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Background: The increasing prevalence of childhood obesity is an important public

health issue and the development of obesity in early life and associated risk factors

need to be better understood. The aim of this study was to identify distinct body mass

index trajectories in the first 5 years of life and to examine their associations with factors

identified in pregnancy, including metabolic parameters.

Methods: BMI measurements from 2,172 children in Ireland enrolled in the BASELINE

cohort study with BMI assessments at birth, 2, 6, and 12months, and 2 and 5 years were

analyzed. Growth mixture modeling was used to identify distinct BMI trajectories, and

multivariate multinomial logistic regression was used to assess the association between

these trajectories and antenatal factors.

Results: Three distinct BMI trajectories were identified: normal (89.6%); rapid gain in

the first 6 months (7.8%); and rapid BMI after 12 months (2.6%). Male sex and higher

maternal age increased the likelihood of belonging to the rapid gain in the first 6 months

trajectory. Raised maternal BMI at 15 weeks of pregnancy and lower cord blood IGF-2

were associated with rapid gain after 1 year.

Conclusion: Sex, maternal age and BMI, and IGF-2 levels were found to be associated

with BMI trajectories in early childhood departing from normal growth. Further research

and extended follow-up to examine the effects of childhood growth patterns are required

to understand their relationship with health outcomes.

Keywords: growth, childhood obesity, epidemiology, growth mixture modeling, IGF

INTRODUCTION

Obesity is a growing public health issue globally and a risk factor for multiple non-communicable
diseases (NCD) (1–6). The worldwide prevalence of obesity has increased from 3.2% in 1975 to
10.8% in 2014 in men, and from 6.4 to 14.9% in women. The prevalence in the Irish population
surpasses the global mean and has been estimated as 26% both men and women (7). Children and
adolescents with obesity have been found to be around five times more likely to have obesity in
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adulthood compared to children without obesity (8). In Ireland,
the prevalence of obesity at 5 years of age increased from 1.2% in
1975 to 11.3% in 2016 in boys, and from 1.2% in 1975 to 10.1% in
2016 in girls.

Tracking children’s growth patterns longitudinally allows for
the assessment of dynamic changes in size. This may permit a
more accurate identification of young children at higher risk
when compared with assessments at a single time point, and
provide insight into early life determinants of childhood and
adult overweight and obesity (9). Body mass index (BMI) for
assessment of weight status is generally not used under the
age of 2 (10) and instead the American Academy of Pediatrics
recommend weight-for-length (WFL) for this age group (11).
However, previous studies have shown that BMI z-scores in
infancy to have a significantly higher positive predictive value
for early childhood obesity than WFL-Z (12) and that raw BMI
may be a better indicator of body composition at 1 months of age
compared to WFL (13).

Longitudinal random-effects and latent growth curve models
are commonly used to explore growth trajectories in childhood.
These methods allow for individual variability; however they
assess the average pattern of change and assume that individuals
belong to the same underlying population, represented by a single
growth curve. As an alternative, a latent class approach may be
adopted, allowing researchers to identify and describe underlying
subgroups within a population based on different trajectories
(14). Latent class growth analysis (LCGA) estimates a mean
growth curve for each class, but no individual variation around
the mean growth curve is allowed. Growth mixture modeling
(GMM) combines the features of the random effects model and
LCGA by estimating both mean growth curves for each class and
individual variation around these growth curves (15).

The development of obesogenic growth trajectories and
childhood obesity is complex. From a life course model of
chronic disease epidemiology perspective, childhood obesity has
previously been conceptualized in a framework where individual-
level factors, including biological, social, and behavioral risks, are
acting within the influence of the child’s family environment,
which is, in turn imbedded in the context of the community
environment (16). Additionally, it is helpful to consider critical
periods of biological and behavioral plasticity for obesity risk,
beginning as early as fetal life (17). In this study, we have aimed
to investigate BMI trajectories in early life and factors identified
during pregnancy. Sociodemographic, lifestyle and metabolic
health factors in pregnancy, including low socioeconomic status
(SES), smoking, maternal pre-pregnancy BMI, gestational weight
gain (GWG), and gestational diabetes mellitus (GDM), have
been consistently associated with multiple aspects of child
growth, such as birthweight, growth velocity, BMI, and childhood
obesity (18–21).

We previously conducted a systematic review of group-based
trajectory modeling for BMI trajectories in childhood, and found
that trajectories of excessive rapid gain were associated with
several predictors, including high maternal pre-pregnancy BMI,
GWG and smoking during pregnancy (22). The association
of maternal and infant metabolic parameters, beyond pre-
pregnancy BMI, GWG and GDM, in relation to offspring’s

longitudinal BMI trajectories does however remain largely
unexplored. Insulin-like growth factor (IGF)-1 and IGF-2 are
peptides primarily secreted by the liver. Small studies have
previously demonstrated a correlation between cord blood IGF-
I concentration and birthweight (23, 24) as well as weight at
6 months (25). Cord blood concentrations of IGF-2 have been
found to be related to IGF-2 levels at age five, which in turn has
been related to fat mass (24). Further, low IGF-2 levels have been
documented in pre-puberal children with obesity (26). Leptin is a
hormone secreted primarily by adipocytes and evidence suggests
that low fetal leptin concentrations may mediate weight gain
during infancy and play a role in the development of obesity (27–
29). A recent study suggests that cord blood leptin may play a
modest mediating role in early postnatal catch-up or catch-down
in weight (30).

The aim of this study was to identify distinct BMI trajectories
in the first 5 years of life using GMM methods and to
examine the associations between these trajectories and factors
identified during pregnancy, including maternal and fetal
metabolic parameters.

