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Acute respiratory failure requiring the initiation of invasive mechanical
ventilation remains commonplace in the pediatric intensive care unit (PICU).
Early recognition of patients at risk for respiratory failure may provide
clinicians with the opportunity to intervene and potentially improve
outcomes. Through the development of a random forest model to identify
patients at risk for requiring unplanned intubation, we tested the hypothesis
that subtle signatures of illness are present in physiological and biochemical
time series of PICU patients in the early stages of respiratory
decompensation. We included 116 unplanned intubation events as recorded
in the National Emergency Airway Registry for Children in 92 PICU
admissions over a 29-month period at our institution. We observed that
children have a physiologic signature of illness preceding unplanned
intubation in the PICU. Generally, it comprises younger age, and
abnormalities in electrolyte, hematologic and vital sign parameters.
Additionally, given the heterogeneity of the PICU patient population, we
found differences in the presentation among the major patient groups –

medical, cardiac surgical, and non-cardiac surgical. At four hours prior to the
event, our random forest model demonstrated an area under the receiver
operating characteristic curve of 0.766 (0.738 for medical, 0.755 for cardiac
surgical, and 0.797 for non-cardiac surgical patients). The multivariable
statistical models that captured the physiological and biochemical dynamics
leading up to the event of urgent unplanned intubation in a PICU can be
repurposed for bedside risk prediction.
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Introduction

Acute respiratory failure requiring the initiation of invasive

mechanical ventilation remains commonplace in the pediatric

intensive care unit (PICU) (1). Emergent endotracheal

intubation in children is associated with an increased risk of

complications as compared to intubations performed electively

(2). Early recognition of patients at risk for respiratory failure

may provide clinicians with the opportunity to intervene and

potentially improve outcomes (3).

Predictive analytics leverages physiologic and biochemical

data in the development of algorithms that can identify

signatures of illness present early in the process of clinical

decompensation (4–6). Display of algorithmic-derived scores

or indices alert care providers to patients at risk for clinical

decompensation. Our group previously found a signature of

respiratory distress leading to unplanned intubation in the

adult intensive care unit (ICU) population that we validated

externally at another site (3, 7, 8). Display of a risk estimate

for this event in a surgical ICU was associated with a fall in

septic shock by 50% that was not matched in a medical ICU

that did not have the display (9). Through the development of

a random forest model to identify patients at risk for

requiring urgent unplanned intubation, we tested the

hypothesis that subtle signatures of illness are present in

physiological and biochemical time series of PICU patients in

the early stages of respiratory decompensation (10).
Materials and methods

Study design and definitions

We performed a retrospective cohort study from January 2014

to May 2016 at the University of Virginia (UVA) Children’s

Hospital. We included all admissions to the PICU, a 17-bed

combined cardiac and medical/surgical unit with stored

continuous physiologic monitoring data. We defined admission

as a unique hospitalization that included PICU stay irrespective

of the number of transitions into and out of the PICU. The

Institutional Review Board at the University of Virginia approved

this study. We followed the Strengthening the Reporting of

Observational Studies in Epidemiology guidelines (11).

We identified all intubations performed in the UVA

Children’s Hospital associated with a PICU admission during

the period of study through querying of individual electronic

health records. We established our primary end point of an

unplanned intubation event based on the time of the event

recorded in the electronic health record and a non-elective

indication for intubation as documented in the UVA

contribution to the National Emergency Airway Registry for

Children (NEAR4KIDS) database. We also performed a
Frontiers in Pediatrics 02
sensitivity analysis using only the computable phenotype of

intubation event recorded in the electronic health record

without regard to patient location or indication for intubation

(includes e.g., patients intubated in Operating Room by

Anesthesia prior to surgery) to evaluate the importance of

manual chart review.

The 12-hour window prior to each unplanned intubation event

was identified and classified (provided the patient was in the PICU

and not already intubated) as case data. We classified data collected

at all other times in patients with or without unplanned intubation

events as control data. We excluded intubations within 15 min of

PICU admission, or those within one hour of a prior extubation.

We excluded admissions without archived physiologic

monitoring data due to technical complications. Multiple

unplanned intubation events in individual patients were treated

as independent events for the purposes of analysis as each 12-

hour window of case data was distinct.

We excluded times during which a patient was mechanically

ventilated. Presence of mechanical ventilation was determined

by extracting the ventilator respiratory rate flowsheet vital sign

from the electronic data warehouse. We defined mechanical

ventilation as starting at the time of the first ventilator

respiratory rate and ending at the time of the last ventilator

respiratory rate. The period of mechanical ventilation was

split when the time between consecutive measurements from

a patient was longer than 12 h, and identified the patient as

not ventilated in the interim (see Supplementary Figure A1).
Physiologic data acquisition and
predictors

Continuous cardiorespiratory monitoring consisted of

waveforms (3 leads of ECG sampled at 240 Hz, pulse

plethysmography at 120 Hz, and invasive blood pressure

tracings at 120 Hz) and vital signs (heart rate, respiratory rate,

peripheral oxygen saturation, invasive blood pressure,

ventilator measured respiratory rate, and sample-and-hold

non-invasive blood pressure) sampled at 0.5 Hz. The GE

monitor (GE Healthcare, Chicago, IL) reported sample-and-

hold non-invasive blood pressure at 0.5 Hz, while monitor-

smoothed invasive blood pressure was measured continuously.

