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Purpose: To develop a comprehensive differential expression gene profile as well as a

prediction model based on the expression analysis of pediatric sepsis specimens.

Methods: In this study, compared with control specimens, a total of 708 differentially

expressed genes in pediatric sepsis (case–control at a ratio of 1:3) were identified,

including 507 up-regulated and 201 down-regulated ones. The Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis

of differentially expressed genes indicated the close interaction between neutrophil

activation, neutrophil degranulation, hematopoietic cell lineage, Staphylococcus aureus

infection, and periodontitis. Meanwhile, the results also suggested a significant difference

for 16 kinds of immune cell compositions between two sample sets. The two potential

selected biomarkers (MMP and MPO) had been validated in septic children patients by

the ELISA method.

Conclusion: This study identified two potential hub gene biomarkers and established

a differentially expressed genes-based prediction model for pediatric sepsis, which

provided a valuable reference for future clinical research.

Keywords: sepsis, pediatric sepsis, GO enrichment analysis, KEGGenrichment analysis, logistic regressionmodel,

biomarker

INTRODUCTION

Sepsis is a life-threatening organ dysfunction initiated by an imbalance in the systemic
inflammatory response to infection (1). Over the past few decades, numerous medical studies
have proposed several definitions for sepsis, such as septicemia, sepsis, toxemia, bacteremia,
endotoxemia, and so on (2). Sepsis is characterized by a general pro-inflammatory cascade that
causes extensive tissue damages, which includes severe clinical spectrums, such as septic shock
as well as multiple organ failures (3). Sepsis can be initiated by bacteria, fungi, as well as viruses,
without specific treatment (4). In this case, the diagnosis of sepsis is particularly difficult because
these patients have multiple comorbidities and underlying diseases (5). Sepsis is the leading cause
of child mortality worldwide, which is estimated as 60% for children under 5 (6). A US cohort study
indicated a significant increase for the annual incidence of severe pediatric sepsis (7).
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Over the last decades, the management for pediatric sepsis has
improved gradually (8). The current therapies in clinic include
resuscitation, prompt and appropriate antimicrobial therapy,
accurate fluid balance, blood glucose, as well as source control
(9). However, we still lack a specific molecular therapy for this
condition, except for antimicrobial therapy. Numerous trials
of potential biological agents targeting different mediators of
sepsis have failed (2). Despite advances in intensive care and
supportive technology, the mortality rate of sepsis in children
still stay in a high position without going down (10). The current
recommendation for identifying sepsis is the SOFA score, which
refers to Sequential (Sepsis-Related) Organ Failure Assessment.
SOFA is a simple system, which uses accessible parameters
in daily clinical practice to identify dysfunction or failure of
the key organs as a result of sepsis (11, 12). The European
Medicines Agency has accepted that a change in the SOFA score
of 2 or more is an acceptable surrogate marker for sepsis (13).
Unfortunately, the criteria still cannot confirm or refute the
diagnosis of sepsis completely given the complexity of the sepsis
response. Moreover, sepsis is a time critical emergency, as the
disease may progress rapidly to organ failure, shock, and death,
which require a prompt recognition.

Based on inflated misdiagnosis rate and poor accuracy
of diagnosis, pediatric sepsis has brought great difficulty to
clinical treatment. To this end, a more comprehensive approach
to predict pediatric sepsis based on the specific target gene
differential expression is required. To address these issues,
in this study, we used a combination of bioinformatics and
machine learning to screen out the potential biomarkers in the
pathogenesis of pediatric sepsis specimens and then constructed
a diagnosis model. All of these promising outcomes enriched
the diagnosis of the disease, which provide tremendous help for
pediatric sepsis study.

MATERIALS AND METHODS

Data Source
This study utilized the mRNA chip data in the GEO database,
and the samples were from data sets numbered GSE26440,
GSE26378, and GSE66099. GSE26440 included 98 whole blood
samples of septic children and 32 whole blood samples of
healthy children; GSE26378 included 82 whole blood samples of
septic children and 21 whole blood samples of healthy children;
GSE66099 included 229 whole blood samples of septic children
and 47 whole blood samples of healthy children. The whole
genome expression profiles of the above samples were detected by
Affymetrix Human Genome U133 Plus 2.0 Array chip platform.