METHODS

Study Population and Design
Study subjects were participants of the Cork BASELINE
(Babies after SCOPE: Evaluating the Longitudinal Impact using
Neurological and Nutritional Endpoints) Birth Cohort Study
(31), a mother–infant prospective birth cohort study based
in Cork, Ireland. It was initiated in 2008 as a follow-up
to the SCOPE (Screening for Pregnancy Endpoints) Ireland
study (32), a major multi-center prospective pregnancy study
involving primiparous low-risk women. Exclusion criteria
included women recognized as high risk of pre-eclampsia,
small for gestational age baby, or spontaneous preterm birth,
as these were the primary outcomes of interest in the study.
A total of 1,768 women were recruited to SCOPE Ireland at
Cork University Maternity Hospital (CUMH). Each participant
was interviewed by a research midwife at 14–16 and 19–21
weeks of gestation and detailed clinical information, maternal
anthropometry measurements, ultrasound data, and blood
specimens were collected. Umbilical cord blood was collected
at birth. One thousand, five hundred thirty-seven SCOPE
participants consented for their infants to participate in the
BASELINE study and during a second stream of recruitment,
a further 646 infants were recruited after delivery from the
postnatal wards of CUMH, with a singleton pregnancy being the
main inclusion criterion (31). Pediatric follow-up with in-person
assessments were conducted at birth, 2, 6, and 12 months and
at 2 and 5 years. Data on the child’s early-life environment, diet,
health, and development were recorded at each assessment. In
total, 2,172 infants were followed up after birth.

Maternal Data
Maternal age, smoking and alcohol use during pregnancy, and
BMI were obtained during the SCOPE study interviews at 14–
16 and 19–21 weeks, and are only available for the mothers who
participated in both SCOPE and BASELINE. GDM diagnosis
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was established post-delivery from medical records. Education
level, income, and marital status were determined at the 2 month
assessment of BASELINE.

Infant Data
Umbilical cord samples (including leptin and IGF-1 and -2
concentrations) were obtained at birth for infants in the SCOPE
study and z-score variables were created using the z-score
command in Stata. Leptin was only collected in a subset of
children (n = 405). Gestational age (GA) at delivery was
obtained from medical records, with preterm birth defined as
<37 weeks gestation.

Child Anthropometric Measurements
Measurements of child weight and length/height were obtained
at birth 2, 6, and 12 months and 2 years and 5 years of
age. The available BMI data at each time point is outlined
in Supplementary Table 1. Naked weight was measured using
digital scales at birth and at 2 months correct to the nearest
0.01 kg and at 6 and 12 months and at 2 and 5 years correct to
the nearest 0.1 kg. Supine length correct to the nearest 0.1 cm
was measured at birth 2, 6 and 12 months. At 2 and 5 years,
standing height was measured using a wall mounted stadiometer
(33). Waist circumference was measured at each assessment. All
measures were performed by trained research staff.

Statistical Analysis
BMI trajectories in the first 5 years of life were analyzed using
GMM. A longitudinal change model was assumed where each
growth pattern was characterized by random intercept and
linear, quadratic, and cubic terms by age, allowing for curved
developmental patterns. Cubic variance was fixed, thus not
allowing for individual variance for cubic terms. The residual
variance for BMI at 5 years was fixed to zero, as a small and
not significant negative residual was identified for this variable.
We used the maximum likelihood robust estimator to account
for missing data by full information maximum likelihood
(FIML). This process approximates missing data by estimating a
likelihood function for each individual based on variables that are
present, such that all the available data points are used (34). The
optimal number of latent trajectories was identified based on four
model-fit indices: Sample-size adjusted Bayesian information
criterion (BIC), adjusted Bootstrap likelihood ratio test (BLRT),
Lo-Mendell Rubin test (LMRT), entropy, and interpretability of
the trajectories. A lower BIC value indicates a better model fit,
while the BLRT and LMRT provide a p-value indicating whether
a model with one less trajectory group (k-1 model) should be
rejected in favor of a model with k trajectories (35). Entropy
is a statistic that ranges from 0 to 1 with high values (>0.8)
indicating that individuals are classified with confidence (14).
Distinct trajectories were coded as a categorical variable (with
k number of categories) and were named based on their visual
appearance. The selected model was reproduced in children with
no missing BMI data (n= 915).

Associations between factors identified in pregnancy and
at delivery (maternal age, education level, income, marital
status, smoking and alcohol use during pregnancy, BMI at 15

weeks, child sex, and cord blood leptin, IGF-1, and IGF-2) and
BMI trajectories were examined using multivariate multinomial
logistic regression, with the most commonly occurring trajectory
chosen as the reference category. GDM and preterm delivery
were not included due to their low prevalence in the study.
Supplementary Figure 1 includes a flow chart for the number
of children included at each stage of the study. Analysis was
conducted using Mplus version 8 (36) and Stata version 14
(37). The GroLTS (Guidelines for Reporting on Latent Trajectory
Studies) Checklist was used as a guide for completing analysis and
manuscript preparation (38).

RESULTS

BMI Trajectories in the First 5 Years
Table 1 describes the distribution of demographic and clinical
characteristics for the whole sample as well as according
to BMI trajectories. Based on the fit indices in Table 2

the three-class model was selected. Sample-size adjusted
BIC and BLRT indicated a better fit for a four trajectory
model, however LMRT indicated that a four trajectory model
was not significantly superior to the three trajectory one.
Furthermore, the four trajectory model identified two very small
subgroups (2.0 and 1.3%), which may reduce interpretability.
Supplementary Table 2 outlines the average BMI and standard
deviation (SD) at each time point by sex and trajectory
membership. The majority of the children (89.6%, n = 1,947)
exhibited a BMI trajectory corresponding to the 50th to 75th
percentile according to WHO growth standards for both boys
and girls at each time point (39). Secondly, 7.8% (n = 169) of
children had a higher BMI at birth compared to the other two
groups (75th percentile), which increased to the 95th percentile
in the first 6 months, remained at 95th percentile between six
and 24 months, and decreased to the 85th percentile by 5 years.
Finally, 2.6% (n = 56) had a BMI at the 60th percentile at birth,
a BMI between the 75th and 85th percentile between two and
12 months, followed by the 95th percentile at 2 years and 99th
percentile at 5 years (Figure 1). Sensitivity analyses using subjects
with no missing BMI data in the first 5 years (n = 915) showed
similar trajectory patterns.

