AUTHOR=Li Ying , Jia Chunhong , Lin Xiaojun , Lin Lili , Li Lizhen , Fan Xi , Huang Xiaoxia , Xu Zhanyuan , Wang Huixin , Wu Fan , Liu Guosheng TITLE=The Diversity of the Intestinal Flora Disturbed After Feeding Intolerance Recovery in Preterm Twins JOURNAL=Frontiers in Pediatrics VOLUME=9 YEAR=2021 URL=https://www.frontiersin.org/journals/pediatrics/articles/10.3389/fped.2021.648979 DOI=10.3389/fped.2021.648979 ISSN=2296-2360 ABSTRACT=

Background: Feeding intolerance (FI) is a common condition in premature infants that results in growth retardation and even necrotizing enterocolitis. The gut microbiome is linked to FI occurrence; however, the outcome after FI recovery is unclear.

Methods: Fecal samples were collected from 11 pairs of premature twins/triplets for 16S rRNA gene sequencing. Initial fecal samples were collected shortly after admission, and then every other week until 7 weeks or discharge.

Results: After FI recovery, there was no significant difference in the β-diversity of the intestinal flora between the FI group and the feeding tolerance (FT) group. By contrast, there was a significant difference in the β-diversity. Proteobacteria was the predominant phylum in the microbiome of the FI group, whereas Firmicutes was the predominant phylum in the microbiome of the FT group. The predominant bacteria with LDA >4 between the two groups at 13–15 days after birth, 19–28 days after birth, and at discharge were different, with the proportions of Bacillus, Clostridium butyricum, and Clostridium being highest in the FT group and Firmicutes, unidentified_Clostridiales, and Proteobacteria being highest in the FI group. Similarly, there were significant differences in the relative abundances of KEGG pathways, such as fatty acid metabolism, DNA repair and recombination proteins, energy metabolism, and amino acid metabolism, between the two groups (P < 0.01).

Conclusions: There was a significant difference in diversity of the intestinal flora after feeding intolerance recovery. Feeding intolerance may disturb the succession of the intestinal bacterial community.