We calculated, in 30-minute windows with 50% overlap, the

following 18 measures: the mean and standard deviation of

heart rate (HR), respiratory rate (RR), pulse oximetry (SO2);

mean non-invasive systolic and diastolic blood pressure, or

invasive blood pressure in its absence (SBP and DBP); the

three pairwise cross-correlations between HR, RR, and SO2;

standard deviation of heart inter-beat intervals (sRRI); local

dynamics score (LDs) and local dynamics density (LDd) of

heart inter-beat intervals (12); coefficient of sample entropy

(COSEn) (13); the slope of log variance vs. log scale between

scales 4 and 12 for detrended fluctuation analysis of heart
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inter-beat intervals (DFA) (14); the probability of atrial

fibrillation (15). Non-invasive blood pressure was cycled more

frequently than every 30-minutes in 95% of epochs in which

it was available. Low quality EKG data were excluded from

cardiac dynamic calculations (16, 17). LDs and LDd quantify

how many heart inter-beat intervals match very many or no

other intervals. COSEn quantifies the repeatability of the heart

inter-beat interval time series. Finally, DFA quantifies the way

in which the variability of heart inter-beat intervals depends

upon time scale. The cardiorespiratory dynamics measured

from continuous cardiorespiratory monitoring were calculated

as described in (18) using CoMET® (AMP3D Inc., a Nihon

Kohden Company, Charlottesville, VA). Cardiorespiratory

dynamics were not available to the care team.

Vital signs (heart rate, respiratory rate, oxygen saturation,

blood pressure, and temperature) were extracted from

flowsheets. Additionally, we extracted fraction of inspired

oxygen and supplemental oxygen flowrate and combined it

with peripheral oxygen saturation to estimate the PO2 to FiO2

ratio (ePFR) following the methods of Gadrey, et al. (19, 20).

Eleven frequently measured laboratory measurements (serum

sodium, potassium, chloride, bicarbonate, blood urea nitrogen

(BUN), creatinine, glucose, calcium, white blood cell count,

hematocrit, platelet count) were extracted from the electronic

data warehouse. Anion gap and BUN to creatinine ratio were

included as features. We combined these intermittent features

with continuously measured features using sample-and-hold.

Vital signs and labs older than 24 and 48 h, respectively, were

censored. Finally, we included age as a continuous predictor.

We also performed a sensitivity analysis by excluding

features from continuous cardiorespiratory monitoring, both

for the chart reviewed unplanned intubations and the

computable phenotype.
Subgroup analysis

The study cohort includes patients admitted for a variety of

reasons. To investigate differences in physiological signatures

between these populations, we identified the patient type for

each admission in our retrospective analysis. We defined

patient type for each admission based on operating room

records: admissions without any operating room records were

identified as medical patients, those with a thoracic

cardiovascular operating room record were identified as

cardiac surgery, and those with any other type of operating

room record were identified as non-cardiac surgery.
Physiological signature of illness

We construct physiological signatures of illness specific to

age and each patient type in the cohort. For this,
Frontiers in Pediatrics 03
predictiveness curves were calculated to display the

independent association of vital signs, laboratory values, and

continuous cardiorespiratory monitoring parameters with

unplanned intubation. To reduce bias due to repeated

measures and missing data, we used a bootstrapping

technique to estimate the predictiveness curves. For each

patient type and for all patients, we randomly sampled eight

measurements within 12 h before unplanned intubation and

eight measurements from each admission without an

intubation event or far from the time of intubation. We

calculated the relative risk of unplanned intubation at each

decile of the sampled variable and each decile of age over the

surrounding quintile. We repeated this process of sampling

and calculating relative risk 30 times then averaged to obtain

a bootstrapped predictiveness curve and displayed the results

as a heat map. Toddenroth and colleagues present an

excellent introduction to the construction and interpretation

of heat maps in clinical research (21).
Model development

We developed a model on the entire cohort and used cross

validation for estimating performance characteristics. Modeling

was performed in R (R Foundation for Statistical Computing,

Vienna, Austria) using the randomForest packages (22, 23).

We used random forest to construct a multivariable model to

account for the high-dimensional relationships between

predictors, and especially to account for the known age-

dependence of many features. We justify its use over other

logistic regression based on our prior finding that random

forest more accurately captured the influence of age in the

signature of sepsis in this population (24). As predictors, we

used 18 measures from continuous cardiorespiratory

monitoring, 8 vital signs, 13 laboratory measurements, and

age. We performed a sensitivity analysis by including a

random variable to identify features that were not significantly

associated with unplanned intubation. We imputed missing

data based on patient age. We first identified the deciles of

age and calculated the median of each feature in each decile.

Missing values were then imputed with the median for the

decile associated with the age of the patient at the missing

measurement time.

We constructed a random forest model (25) to identify data

for patients that had an unplanned intubation event in the next

12 h. The forest consisted of 800 classification trees, and 6

features (the square root of the number of features) were

sampled as candidates at each split (26). We adjusted for the

imbalance between the intubation event and non-intubation

event data by bootstrapping the event data and sampling the

same number of non-event data. The output of the model was

the fraction of trees that classified a record as an event. We

divided this output by the average value to obtain predicted
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relative risk, then multiplied by the average probability of

unplanned intubation in the next 12 h to get predicted

probability.