Determinants of BMI Trajectories in the
First 5 Years
Sex and maternal age were associated with membership of class
2, the trajectory characterized by early rapid gain. Girls were
less likely than boys to belong to this trajectory [Relative risk
ratio (RRR) (95% Confidence Interval (CI)): 0.17 (0.06–0.49)],
as were children of older mothers [RRR (95% CI): 0.88 (0.79–
0.99) for a maternal age increase of 1 year]. Maternal BMI and
cord blood IGF-2 were associated with membership of class 3,
the rapid gain after 12 months group. Children of mothers with
higher BMI were more likely to belong to this trajectory [RRR
(95% CI): 2.27 (1.15–4.48) for an increase of 1 kg/m2 in maternal
BMI at 15 weeks]. Further, an increase of 1SD of cord blood IGF-
2 was found to be inversely associated with membership [RRR
(95% CI): 0.40 (0.16–0.98)]. Table 3 provides a full outline of the
multivariate multinomial logistic regression analysis.
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TABLE 1 | Distribution of demographic and clinical characteristics according to BMI trajectory.

All trajectories Class 1 Class 2 Class 3 P-valuea

Average age ± standard deviation (SD), years (n = 1,572) 30.0 ± 4.4 30.0 ± 4.4 30.0 ± 4.5 29.7 ± 4.9 0.88

n (%)b n (%) n (%) n (%)

Ethnicity (n = 1,950) 0.79

Irish or other Caucasian 1.911 (98.0) 1,691 (98.0) 165 (97.6) 55 (98.2)

Other 39 (2.0) 34 (2.0) 4 (2.4) 1 (1.8)

Educational attainment (n = 1,949) 0.19

No college/university education 208 (10.7)b 182 (10.6) 16 (9.5) 10 (17.9)

Any college/university education 1,741 (89.3) 1,542 (89.4) 153 (90.5) 46 (82.1)

Income level per year (n = 1,873) 0.23

<e43 k 515 (27.5) 451 (27.2) 44 (26.8) 20 (38.5)

e43–63 k 436 (23.3) 380 (22.9) 42 (25.6) 14 (26.9)

e64+ 922 (49.2) 826 (49.9) 78 (47.6) 18 (34.6)

Marital status (n = 1,950) 0.009

Single 104 (5.3) 86 (5.0) 10 (5.9) 8 (14.3)

Married/de-facto relationship 1,846 (94.7) 1,639 (95.0) 159 (94.1) 48 (85.7)

Smoking during pregnancy (n = 1,572) 0.73

No 1,166 (74.2) 1,050 (74.5) 87 (71.3) 29 (72.5)

Yes 406 (25.8) 360 (25.5) 35 (28.7) 11 (27.5)

Alcohol in pregnancy (n = 1,572) 0.55

No 294 (18.7) 266 (18.9) 19 (15.6) 9 (22.5)

Yes 1,278 (81.3) 1,144 (81.1) 103 (84.4) 31 (77.5)

Average BMI at 15 weeks ± SD, kg/m2 (n = 1,572) 24.9 ± 4.1 24.8 ± 4.1 25.3 ± 4.5 27.7 ± 3.9 <0.001

Average weight change between 15 and 20 weeks ± SD, kg (n = 1,572) 2.8 ± 1.9 2.8 ± 1.9 2.9 ± 1.7 2.9 ± 2.1 0.82

GDM (n = 1,572) 0.03

No 1,536 (97.7) 1,382 (98.0) 117 (95.9) 37 (92.5)

Yes 36 (2.3) 28 (2.0) 5 (4.1) 3 (7.5)

Child sex (n = 2,172) <0.001

Male 1,095 (50.4) 950 (48.8) 121 (71.6) 24 (42.9)

Female 1,077 (49.6) 997 (51.2) 48 (28.4) 32 (57.1)

Pre-term delivery (<37 weeks) (n = 2,172) 0.12

No 2,087 (96.1) 1,872 (96.2) 164 (97.0) 51 (91.1)

Yes 85 (3.9) 75 (3.9) 5 (3.0) 5 (8.9)

aBased on one-way ANOVA (for continuous variables) or chi-square test (for categorical variables).
bn (%); indicates column percentages.

Significant at p < 0.05 level.

DISCUSSION

We have identified three distinct BMI trajectories in the first 5
years of life: normal, rapid BMI gain in the first 6 months, and

rapid gain after 12 months. The trajectories were found to be
associated with several determinants identified during pregnancy
and labor, including sex, maternal age, maternal BMI, and cord
blood IGF-2.

The trajectory patterns observed in this study are consistent

with those identified in a previously published systematic review.

Similarly to previous studies, we identified a normal trajectory
and trajectories characterized by rapid gain at different time

points. We did not identify a consistently high or low trajectory,

which have been identified by some studies in the past (22).
When using BMI as a measure of growth in longitudinal studies;

raw BMI values or BMI z-scores may be used. BMI z-scores are
standardized and indicate a child’s position relative to same-age,
same-sex children (40). Thus, BMI z-score trajectories indicate
how children’s BMI relative to peers changes over time, while
raw BMI growth trajectories describe children’s BMI change
over time. While both may be used, some researchers have
recommended raw BMI over z-scores for use in longitudinal
analyses, as the within-child variability over time depends on the
child’s level of adiposity and findings presented in BMI units are
more interpretable (41, 42)

In our study, boys were found to be more likely to belong
to class 2, the trajectory characterized by early rapid gain,
while no differences were identified for class 3. Further research
is warranted to explain the potential sex difference in early
BMI trajectories.
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TABLE 2 | Fit indices.

No. of classes Class proportions Sample-size adjusted BIC LMRT for k-1 vs. k classes BLRT for k-1 vs. k classes Entropy

Value P-value P-value

1 n/a 33,011 n/a n/a n/a

2 C1: 2,115 (97.4%)

C2: 57 (2.6%)

32,784 0.005 <0.001 0.84

3 C1: 169 (7.8%)

C2: 1,947 (89.6%)

C3: 56 (2.6%)

32,717 0.009 <0.001 0.69

4 C1: 1,895 (87.2%)

C2: 44 (2.0%)

C3: 205 (9.4%)

C4: 28 (1.3%)

32,681 0.288 <0.001 0.71

FIGURE 1 | BMI trajectories. Class 1 n = 1,947; Class 2 n = 169; Class 3 n = 56.

