested from patients

with neural tube defects have differential quality or repair

capabilities (27). Further research is needed to elucidate these

implications, thus contributing to the lack of clinical AFSC

induction.

As previously discussed, the use of CM and EVs are

evidenced to be additional therapeutic tools. These EVs

containing soluble bioactive factors and complex cargo have

secretomes that differentially affect immune responses,

including lymphocyte proliferation, and regeneration (64).

EVs from different individuals contain various proteins that

may not be present in their neighbour, thus elucidating minor

differential effects. Therefore, results seen in many studies

must consider how variance may play a significant factor in

how clinical application is affected.

The culture medium in which cell expansion occurs has

been optimized for in vitro use with animal models involving

animal sera. The standardization of optimized 10%–15% fetal

bovine serum (FBS) was studied in the clonal expansion of

AFSC cultures, however, results yielded noncompliance with

good manufacturing practice (GMP) (28, 66). Though AFSCs

do not yield the same safety issues other stem cell lines do, it

remains important to keep GMP-compliance when handling

these cells to avoid all possibility of infectious disease

transmission. For other stem cell lineages, xeno-free reagents

have been used as animal sera substitute for clinical

translation as xeno reagents induce immune rejection (66).

However, platelet-derived products are now becoming the

increasingly popular substitute. Platelets are rich in growth

factors that modulate growth, repair and angiogenic

capabilities. In addition, this type of media has the capacity to

preserve cells involved in immunomodulation and the

suppression of infectious disease transmission (28). Lyset, a

commercial platelet-derived product, has been proven to be a

safe alternative culture medium as it does not compromise the

integrity and functionality of AFSCs in clinical translation (28).

In recent research, short-term small molecule treatments are

a growing interest within the field of regenerative medicine.

These molecules can improve stem cell characteristics to

further reinforce their therapeutic potential and efficiency. A

study assessed the effect of various concentrations and

mixtures of small molecules known to participate in cell

repair and regeneration on AFSCs, such as surface marker

and pluripotency associated gene expression (67). HDAC

inhibitors trichostatin A (TSA) and sodium butyrate (NaBut)

promote somatic cell reprogramming, while multifunctional

molecules retinoic acid (RA) and vitamin C (vitC)

synergistically boost pluripotency. These small molecules in

combination with each other have no cytotoxic effects but do

increase gene expression patters of pluripotency markers and

neurogenic transcription factors (Oct4, Nanog, Lin28a, Cmyc,

Notch1, Sox2). Surface level markers are also affected (SSEA4,
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CD117, Tra-1-81, CD105) (67). Lastly, the effect on metabolic

phenotype was significantly increased. Thus, it is plausible for

the application of these small molecules as a pre-treatment

strategy to maintain, even boost, AFSC functional efficiency.

To overcome these hurdles within this research field of

AFSC-based therapy, key knowledge must further be

elucidated prior to the implementation of randomized control

trials in human neonates. Experimental NEC trials are

currently completed in animal models, thus further

investigation is required to investigate the effects of this

therapy on human models, such as intestinal epithelial

maturation, barrier function and innate immune responses.

For example, working with human-derived organoids would

be a great first step to preclinical human models (68).
Conclusion

To conclude, we have identified important bodies of

knowledge that continue to lack within the scope of clinical

translation of AFSC-based therapy. Future research must

confirm whether this treatment strategy will benefit neonates

suffering from NEC via preclinical trials. This review provides

a beneficial frame of reference towards clinical application of

AFSC and/or its derivatives as a novel treatment against NEC.
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