The predicted risk was calculated using 5-fold cross

validation (27). Briefly, hospital admissions were randomly

sampled into 5 groups containing approximately 20% of

admissions. We used the first fold (20%) as the test set, and

we built a model on the remaining 4 folds (80% of

admissions). The predicted risk for the test set was estimated

using this model, and the procedure repeated for each of 5

folds admissions. This patient-wise method provides less

biased performance estimates than cross-validation that selects

folds based on row, because in the latter method data from an

individual admission may be included in many folds and

therefore be used for training and testing.

We also followed this model development and validation

procedure to compare performance characteristics for models

to predict: the computable phenotype for unplanned

intubation excluding continuous cardiorespiratory monitoring

features; the computable phenotype for unplanned intubation

using all features; the chart reviewed events of unplanned

intubation excluding continuous cardiorespiratory monitoring

features.
TABLE 1 Demographics of the study population.

No Event
(n = 2675)

Event
(n = 92)

p-
value

Age, median (IQR) 3 yr
(6 mo – 12 yr)

5 mo
(1 mo – 3 yr)

*

Hospital LOS, median (IQR) 4 days (2 days –
10 days)

33 (18 days – 63
days)

*

In-hospital mortality, % 3.30% 18.50% *

Male sex, % 54.20% 58.70% 0.39

Patient Type

Medical, n (%) 1222 (45.7%) 19 (20.7%) *

Non-cardiac surgery, n (%) 826 (30.9%) 26 (28.3%) 0.59

Cardiac surgery, n (%) 627 (23.4%) 47 (51.1%) *

Abbreviations: IQR, interquartile range; LOS, length of stay.

*indicates p < 0.0001 based on Wilcoxon rank sum testing (numerical data) or

standard error for the difference of proportions.
Performance characteristics of predictive
models

The model developed here is intended for continuous risk

estimation. We contextualized the performance and potential

clinical impact of our predictive models relative to the HRC

index. We evaluated our model by plotting the time-course of

cross-validated predicted risk leading up to the time of

unplanned intubation event. Early detection requires not only

high-predicted risk before diagnosis, but also an increasing

risk to indicate worsening patient status towards critical

illness. We also calculated the area under the receiver

operating characteristic (AUC) based on cross-validated

predictions. The AUC is equivalent to the C-statistic: it is the

probability that, when randomly drawing one predicted

probability from case and control data, the case data has a

higher prediction. A random classifier has the expected AUC

of 0.5 and perfect discrimination has AUC of 1.0.

We find a surprisingly wide variety of methods for

calculating AUC in the literature. One approach to achieve

artificially high AUC is to report “encounter-based” AUCs,

meaning that each patient is characterized by the highest

AUC during the hospitalization. Thus, the score representing

the case patient may have occurred long before or long after

the diagnosis was made. This is not useful to the bedside

clinician. It is not possible to compare two AUCs unless the

data sets and the evaluation criteria are the same. Here we

report AUC based on evaluation of all case and control
Frontiers in Pediatrics 04
records where a patient is at risk for unplanned intubation in

the PICU.
Results

Table 1 shows the study cohort. There were 2767 PICU

admissions included in the study. When we require a non-

elective indication for intubation using the UVA contribution

to the NEAR4KIDS database we found 92 admissions with

116 unplanned intubations. The most common indications

noted in the NEAR4KIDS database for unplanned intubations

were respiratory failure (64%), both respiratory failure and

hemodynamic instability (14%), and hemodynamic instability

alone (12%). Patients who experienced unplanned intubation

during their stay were younger and were more likely to have

had cardiac surgery during their stay. When we did not

require a non-elective indication from the UVA contribution

to the NEAR4KIDS database we found 944 admissions using

the computable phenotype alone.

Figure 1 shows the characteristics of the study cohort. In

Figure 1A, patients admitted for cardiac surgery were

predominantly infants admitted with complex congenital

heart disease, while medical and non-cardiac surgery patients

were more distributed across the pediatric age range. In

Figures 1B–D, the estimates are made at each quartile of age

for the specific patient type. Unplanned intubation was more

likely for younger patients regardless of patient type, see

Figure 1B. Unplanned intubation increased length of stay all

patient types and ages, and increased mortality for most in

Figures 1C,D.

Figure 2 shows an example of the physiological signature of

unplanned intubation for cardiac surgery (left), medical

(center), and non-cardiac surgery (right) patients. In each

panel, each colored column estimates the empirical relative
frontiersin.org
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FIGURE 1

Characteristics of the study population. (A) Histogram of admissions for each patient type as a function of age. (B) Rate of unplanned intubation for
each patient type as a function of age. (C) Mortality rate for each patient type with (red) and without (black) unplanned intubation. Error bars are 95%
confidence interval. (D) Median length of stay in days for each patient type with (red) and without (black) unplanned intubation. Error bars show the
IQR.
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risk for unplanned intubation as a function of respiratory rate

for one decile of age based on the surrounding quintile. That

is, for all measurements in each decile of age and respiratory

rate, we calculated the probability of unplanned intubation in

the next 12 h and divided by the average rate of unplanned

intubation in the cohort (0.0063). The youngest 10% of

medical patients, for example, have about 3-fold more risk

than average (redder) for unplanned intubation when

respiratory rate is in the lower 30% (less than about 27

breaths per minute) independent of all other features.