Adiposity, as measured by BMI, increases during the first
year of life and then decreases. The adiposity rebound is the
second rise in adiposity, which occurs between 3 and 7 years
of age in individual children. It corresponds to fat cells starting
to increase in number after an earlier phase of increasing then
decreasing in size. The age the rebound occurs has been shown
to predict obesity in later life, with an earlier AR (usually
before 5 years of age) being associated with an increased risk
of obesity (43, 44) and the timing of AR having been shown
to be related to features of BMI trajectories (45). In this study
early AR may be identified in class 3, as children in this
class had a higher BMI at 5 years compared to 2 years of
age (Supplementary Table 2 and Figure 1), indicating an AR at
some point between these two measurements. As measurements
of child weight and length were not made between 2 and
5 years of age, a more nuanced analysis of this time period
was therefore not possible and as there was no follow-up past
5 years the timing of AR could not be identified in class 1
and 2.

The concept of fetal programming originates in a hypothesis
that exposure to certain environmental influences during critical
periods of development and growth may have significant
consequences on an individual’s long-term health. Developed
by David Barker; it was originally called the Barker Hypothesis,
then known as the Fetal Origin of Adult Disease, and now
the Developmental Origins of Health and Disease (DOHaD)
(46). According to this hypothesis, the fetus responds to a
hostile uterine environment by developing adaptations that
not only foster its immediate viability, but also its survival
if a similar environment is encountered later in life (47).
In terms of obesity development, there is a growing body
of evidence that suggests that the origins of obesity and
metabolic dysfunction can be traced back to the developing
fetus responding to suboptimal conditions during critical periods
of cellular proliferation, differentiation, and maturation by
producing structural and functional changes in cells, tissues and
organ systems, thus increasing the offspring’s risk of developing
a range of complex disorders, including obesity and metabolic
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TABLE 3 | Multinomial logistic regression for trajectory membership (n = 402).

Class 2

RRR (95% CI)

p-value

Class 3

RRR (95% CI)

p-value

Maternal age, y 0.88 (0.79-0.99)a

0.04

0.98 (0.84–1.15)

0.84

Educational attainment

(vs. no third level)

Any third level 1.15 (0.27–4.85)

0.85

1.06 (0.09–11.54)

0.96

Income level per year (vs. < e43k)

e43–63 k 0.56 (0.18–1.70)

0.31

3.74 (0.56–25.10)

0.18

e64k+ 0.85 (0.30–2.42)

0.76

1.45 (0.21–10.25)

0.71

Marital status (vs. single)

Married/de-facto relationship 0.92,

0.99

0.27 (0.01–5.03)

0.38

Smoking during pregnancy (vs. not

smoking)

1.01 (0.40–2.57)

0.98

0.64 (0.11–3.78)

0.62

Alcohol in pregnancy (vs. no alcohol) 4.20 (0.91–19.40)

0.07

0.29 (0.06–1.28)

0.06

BMI at 15 weeks, kg/m2 1.04 (0.66–1.65)

0.85

2.27 (1.15–4.48)

0.018

Child sex (vs. male)

Female 0.17 (0.06–0.49)

0.001

4.06 (0.92–17.93)

0.065

Cord blood leptin (per 1SD increase) 1.08 (0.71–1.68)

0.73

1.13 (0.60–2.13)

0.71

Cord blood IGF-1 (per 1SD increase) 1.09 (0.71–1.68)

0.70

0.53 (0.23–1.22)

0.14

Cord blood IGF-2 (per 1SD increase) 1.22 (0.84–1.79)

0.29

0.40 (0.16–0.98)

0.046

aReference category: class 1. Significant at p < 0.05 level.

dysfunction (48–50). In addition to fetal programming, the risk
of childhood obesity and metabolic dysfunction may be further
increased by a multitude of life course exposures, including SES,
food production and marketing, and obesogenic environments.
The effect of the exposure of these complex factors may be
intergenerational; thus if mothers were exposed, contributing to
their own obesity development, then their children are at higher
of being exposed to all or some of the same factors (51, 52).
Highmaternal pre-pregnancy BMI has previously been identified
as the most frequently identified risk factor for membership of
a rapid gain trajectory (22). In this study, BMI at 15 weeks
gestation was associated with the trajectory characterized by early
stable-high BMI followed by later rapid gain. How maternal
BMI influences the BMI trajectory of the offspring is still not
well-understood, however previous studies have found that over-
nutrition in utero may lead to high-risk BMI trajectories during
early childhood, and that this may occur through increased
transfer of maternal energy substrates, such as glucose, lipids
and amino acids to the fetus (53). Additionally, mothers with
overweight or obesity may be more likely to experience placental
dysfunction (54) and may be at higher risk of micronutrient

deficiency (55). In this study we did not identify any associations
between BMI trajectories or socioeconomic status, including
maternal education, income, or marital status.

To our knowledge, this is the first study to examine latent BMI
trajectories in childhood in association with cord blood leptin,
IGF-1 and -2 levels. While no associations were identified for
leptin or IGF-1, a higher IGF-2 concentration in the cord blood
was found to be negatively associated with class 3, i.e., those
experiencing rapid gain between 1 and 5 years. IGF-2 has been
previously linked to intrauterine programming predisposing to
cardiovascular risk in postnatal life (56). The “Dutch hunger
winter” studies of the period of famine induced by the German-
imposed food embargo in the western part of The Netherlands
toward the end of World War II in the winter of 1944–1945
has provided support for the DOHaD concept, due to its unique
nature. Although the food embargo was immediately lifted after
liberation in May 1945, and children exposed to famine in utero
during the hunger winter were well-nourished in childhood and
had accelerated weight gain, decades later, they still experienced
a higher incidence of cardiovascular disease (57). A cohort of
individuals prenatally exposed to the Dutch Hunger Winter
were tested six decades later, with results showing that the
periconceptional exposure to famine was associated with reduced
DNA methylation of the imprinted IGF-2 gene (58). The degree
of IGF-2 methylation at birth has previously been linked to the
development of childhood overweight and obesity (59). Cord
blood IGF-2 concentrations have previously been found to be
related to IGF-2 levels at age five, which in turn have been related
to fat mass (24), however the relationship between cord blood
IGF and growth in childhood remains largely unexplored and
further research is warranted.