Averaging across all columns and panels yields an age and

patient type marginalized risk profile for respiratory rate as
Frontiers in Pediatrics 05
shown in Figure 3. The deciles of respiratory rate and age are

maintained across the rows and panels. There was a distinct

physiological signature of illness for unplanned intubation

depending on patient type. High respiratory rate is a signature

of unplanned intubation for non-cardiac surgery patients and

older medical patients, while in younger medical patients it is

low respiratory rate and for cardiac surgery patients there is

not a strong signature in respiratory rate. See Supplementary

Figure A2 for all features.

Figure 3 shows the marginal risk profiles of several example

features for the random forest model based on all patients. Each

panel shows the log odds of unplanned intubation (ordinate) as
frontiersin.org
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FIGURE 2

Empirical relative risk for cardiac surgery (left), medical (center), and non-cardiac surgery (right) patients as a function of age and mean respiratory
rate from continuous monitoring data. On each panel, younger patients are to the left, and slower respiratory rates are to the bottom. Each colored
tile estimates the relative risk of unplanned intubation for each decile of age and respiratory rate based on the surrounding quintile. Deciles of
respiratory rate and age remain the same across patient type panels. Higher relative risk is redder while lower is bluer.

FIGURE 3

Risk profiles for exemplary features in the random forest model.
These are marginal risk profiles that average out dependence on
other features, such as the dependence of heart rate on age. The
(natural) log odds of unplanned intubation in the next 12 h
(ordinate) is shown as a function of the value of each measured
variable (abscissa) holding all other features at their median values.
Lower blood pressure, for example, is associated with increased
risk for unplanned intubation independent of changes in any other
feature.

Spaeder et al. 10.3389/fped.2022.1016269
a function of the value of each feature (abscissa). We estimated

log odds by varying each feature across its range and estimated

the log odds from the predicted probability while keeping all

other features at their median values, then calculated the logit

of predicted probability based on the model. Increasing heart
Frontiers in Pediatrics 06
rate from about 70 to 150 with all other features at the

median values for the sample, for example, increases the log

odds of unplanned intubation in the next 12 h from about −6
to −5, or an increase in probability from 0.0025 to 0.0067.

Note that this marginalized representation removes the

dependence captured by the model of each feature on age. See

Supplementary Figure A3 for all features. All features were

found to be more important than the random feature. Small

changes in heart rate, respiratory rate, blood pressure, and

others, alone or in combination, can be signatures of

changing risk for unplanned intubation.

The AUC for the random forest model based on cross-

validated predictions is 0.696 for all patients (0.692 for

medical, 0.673 for cardiac surgery, and 0.727 for non-cardiac

surgery). The AUC depends on the definition of case data

(24): the AUC for the random forest model using a definition

of 4 h before the event (rather than 12 h before) is 0.766

(0.738 for medical, 0.755 for cardiac surgical, and 0.797 for

non-cardiac surgical). For comparison, the AUC of HRC

monitoring for neonatal sepsis [that resulted in 20% mortality

reduction (28)] within 24 h was 0.70 in the development

cohort (29). In adults, prospective display of models for

unplanned intubation and hemorrhage with AUC of 0.68 and

0.71, respectively (7), were associated with a 50% reduction of

septic shock in an adult surgical ICU (9).

Figure 4 shows a sensitivity analysis for using a computable

phenotype rather than chart review, and for excluding

continuous cardiorespiratory monitoring features from the

model. Each AUC is based on the cross-validated

probabilities. Models using continuous cardiorespiratory

monitoring features perform better than those without, and

models based on chart reviewed events perform better than
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those based on a computable phenotype: the AUC using a

computable phenotype is 29% lower than using manual chart

review (0.638 and 0.696, respectively) and the AUC using

chart review but excluding continuous cardiorespiratory

monitoring features is 12% lower (0.671).

Figure 5 shows the average model output leading up to the

time of unplanned intubation. For each event of unplanned

intubation, we estimated the relative risks are based on the
FIGURE 4

Area under the receiver operating characteristic (AUC) for predicting
unplanned intubation based on chart review. For comparison, the
AUC is also shown for combinations of models built to detect a
computable phenotype and either using all features or excluding
continuous monitoring data. Each AUC is based on 5-fold cross-
validation with confidence intervals based on 200 bootstrap runs
resampled by admission.

FIGURE 5

Average time series of model outputs leading up to the time of unplanned int
on all patients and are shown for all patients as well as patients of each patien
risk estimates for the same patients 8 h prior based on a Wilcoxon signed ra

Frontiers in Pediatrics 07
cross-validated predicted probabilities from the model. We

then averaged the relative risks at each time to event for all

events with data. To test that the predicted risk is increasing

leading up to the time of unplanned intubation, we tested the

null hypothesis that risk estimates are less than or equal to

the values for the same patients 8 h prior. Open circles

indicate that we reject the null hypothesis at the 0.05

significance level based on a Wilcoxon rank sum test. The

figure indicates that all patient types have indications of

physiological derangement 4–6 h prior to unplanned

intubation.
Discussion

Like adults, children have a physiologic signature of illness

preceding unplanned intubation in the PICU. Generally, it

comprises younger age, and abnormalities in electrolyte,

hematologic and vital sign parameters. Given the

heterogeneity of the patient population, it is not surprising

that there are differences in the presentation among the major

patient groups – medical, non-cardiac surgical, and cardiac

surgical. We have argued elsewhere that predictive analytics

monitoring is not a one-size-fits-all enterprise (30).

There are a variety of indications for unplanned intubation

including oxygen failure, ventilation failure, and unstable

hemodynamics. For the individual patient, it is often the case

that multiple indications for intubation exist, demonstrating

the complexity of physiology at play (31). For example, a

patient with infantile botulism or spinal muscular atrophy

may first exhibit signs of decompensation secondary to

neuromuscular weakness which can progress to ventilation

failure and ultimately oxygenation failure. Identifying
ubation. Results are cross-validated predictions from the model based
t type. Open circles indicate risk estimates are significantly higher than
nk test.
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physiologic and biochemical signatures of illness that help

discriminate patients at risk for decompensation may allow

for earlier intervention and potentially even prevention of the

need for intubation.

We observed overlap in the signatures of illness between the

medical and non-cardiac surgical patients. The leading indication

for intubation in both the medical and non-cardiac surgical

patients was respiratory failure (e.g., oxygen and/or ventilation

failure) typically driven by primary disorders of respiratory

physiology (e.g., pneumonia, acute lung injury). This is best

illustrated by the heat map in Figure 2 exhibiting the influence

of respiratory rate on the risk of intubation. Cardiac surgical

patients, on the other hand, may be more likely to exhibit

hemodynamic instability necessitating intubation, distinguishing

them from the other two patient types.

This work is presented in the context that the multivariable

statistical models that we use to look for signatures of illness can

be repurposed for bedside risk prediction to supplement clinical

decision making, including potential improvement in patient

outcomes (32–36). The precedent is the heart rate

characteristics index, a logistic regression model that used

time series mathematical measures to identify early signatures

of infection in preterm infants (37). Preterm infants in

intensive care represent a mostly homogeneous cohort with a

consistent signature of deterioration well-suited for logistic

regression. The PICU, by contrast, may consist of multiple

patient cohorts over a wide range of ages with different

physiology and therefore physiological signatures, thus

requiring more adaptable modeling approaches.

We found components of the signature in the labs (white blood

cell count), vital signs (BP), and fromthe bedsidemonitor (every-2-

second respiratory rate, variability of the SpO2). We affirmed the

importance of continuous cardiorespiratory monitoring data in

discovering dynamic signatures of illness (38–40) excluding it

reduced the AUC by 12%. This finding underscores the

importance of using all available sources of information in

bedside predictive analytics monitoring (41).

Individual chart review proved to be of great importance in

defining the signature of illness. When we used a computable

phenotype, we found cases in 852 more patient admissions,

but the statistical models returned poorer performance with a

29% reduction in AUC. Like sepsis, the gold standard for case

identification for model training is individual chart review (42).

Our study has several limitations including the single-center

observational nature. Our model was constructed using data

from a mixed cardiac/medical-surgical PICU, limiting its

applicability broadly to all PICUs and patient populations. We

were limited to the time of the intubation, rather than the

time the clinical decision to intubate was made, to define the

event. We were also limited by the indication(s) for

intubation (e.g., respiratory failure, hemodynamic instability)

as recorded in the NEAR4KIDS database. To our knowledge,

the inter-rater reliability for establishing intubation indication
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(s) for the NEAR4KIDS database has not been evaluated. The

small number of admissions from teenagers, and the low rate

of unplanned intubation in that age range, limits the ability to

capture a complete signature of illness. Physiological

monitoring data included epochs with artifact due to, for

example, physical therapy or suctioning. We also did not

control for the impact of routine medications, such as

sedatives and vasoactives, or non-invasive respiratory support

on physiology. We acknowledge that these factors contribute

to the complex and nuanced clinical scenarios in the PICU,

and that results of a predictive model are to be taken into

consideration with many other factors.

Additionally, we were limited to the time of the intubation,

rather than the time the clinical decision to intubate was made, to

define the event. Several factors may influence the timing of the

clinical decision to intubate. While one patient may demonstrate

clinical decompensation over a period of hours and another may

experience an acute catastrophic event, we were encouraged by

the observation of improved AUC at four hours prior to the

event. Next steps include external validation of our models and

evaluation through prospective integration into clinical care.

We have studied physiological and biochemical dynamics

leading up to the event of unplanned intubation in a PICU.

We observed that patients who experienced unplanned

intubation were younger, more likely to have a co-morbid

condition, and more likely to have undergone cardiac surgery.

In addition, we identified different signatures of illness for

medical, cardiac surgical, and non-cardiac surgical patients.

While all this information is already incorporated into clinical

practice by PICU teams, using predictive analytics

prospectively to accurately estimate risk based on high-

dimensional physiological signatures can support clinical

decision making, direct new approaches for continuous

monitoring in the PICU, and improve patient outcomes.
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SUPPLEMENTARY FIGURE A1

Histogram of time between ventilator respiratory rate entries in the
electronic medical record on a logarithmic scale. Most entries are
within 12 hours of the preceding entry.