Strengths and Limitations
This study has several strengths. The large sample size and
prospective design allowed the collection of repeated weight
and height measurements and the evaluation of longitudinal
childhood BMI trajectories. All weight and height data were
obtained by trained staff using standardized instruments using
strict Standard Operating Procedures. As the sample was
recruited from the only maternity hospital in Cork, Ireland it
included mothers and children from a broad range of social
circumstances. Mean maternal age (30.9 years) was comparable
with that reported nationally for the same year (31.5) (60) and
the high prevalence of Caucasian women (98%) mirrors the Irish
Census of 2006 (95%) (61). Income was normally distributed
across the categories, with 45% of the participants reporting
household incomes between 43,000 and 84,000 per year, and the
average household income in Ireland in 2011 53,000 per year.

However, limitations remain. The comparative strength and
limitations of GMM over other alternative approaches has been
the subject of some debate (62). A more straightforward and
commonly used method is following a child’s BMI or z-score
over time, with excessive growth indicated by crossing major
percentile lines on a standard growth chart (63). Compared
to the relatively complex and computer-intensive nature of
GMM, this method is simple to implement. Furthermore, the
assignment of children to a distinct developmental pattern is
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based on their highest estimated group-membership probability
to the identified pattern. Thus, these latent patterns should
not be considered as the actual developmental patterns but,
rather, as approximations of more complex ones. Consequently,
the findings will reflect associations of determinants with a
model-derived class variable based on modeled BMI patterns.
While GMM approaches remove the constraint on within-
class variation in the LCGA method, disadvantages with such
approaches have been highlighted with respect to interpretability
and the identification of non-existent subclasses (62). However,
while choosing the correct model and number of classes in
GMM is not straightforward, the crossing of percentiles method
assumes growth to be a linear function of size at different
ages. Conversely, GMM is capable of modeling non-linear
growth curves, estimating individual trajectories and identifying
distinctive subgroups in the population, and we therefore believe
this method provides an important dimension for consideration
and that these advantages may outweigh its complexity.

Lastly, in terms of the study sample and data some limitations
must be noted. Firstly, some variables of interest could not be
included due to the lack of availability, including parity and
gestational weight gain. While the study sample was comparable
to the general population in several aspects as detailed above, the
women participating in the study were better educated than the
general population, with 89% having obtained post-secondary
school education, compared to 45% in the 2006 census (61).
Further, the issue of missing data must be acknowledged. Of the
2,172 children with data collected after birth, 1,135 (52%) were
followed up at 5 years. However, as FIML was used to account for
missing data, all children were included in the trajectory analysis.
Sensitivity analyses using subjects with no missing BMI data in
the first 5 years (n = 915) showed similar trajectory patterns,
thus illustrating the robustness of the extracted BMI trajectories.
For the multinomial regression analysis, only 402 children were
included in the final model. The low number is a result of leptin
only being collected in a subset of children (n = 405), and
the missing data may therefore be deemed missing at random.
This may be further demonstrated in Supplementary Table 3,
which shows population characteristics for participants with and
without leptin data. Further research with larger numbers of
children is required.

CONCLUSION

We identified three distinct BMI trajectories in the first 5
years of life which were associated with maternal age and

BMI, sex, and cord blood concentration of IGF-2. The
potential public health and clinical implications of these
findings are important. First, identification of BMI trajectories
in early childhood may be helpful in identifying high-risk
groups. Second, the assessment of prenatal determinants
of BMI trajectories may enhance the understanding of
etiologic pathways of childhood obesity and potentially
target interventions. Further research and extended follow-
up to examine the effects of early childhood growth
patterns are required to understand this complex public
health issue.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available
and access to the data must be applied for through the principal
investigators. Requests to access the datasets should be directed
to d.murray@ucc.ie.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Clinical Research Ethics Committee of the Cork
Teaching Hospitals. Written informed consent to participate in
this study was provided by the participants’ legal guardian/next
of kin.

AUTHOR CONTRIBUTIONS

MM was involved in the study conception and design, requested
the data sets, performed statistical analysis of the data, and
drafted the manuscript. RB and DM were involved in the study
conception and design and critically reviewed the manuscript.
FB was involved in the study conception and design, critically
reviewed the manuscript, and provided statistical support. FM
and CH critically reviewed the draft manuscript. MK and CN
analyzed and supplied the leptin data. All authors approved the
final manuscript as submitted and agree to be accountable for all
aspects of the work.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fped.
2021.622381/full#supplementary-material

REFERENCES

1. Berrington de Gonzalez A, Hartge P, Cerhan JR, Flint AJ, Hannan L,

MacInnis RJ, et al. Body-mass index and mortality among 1.46 million

white adults. N Engl J Med. (2010) 363:2211–9. doi: 10.1056/NEJMoa10

00367

2. Emerging Risk Factors C, Wormser D, Kaptoge S, Di Angelantonio E,

Wood AM, Pennells L, et al. Separate and combined associations of

body-mass index and abdominal adiposity with cardiovascular disease:

collaborative analysis of 58 prospective studies. Lancet. (2011) 377:1085–95.

doi: 10.1016/S0140-6736(11)60105-0

3. Lu Y, Hajifathalian K, Ezzati M, Woodward M, Rimm EB, Danaei G.

Metabolic mediators of the effects of body-mass index, overweight, and

obesity on coronary heart disease and stroke: a pooled analysis of 97

prospective cohorts with 1.8 million participants. Lancet. (2014) 383:970–83.

doi: 10.1016/s0140-6736(13)61836-x

Frontiers in Pediatrics | www.frontiersin.org 7 February 2021 | Volume 9 | Article 622381

mailto:d.murray@ucc.ie
https://www.frontiersin.org/articles/10.3389/fped.2021.622381/full#supplementary-material
https://doi.org/10.1056/NEJMoa1000367
https://doi.org/10.1016/S0140-6736(11)60105-0
https://doi.org/10.1016/s0140-6736(13)61836-x
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Mattsson et al. BMI Trajectories in Early Childhood

4. Ni Mhurchu C, Rodgers A, Pan WH, Gu DF, Woodward M, Asia Pacific

Cohort Studies C. Body mass index and cardiovascular disease in the Asia-

Pacific region: an overview of 33 cohorts involving 310 000 participants. Int J

Epidemiol. (2004) 33:751–8. doi: 10.1093/ije/dyh163

5. Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, Halsey J, et al.