SUPPLEMENTARY FIGURE A2

Empirical relative risk for cardiac surgery (left), medical (center), and non-
cardiac surgery (right) patients as a function of age and each feature. On
each panel, younger patients are to the left, and lower values of the
feature are to the bottom. Each colored tile estimates the relative risk
of unplanned intubation for each decile of age and the feature based
on the surrounding quintile. Deciles remain the same across patient
type panels. Higher relative risk is redder while lower is bluer.

SUPPLEMENTARY FIGURE A3

Marginal risk profiles for each feature in the random forest model. Note
that marginal risk profiles average out any interdependence between
features, such as the dependence of heart rate on age. The (natural)
log odds of unplanned intubation in the next 12 hours (ordinate) is
shown as a function of the value of each measured variable (abscissa)
holding all other features at their median values.
References
1. Schneider J, Sweberg T. Acute respiratory failure. Crit Care Clin. (2013)
29:167–83. doi: 10.1016/j.ccc.2012.12.004

2. Carroll CL, Spinella PC, Corsi JM, Stoltz P, Zucker AR. Emergent
endotracheal intubations in children: be careful if it is late when you intubate.
Pediatr Crit Care Med. (2010) 11:343–8. doi: 10.1097/PCC.0b013e3181ce6d19

3. Politano AD, Riccio LM, Lake DE, Rusin CG, Guin LE, Josef CS, et al.
Predicting the need for urgent intubation in a surgical/trauma intensive care
unit. Surgery. (2013) 154:1110–6. doi: 10.1016/j.surg.2013.05.025

4. Davis JP, Wessells DA, Moorman JR. Coronavirus disease 2019 calls for
predictive analytics monitoring-a new kind of illness scoring system. Crit Care
Explor. (2020) 2:e0294. doi: 10.1097/CCE.0000000000000294

5. Bates DW, Saria S, Ohno-Machado L, Shah A, Escobar G. Big data in health
care: using analytics to identify and manage high-risk and high-cost patients.
Health Aff. (2014) 33:1123–31. doi: 10.1377/hlthaff.2014.0041

6. Bates DW, Zimlichman E. Finding patients before they crash: the next
opportunity to improve patient safety. BMJ Qual Saf. (2015) 24:1–3. doi: 10.
1136/bmjqs-2014-003499

7. Moss TJ, Lake DE, Calland JF, Enfield KB, Delos JB, Fairchild KD, et al.
Signatures of subacute potentially catastrophic illness in the ICU: model
development and validation. Crit Care Med. (2016) 44:1639–48. doi: 10.1097/
CCM.0000000000001738

8. Callcut RA, Xu Y, Moorman JR, Tsai C, Villaroman A, Robles AJ, et al.
External validation of a novel signature of illness in continuous
cardiorespiratory monitoring to detect early respiratory deterioration of ICU
patients. Physiol Meas. (2021) 42:095006. doi: 10.1088/1361-6579/ac2264

9. Ruminski CM, Clark MT, Lake DE, Kitzmiller RR, Keim-Malpass J,
Robertson MP, et al. Impact of predictive analytics based on continuous
cardiorespiratory monitoring in a surgical and trauma intensive care unit. J Clin
Monit Comput. (2019) 33:703–11. doi: 10.1007/s10877-018-0194-4

10. Trujillo Rivera EA, Chamberlain JM, Patel AK, Morizono H, Heneghan JA,
Pollack MM. Dynamic mortality risk predictions for children in ICUs:
development and validation of machine learning models. Pediatr Crit Care
Med. (2022) 23:344–52. doi: 10.1097/PCC.0000000000002910

11. von Elm EAD, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The
strengthening the reporting of observational studies in epidemiology (STROBE)
statement: guidelines for reporting observational studies. Ann Intern Med.
(2007) 147:573–7. doi: 10.7326/0003-4819-147-8-200710160-00010

12. Moss TJ, Clark MT, Lake DE, Moorman JR, Calland JF. Heart rate dynamics
preceding hemorrhage in the intensive care unit. J Electrocardiol. (2015)
48:1075–80. doi: 10.1016/j.jelectrocard.2015.08.007

13. Lake DE, Moorman JR. Accurate estimation of entropy in very short
physiological time series: the problem of atrial fibrillation detection in
implanted ventricular devices. Am J Physiol Heart Circ Physiol. (2011) 300:
H319–25. doi: 10.1152/ajpheart.00561.2010

14. Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling
exponents and crossover phenomena in nonstationary heartbeat time series.
Chaos. (1995) 5:82–7. doi: 10.1063/1.166141
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fped.2022.1016269/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fped.2022.1016269/full#supplementary-material
https://doi.org/10.1016/j.ccc.2012.12.004
https://doi.org/10.1097/PCC.0b013e3181ce6d19
https://doi.org/10.1016/j.surg.2013.05.025
https://doi.org/10.1097/CCE.0000000000000294
https://doi.org/10.1377/hlthaff.2014.0041
https://doi.org/10.1136/bmjqs-2014-003499
https://doi.org/10.1136/bmjqs-2014-003499
https://doi.org/10.1097/CCM.0000000000001738
https://doi.org/10.1097/CCM.0000000000001738
https://doi.org/10.1088/1361-6579/ac2264
https://doi.org/10.1007/s10877-018-0194-4
https://doi.org/10.1097/PCC.0000000000002910
https://doi.org/10.7326/0003-4819-147-8-200710160-00010
https://doi.org/10.1016/j.jelectrocard.2015.08.007
https://doi.org/10.1152/ajpheart.00561.2010
https://doi.org/10.1063/1.166141
https://doi.org/10.3389/fped.2022.1016269
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Spaeder et al. 10.3389/fped.2022.1016269
15. Carrara M, Carozzi L, Moss TJ, de Pasquale M, Cerutti S, Ferrario M, et al.
Heart rate dynamics distinguish among atrial fibrillation, normal sinus rhythm
and sinus rhythm with frequent ectopy. Physiol Meas. (2015) 36:1873–88.
doi: 10.1088/0967-3334/36/9/1873

16. Clark MT, Rusin CG, Hudson JL, Lee H, Delos JB, Guin LE, et al. Breath-by-
breath analysis of cardiorespiratory interaction for quantifying developmental
maturity in premature infants. J Appl Physiol. (2012) 112:859–67. doi: 10.1152/
japplphysiol.01152.2011

17. Li Q, Mark RG, Clifford GD. Robust heart rate estimation from multiple
asynchronous noisy sources using signal quality indices and a Kalman filter.
Physiol Meas. (2008) 29:15–32. doi: 10.1088/0967-3334/29/1/002

18. Moss TJ, Clark MT, Calland JF, Enfield KB, Voss JD, Lake DE, et al.
Cardiorespiratory dynamics measured from continuous ECG monitoring
improves detection of deterioration in acute care patients: a retrospective cohort
study. PLoS One. (2017) 12:e0181448. doi: 10.1371/journal.pone.0181448

19. Gadrey SM, Lau CE, Clay R, Rhodes GT, Lake DE, Moore CC, et al.
Imputation of partial pressures of arterial oxygen using oximetry and its impact
on sepsis diagnosis. Physiol Meas. (2019) 40:115008. doi: 10.1088/1361-6579/
ab5154

20. Gadrey SM, Mohanty P, Haughey SP, Jacobsen BA, Dubester KJ, Webb KM,
et al. Overt and occult hypoxemia in patients hospitalized with novel coronavirus
disease 2019. medRxiv. (2022) 2022:06.14.22276166. doi: 10.1101/2022.06.14.
22276166

21. Toddenroth D, Ganslandt T, Castellanos I, Prokosch HU, Burkle T.
Employing heat maps to mine associations in structured routine care data. Artif
Intell Med. (2014) 60:79–88. doi: 10.1016/j.artmed.2013.12.003

22. Liaw AWM. Classification and regression by random forest. R News. (2002)
2:18–22. ISSN: 1609-3631

23. R Core T. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing 2017.

24. Spaeder MC, Moorman JR, Tran CA, Keim-Malpass J, Zschaebitz JV, Lake
DE, et al. Predictive analytics in the pediatric intensive care unit for early
identification of sepsis: capturing the context of age. Pediatr Res. (2019)
86:655–61. doi: 10.1038/s41390-019-0518-1

25. Sanchez-Pinto LN, Luo Y, Churpek MM. Big data and data science in critical
care. Chest. (2018) 154:1239–48. doi: 10.1016/j.chest.2018.04.037

26. Breiman L. Random forests. Mach Learn. (2001) 45:5–32. doi: 10.1023/
A:1010933404324

27. Keim-Malpass J, Enfield KB, Calland JF, Lake DE, Clark MT. Dynamic data
monitoring improves predictive analytics for failed extubation in the ICU. Physiol
Meas. (2018) 39:075005. doi: 10.1088/1361-6579/aace95

28. Moorman JR, Carlo WA, Kattwinkel J, Schelonka RL, Porcelli PJ, Navarrete
CT, et al. Mortality reduction by heart rate characteristic monitoring in very low
birth weight neonates: a randomized trial. J Pediatr. (2011) 159:900–6. doi: 10.
1016/j.jpeds.2011.06.044

29. Griffin MP, O’Shea TM, Bissonette EA, Harrell Jr. FE, Lake DE,
Moorman JR. Abnormal heart rate characteristics are associated with
Frontiers in Pediatrics 10
neonatal mortality. Pediatr Res. (2004) 55:782–8. doi: 10.1203/01.PDR.
0000119366.21770.9E

30. Blackwell JN, Keim-Malpass J, Clark MT, Kowalski RL, Najjar SN, Bourque
JM, et al. Early detection of in-patient deterioration: one prediction model does
not fit all. Crit Care Explor. (2020) 2:e0116. doi: 10.1097/CCE.0000000000000116

31. Nishisaki A, Turner DA, Brown CA, Walls RM, Nadkarni VM. National
Emergency Airway Registry for Children, A national emergency airway registry
for children: landscape of tracheal intubation in 15 PICUs. Crit Care Med.
(2013) 41:874–85. doi: 10.1097/CCM.0b013e3182746736

32. Sanchez-Pinto LN, Bennett TD. Evaluation of machine learning models for
clinical prediction problems. Pediatr Crit Care Med. (2022) 23:405–8. doi: 10.
1097/PCC.0000000000002942