Body-mass index and cause-specific mortality in 900 000 adults: collaborative

analyses of 57 prospective studies. Lancet. Mar 28. (2009) 373:1083–96.

doi: 10.1016/s0140-6736(09)60318-4

6. Zheng W, McLerran DF, Rolland B, Zhang X, Inoue M, Matsuo K, et al.

Association between body-mass index and risk of death inmore than 1million

Asians. N Engl J Med. (2011) 364:719–29. doi: 10.1056/NEJMoa1010679

7. NCD Risk Factor Collaboration. Trends in adult body-mass index in 200

countries from 1975 to 2014: a pooled analysis of 1698 population-based

measurement studies with 19.2 million participants. Lancet. (2016) 387:1377–

1396. doi: 10.1016/S0140-6736(16)30054-X

8. Simmonds M, Llewellyn A, Owen CG, Woolacott N. Predicting adult obesity

from childhood obesity: a systematic review and meta-analysis. Obes Rev.

(2016) 17:95–107. doi: 10.1111/obr.12334

9. Ziyab AH, Karmaus W, Kurukulaaratchy RJ, Zhang H, Arshad SH.

Developmental trajectories of Body Mass Index from infancy to 18 years of

age: prenatal determinants and health consequences. J Epidemiology Commun

Health. (2014) 68:934–41. doi: 10.1136/jech-2014-203808

10. Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-

offs for thinness, overweight and obesity. Pediatr Obes. (2012) 7:284–94.

doi: 10.1111/j.2047-6310.2012.00064.x

11. Daniels SR, Hassink SG. The role of the pediatrician in primary prevention of

obesity. Pediatrics. (2015) 136:e275–92. doi: 10.1542/peds.2015-1558

12. Roy SM, Spivack JG, Faith MS, Chesi A, Mitchell JA, Kelly A, et al. Infant

BMI or Weight-For-Length And Obesity Risk In Early Childhood. Pediatrics.

(2016) 137:e20153492. doi: 10.1542/peds.2015-3492

13. Roy SM, Fields DA,Mitchell JA, Hawkes CP, Kelly A,WuGD, et al. Body mass

index is a better indicator of body composition than weight-for-length at age

1 month. J Pediatr. (2019) 204:77–83.e1. doi: 10.1016/j.jpeds.2018.08.007

14. Ram N, Grimm KJ. Growth mixture modeling: a method for identifying

differences in longitudinal change among unobserved groups. Int J Behav Dev.

(2009) 33:565–576. doi: 10.1177/0165025409343765

15. Jung T, Wickrama KAS. An introduction to latent class growth analysis

and growth mixture modeling. Sock Person Psychol Com. (2008) 2:302–17.

doi: 10.1111/j.1751-9004.2007.00054.x

16. Davison KK, Birch LL. Childhood overweight: a contextual model

and recommendations for future research. Obes Rev. (2001) 2:159–71.

doi: 10.1046/j.1467-789x.2001.00036.x

17. Hanson MA, Gluckman PD. Early developmental conditioning of later health

and disease: physiology or pathophysiology? Physiol Rev. (2014) 94:1027–76.

doi: 10.1152/physrev.00029.2013

18. Godoy GA, Korevaar TI, Peeters RP, Hofman A, de Rijke YB, Bongers-

Schokking JJ, et al. Maternal thyroid hormones during pregnancy, childhood

adiposity and cardiovascular risk factors: the generation R study. Clin

Endocrinol. (2014) 81:117–25. doi: 10.1111/cen.12399

19. Heude B, Thiebaugeorges O, Goua V, Forhan A, Kaminski M, Foliguet B, et al.

Pre-pregnancy body mass index and weight gain during pregnancy: relations

with gestational diabetes and hypertension, and birth outcomes.Matern Child

Health J. (2012). 16:355–63. doi: 10.1007/s10995-011-0741-9

20. Pizzi C, Cole TJ, Richiardi L, dos-Santos-Silva I, Corvalan C, De Stavola

B. Prenatal influences on size, velocity and tempo of infant growth:

findings from three contemporary cohorts. PLoS ONE. (2014) 9:e90291.

doi: 10.1371/journal.pone.0090291

21. Woo Baidal JA, Locks LM, Cheng ER, Blake-Lamb TL, Perkins ME,

Taveras EM. Risk factors for childhood obesity in the first 1,000

days: a systematic review. Am J Prevent Med. (2016) 50:761–79.

doi: 10.1016/j.amepre.2015.11.012

22. Mattsson M, Maher GM, Boland F, Fitzgerald AP, Murray DM, Biesma

R. Group-based trajectory modelling for BMI trajectories in childhood: a

systematic review. Obes Rev. (2019) 20:998–1015. doi: 10.1111/obr.12842

23. Rohrmann S, Sutcliffe CG, Bienstock JL, Monsegue D, Akereyeni F, Bradwin

G, et al. Racial variation in sex steroid hormones and the insulin-like growth

factor axis in umbilical cord blood of male neonates. Cancer Epidemiol

Biomark Prevent. (2009) 18:1484–91. doi: 10.1158/1055-9965.epi-08-0817

24. Ong K, Kratzsch J, Kiess W, Dunger D. Circulating IGF-I levels in childhood

are related to both current body composition and early postnatal growth rate.

J Clin Endocrinol Metab. (2002) 87:1041–4. doi: 10.1210/jcem.87.3.8342

25. Patel N, Hellmuth C, Uhl O, Godfrey K, Briley A, Welsh P, et al.

Cord metabolic profiles in obese pregnant women: insights into offspring

growth and body composition. J Clin Endocrinol Metab. (2018) 103:346–55.

doi: 10.1210/jc.2017-00876

26. Street ME, Smerieri A, Montanini L, Predieri B, Iughetti L, Valenzise M,

et al. Interactions among pro-inflammatory cytokines, IGF system and

thyroid function in pre-pubertal obese subjects. J biol Regul Homeost Agents.

(2013) 27:259–66.

27. Alexe DM, Syridou G, Petridou ET. Determinants of early life leptin

levels and later life degenerative outcomes. Clin Med Res. (2006) 4:326–35.

doi: 10.3121/cmr.4.4.326

28. Ong KK, Ahmed ML, Sherriff A, Woods KA, Watts A, Golding J, et al.

Cord blood leptin is associated with size at birth and predicts infancy

weight gain in humans. J Clin Endocrinol Metab. (1999) 84:1145–8.

doi: 10.1210/jcem.84.3.5657

29. Parker M, Rifas-Shiman SL, Belfort MB, Taveras EM, Oken E, Mantzoros

C, et al. Gestational glucose tolerance and cord blood leptin levels

predict slower weight gain in early infancy. J Pediatr. (2011) 158:227–33.

doi: 10.1016/j.jpeds.2010.07.052

30. Taine M, Khalfallah O, Forhan A, Glaichenhaus N, Charles MA, Heude B.

Does cord blood leptin level mediate the association between neonatal body

size and postnatal growth? Results from the EDENmother-child cohort study.

Ann Hum Biol. (2020) 47:159–65. doi: 10.1080/03014460.2020.1748712

31. O’Donovan SM, Murray DM, Hourihane JO, Kenny LC, Irvine AD, Kiely M.

Cohort profile: the cork BASELINE birth cohort study: babies after SCOPE:

evaluating the longitudinal impact on neurological and nutritional endpoints.

Int J Epidemiol. (2015) 44:764–75. doi: 10.1093/ije/dyu157

32. North RA, McCowan LME, Dekker GA, Poston L, Chan EHY, Stewart

AW, et al. Clinical risk prediction for pre-eclampsia in nulliparous women:

development of model in international prospective cohort. BMJ. (2011)

342:d1875. doi: 10.1136/bmj.d1875

33. Chaoimh CN, Murray DM, Kenny LC, Irvine AD, Hourihane JO, Kiely M.

Cord blood leptin and gains in body weight and fat mass during infancy. Eur

J Endocrinol. (2016) 175:403–10. doi: 10.1530/eje-16-0431

34. Little TD, Jorgensen TD, Lang KM, Moore EW. On the joys of missing data. J

Pediatr Psychol. (2014) 39:151–62. doi: 10.1093/jpepsy/jst048

35. Tein JY, Coxe S, Cham H. Statistical power to detect the correct number

of classes in latent profile analysis. Struct Equ Model. (2013) 20:640–57.

doi: 10.1080/10705511.2013.824781

36. Muthén LK,Muthén BO.Mplus User’s Guide. Eighth Edition. Los Angeles, CA:

Muthén & Muthén (1998–2017).

37. StataCorp. Stata Statistical Software: Release 14. College Station, TX:

StataCorp LP (2015).

38. van de Schoot R, Sijbrandij M, Winter SD, Depaoli S, Vermunt

JK. The GRoLTS-checklist: guidelines for reporting on latent

trajectory studies. Struct Equ Model Multidiscipl J. (2017) 24:451–67.

doi: 10.1080/10705511.2016.1247646

39. Who Multicentre Growth Reference Study Group, de Onis M.

WHO child growth standards based on length/height, weight and

age. Acta Paediatr. (2006) 95:76–85. doi: 10.1111/j.1651-2227.2006.

tb02378.x

40. Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei

Z, et al. (2000). CDC growth charts for the united states: methods and

development. In: Vital and Health Statistics Series 11, Data From the National

Health Survey. Hyattsville: National Center for Health Statistics. (2002).

41. Berkey CS, Colditz GA. Adiposity in adolescents: change in actual BMI works

better than change in BMI z score for longitudinal studies. Ann Epidemiol.

(2007) 17:44–50. doi: 10.1016/j.annepidem.2006.07.014

42. Cole TJ, Faith MS, Pietrobelli A, HeoM.What is the best measure of adiposity

change in growing children: BMI, BMI %, BMI z-score or BMI centile? Eur J

Clin Nutr. (2005) 59:419–25. doi: 10.1038/sj.ejcn.1602090

43. Rolland-Cachera MF, Deheeger M, Bellisle F, Sempe M, Guilloud-Bataille

M, Patois E. Adiposity rebound in children: a simple indicator for

predicting obesity. Am J Clin Nutr. (1984) 39:129–35. doi: 10.1093/ajcn/39.

1.129

Frontiers in Pediatrics | www.frontiersin.org 8 February 2021 | Volume 9 | Article 622381

https://doi.org/10.1093/ije/dyh163
https://doi.org/10.1016/s0140-6736(09)60318-4
https://doi.org/10.1056/NEJMoa1010679
https://doi.org/10.1016/S0140-6736(16)30054-X
https://doi.org/10.1111/obr.12334
https://doi.org/10.1136/jech-2014-203808
https://doi.org/10.1111/j.2047-6310.2012.00064.x
https://doi.org/10.1542/peds.2015-1558
https://doi.org/10.1542/peds.2015-3492
https://doi.org/10.1016/j.jpeds.2018.08.007
https://doi.org/10.1177/0165025409343765
https://doi.org/10.1111/j.1751-9004.2007.00054.x
https://doi.org/10.1046/j.1467-789x.2001.00036.x
https://doi.org/10.1152/physrev.00029.2013
https://doi.org/10.1111/cen.12399
https://doi.org/10.1007/s10995-011-0741-9
https://doi.org/10.1371/journal.pone.0090291
https://doi.org/10.1016/j.amepre.2015.11.012
https://doi.org/10.1111/obr.12842
https://doi.org/10.1158/1055-9965.epi-08-0817
https://doi.org/10.1210/jcem.87.3.8342
https://doi.org/10.1210/jc.2017-00876
https://doi.org/10.3121/cmr.4.4.326
https://doi.org/10.1210/jcem.84.3.5657
https://doi.org/10.1016/j.jpeds.2010.07.052
https://doi.org/10.1080/03014460.2020.1748712
https://doi.org/10.1093/ije/dyu157
https://doi.org/10.1136/bmj.d1875
https://doi.org/10.1530/eje-16-0431
https://doi.org/10.1093/jpepsy/jst048
https://doi.org/10.1080/10705511.2013.824781
https://doi.org/10.1080/10705511.2016.1247646
https://doi.org/10.1111/j.1651-2227.2006.tb02378.x
https://doi.org/10.1016/j.annepidem.2006.07.014
https://doi.org/10.1038/sj.ejcn.1602090
https://doi.org/10.1093/ajcn/39.1.129
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Mattsson et al. BMI Trajectories in Early Childhood

44. Whitaker RC, Pepe MS, Wright JA, Seidel KD, Dietz WH. Early adiposity

rebound and the risk of adult obesity. Pediatrics. (1998) 101:E5.