33. Zimmet AN, Clark MT, Gadrey SM, Bell TD, Zimmet AM, Moorman JR,
et al. Pathophysiologic signatures of bloodstream infection in critically
ill adults. Crit Care Explor. (2020) 2:e0191. doi: 10.1097/CCE.
0000000000000191

34. Moorman JR. The principles of whole-hospital predictive analytics
monitoring for clinical medicine originated in the neonatal ICU. NPJ Digit
Med. (2022) 5:41. doi: 10.1038/s41746-022-00584-y

35. Badawi O, Liu X, Hassan E, Amelung PJ, Swami S. Evaluation of ICU
risk models adapted for use as continuous markers of severity of illness
throughout the ICU stay. Crit Care Med. (2018) 46:361–7. doi: 10.1097/CCM.
0000000000002904

36. Escobar GJ, Liu VX, Schuler A, Lawson B, Greene JD, Kipnis P. Automated
identification of adults at risk for in-hospital clinical deterioration. N Engl J Med.
(2020) 383:1951–60. doi: 10.1056/NEJMsa2001090

37. Griffin MP, Lake DE, Bissonette EA, Harrell Jr. FE, O’Shea TM, Moorman
JR. Heart rate characteristics: novel physiomarkers to predict neonatal infection
and death. Pediatrics. (2005) 116:1070–4. doi: 10.1542/peds.2004-2461

38. Holder AL, Clermont G. Using what you get: dynamic physiologic
signatures of critical illness. Crit Care Clin. (2015) 31:133–64. doi: 10.1016/j.ccc.
2014.08.007

39. Slight SP, Franz C, Olugbile M, Brown HV, Bates DW, Zimlichman E. The
return on investment of implementing a continuous monitoring system in general
medical-surgical units. Crit Care Med. (2014) 42:1862–8. doi: 10.1097/CCM.
0000000000000340

40. Horton WB, Barros AJ, Andris RT, Clark MT, Moorman JR.
Pathophysiologic signature of impending ICU hypoglycemia in bedside
monitoring and electronic health record data: model development and external
validation. Crit Care Med. (2022) 50:e221–30. doi: 10.1097/CCM.
0000000000005171

41. Monfredi O, Keim-Malpass J, Moorman JR. Continuous cardiorespiratory
monitoring is a dominant source of predictive signal in machine learning for
risk stratification and clinical decision support. Physiol Meas. (2021) 42:090301.
doi: 10.1088/1361-6579/ac2130

42. Rhee C, Dantes R, Epstein L, Murphy DJ, Seymour CW, Iwashyna TJ, et al.
Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009-
2014. JAMA. (2017) 318:1241–9. doi: 10.1001/jama.2017.13836
frontiersin.org

https://doi.org/10.1088/0967-3334/36/9/1873
https://doi.org/10.1152/japplphysiol.01152.2011
https://doi.org/10.1152/japplphysiol.01152.2011
https://doi.org/10.1088/0967-3334/29/1/002
https://doi.org/10.1371/journal.pone.0181448
https://doi.org/10.1088/1361-6579/ab5154
https://doi.org/10.1088/1361-6579/ab5154
https://doi.org/10.1101/2022.06.14.22276166
https://doi.org/10.1101/2022.06.14.22276166
https://doi.org/10.1016/j.artmed.2013.12.003
https://doi.org/10.1038/s41390-019-0518-1
https://doi.org/10.1016/j.chest.2018.04.037
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1088/1361-6579/aace95
https://doi.org/10.1016/j.jpeds.2011.06.044
https://doi.org/10.1016/j.jpeds.2011.06.044
https://doi.org/10.1203/01.PDR.0000119366.21770.9E
https://doi.org/10.1203/01.PDR.0000119366.21770.9E
https://doi.org/10.1097/CCE.0000000000000116
https://doi.org/10.1097/CCM.0b013e3182746736
https://doi.org/10.1097/PCC.0000000000002942
https://doi.org/10.1097/PCC.0000000000002942
https://doi.org/10.1097/CCE.0000000000000191
https://doi.org/10.1097/CCE.0000000000000191
https://doi.org/10.1038/s41746-022-00584-y
https://doi.org/10.1097/CCM.0000000000002904
https://doi.org/10.1097/CCM.0000000000002904
https://doi.org/10.1056/NEJMsa2001090
https://doi.org/10.1542/peds.2004-2461
https://doi.org/10.1016/j.ccc.2014.08.007
https://doi.org/10.1016/j.ccc.2014.08.007
https://doi.org/10.1097/CCM.0000000000000340
https://doi.org/10.1097/CCM.0000000000000340
https://doi.org/10.1097/CCM.0000000000005171
https://doi.org/10.1097/CCM.0000000000005171
https://doi.org/10.1088/1361-6579/ac2130
https://doi.org/10.1001/jama.2017.13836
https://doi.org/10.3389/fped.2022.1016269
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/

	Signatures of illness in children requiring unplanned intubation in the pediatric intensive care unit: A retrospective cohort machine-learning study
	Introduction
	Materials and methods
	Study design and definitions
	Physiologic data acquisition and predictors
	Subgroup analysis
	Physiological signature of illness
	Model development
	Performance characteristics of predictive models

	Results
	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