45. Wen X, Kleinman K, Gillman MW, Rifas-Shiman SL, Taveras EM. Childhood

body mass index trajectories: modeling, characterizing, pairwise correlations

and socio-demographic predictors of trajectory characteristics. BMCMed Res

Methodol. (2012) 12:38. doi: 10.1186/1471-2288-12-38

46. Barker DJ. The origins of the developmental origins theory. J Intern Med.

(2007) 261:412–7. doi: 10.1111/j.1365-2796.2007.01809.x

47. Gluckman PD, Hanson MA, Spencer HG. Predictive adaptive

responses and human evolution. Trends Ecol Evol. (2005) 20:527–33.

doi: 10.1016/j.tree.2005.08.001

48. Godfrey KM, Reynolds RM, Prescott SL, Nyirenda M, Jaddoe VWV,

Eriksson JG, et al. Influence of maternal obesity on the long-

term health of offspring. Lancet Diabet Endocrinol. (2017) 5:53–64.

doi: 10.1016/S2213-8587(16)30107-3

49. Entringer S, Buss C, Swanson JM, Cooper DM, Wing DA, Waffarn F, et al.

Fetal programming of body composition, obesity, and metabolic function:

the role of intrauterine stress and stress biology. J Nutr Metab. (2012)

2012:632548. doi: 10.1155/2012/632548

50. Gluckman PD, HansonMA. Living with the past: evolution, development, and

patterns of disease. Science. (2004) 305:1733–6. doi: 10.1126/science.1095292

51. Llewellyn CH. Genetic susceptibility to the “obesogenic” environment: the

role of eating behavior in obesity and an appetite for change. Am J Clin Nutr.

(2018) 108:429–430. doi: 10.1093/ajcn/nqy210

52. Bush NR, Allison AL, Miller AL, Deardorff J, Adler NE, Boyce WT.

Socioeconomic disparities in childhood obesity risk: association with

an oxytocin receptor polymorphism. JAMA Pediatr. (2017) 171:61–7.

doi: 10.1001/jamapediatrics.2016.2332

53. Aris IM, Bernard JY, Chen L-W, Tint MT, Pang WW, Lim WY, et al. Infant

body mass index peak and early childhood cardio-metabolic risk markers

in a multi-ethnic Asian birth cohort. Int J Epidemiol. (2017) 46:513–25.

doi: 10.1093/ije/dyw232

54. Myatt L, Maloyan A. Obesity and placental function. Semin Reprod Med.

(2016) 34:42–9. doi: 10.1055/s-0035-1570027

55. Scholing JM, Olthof MR, Jonker FAM, Vrijkotte TGM. Association

between pre-pregnancy weight status and maternal micronutrient

status in early pregnancy. Public Health Nutr. (2018) 21:2046–55.

doi: 10.1017/S1368980018000459

56. Cianfarani S. Insulin-like growth factor-II: new roles for an old actor. Front

Endocrinol. (2012) 3:118. doi: 10.3389/fendo.2012.00118

57. Painter RC, de Rooij SR, Bossuyt PM, Simmers TA, Osmond C, Barker

DJ, et al. Early onset of coronary artery disease after prenatal exposure

to the dutch famine. Am J Clin Nutr. (2006) 84:322–7; quiz 466–7.

doi: 10.1093/ajcn/84.1.322

58. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES,

et al. Persistent epigenetic differences associated with prenatal exposure

to famine in humans. Proc Natl Acad Sci. USA. (2008) 105:17046–9.

doi: 10.1073/pnas.0806560105

59. Perkins E, Murphy SK, Murtha AP, Schildkraut J, Jirtle RL, Demark-

Wahnefried W, et al. Insulin-like growth factor 2/H19 methylation at birth

and risk of overweight and obesity in children. J Pediatr. (2012) 161:31–9.

doi: 10.1016/j.jpeds.2012.01.015

60. Perinatal Statistics Report. (2010). ESRI Survey and Statistical Report Series

41.26.06. Dublin: Economic and Social Research Institute (2012).

61. Census 2006. Volume 10: Education and Qualifications. Dublin: Stationery

Office (2006)

62. Tu YK, Tilling K, Sterne JA, Gilthorpe MS. A critical evaluation of

statistical approaches to examining the role of growth trajectories in the

developmental origins of health and disease. Int J Epidemiol. (2013) 42:1327–

39. doi: 10.1093/ije/dyt157

63. Taveras EM, Rifas-Shiman SL, Sherry B, Oken E, Haines J, Kleinman K,

et al. Crossing growth percentiles in infancy and risk of obesity in childhood.

Arch Pediatr Adolesc Med. (2011) 165:993–8. doi: 10.1001/archpediatrics.

2011.167

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021Mattsson,Murray, Hawkes, Kiely, Ní Chaoimh,McCarthy, Biesma

and Boland. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Pediatrics | www.frontiersin.org 9 February 2021 | Volume 9 | Article 622381

https://doi.org/10.1186/1471-2288-12-38
https://doi.org/10.1111/j.1365-2796.2007.01809.x
https://doi.org/10.1016/j.tree.2005.08.001
https://doi.org/10.1016/S2213-8587(16)30107-3
https://doi.org/10.1155/2012/632548
https://doi.org/10.1126/science.1095292
https://doi.org/10.1093/ajcn/nqy210
https://doi.org/10.1001/jamapediatrics.2016.2332
https://doi.org/10.1093/ije/dyw232
https://doi.org/10.1055/s-0035-1570027
https://doi.org/10.1017/S1368980018000459
https://doi.org/10.3389/fendo.2012.00118
https://doi.org/10.1093/ajcn/84.1.322
https://doi.org/10.1073/pnas.0806560105
https://doi.org/10.1016/j.jpeds.2012.01.015
https://doi.org/10.1093/ije/dyt157
https://doi.org/10.1001/archpediatrics.2011.167
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles

	Body Mass Index Trajectories in the First 5 Years and Associated Antenatal Factors
	Introduction
	Methods
	Study Population and Design
	Maternal Data
	Infant Data
	Child Anthropometric Measurements
	Statistical Analysis

	Results
	BMI Trajectories in the First 5 Years
	Determinants of BMI Trajectories in the First 5 Years

	Discussion
	Strengths and Limitations

	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Supplementary Material
	References