The age of the sample ranged from 0.1 to 9.8 years (see
Supplementary Table 1 for detail). There was no significant
clinical difference between the specimen of septic children and
healthy children (gender, age, etc.).

The third International Consensus Definitions for Sepsis and
Septic Shock (Sepsis 3) suggested the Sequential Organ Failure
Assessment (SOFA) score to grade organ dysfunction in adult
patients with suspected infection, which was not suitable for
children illness. As reported previously, we used a pediatric
version of the SOFA score (pSOFA) in this study (14).

The septic children in the study had a pSOFA score ≥2.

Differential Gene Analysis
We firstly used the Robust Multi-Array Average (RMA) method
to normalize the original data measured by the chip and then
took the normalized value and log2 logarithm to generate the
data after normalization, subsequently for differential expression
analysis. We screened differentially expressed genes based on the
limma function package of R language (version 3.5.2, the same
below) (15). The absolute values of log-transformed differential
expression multiple (Log2FC) >1 and FDR < 0.05 were used as
a criteria.

Functional Enrichment Analysis
For the obtained differentially expressed genes, we used the
“clusterProfiler” function package in R language for enrichment
analysis of GO (Gene Ontology, including Biological Process,
Molecular Function, and Cellular Component) and KEGG
(Kyoto Encyclopedia of Genes and Genomes, including key
related pathways) analysis. When p < 0.05, we considered the
corresponding entries to be significantly enriched (16).

Protein–Protein Interaction Networks and
Identification of Hub Genes
The STRING database is the one for analyzing and predicting
protein functional associations and protein interactions. In this
study, we utilized STRING (https://STRING-db.org/, version
11.0) to analyze protein functional associations and protein
interactions (17). The Cytoscape (version 3.7.2) was used to
visualize PPI network, and the cytoHubba plug-in in Cytoscape
was used to screen the key genes (hub genes) in the PPI network
based on the Algorithm of Maximum neighborhood component
(MNC) (18).

Calculation of Immune Infiltrating Cells
We used the software CIBERSORT (https://cibersort.stanford.
edu) to calculate the relative proportions and p-values of 22
immune infiltrating cells in each sample. This software provided
a pre-convolution algorithm to characterize the composition of
immune invading cells based on the gene expressionmatrix using
a deconvolution algorithm. CIBERSORT calculated the relative
proportion of 22 immune infiltrating cells in each sample based
on the expression of these 547 barcode genes as well as the p-
value. The smaller the p-value, the higher the content of immune
infiltrating cells in the sample.

Logistic Regression Model Construction
Here, we used GSE26440 as a training set to construct the Logistic
model, and GSE26378 and GSE66099 as two independent
verification sets to verify the model. The part of the data set
GSE66099 that coincided with GSE26440 and GSE26378 had
been removed. The remaining 138 specimen were processed
samples as independent verification sets in this study. Firstly,
the samples were divided into two groups: normal control group
and pediatric sepsis group. The GLM function in R language was
used as a continuous variable, and the sample type was used as
a binary response. A multifactor logistic regression model was
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constructed, and then the variables were further screened by
stepwise regression. The model was then reconstructed using the
screened variables and the p-value of each variable was calculated
by the model. Finally, the candidate gene reconstruction model
with p < 0.05 was selected as the final model for follow-
up analysis.

The source code (in reproducible format) in this study has
been shown in Supplementary Table 2.

Construction of Random Forest
Classification Model
In this study, the sample type was considered as a dependent
variable, and the selected gene expression value was considered as
an independent variable. The method of bootstrap sampling and
themethod of Bagging were utilized to generatemultiple decision
tree classifiers (implemented by the “randomForest” function
package in R) and the final random forest model.

ELISA Analysis of Hub Genes
A total of 63 (septic) children diagnosed by pathology and
evaluated by SOFA score system in Tianjin People’s Hospital
from January 2018 to December 2020 were randomly selected
and collected. Due to the limitation of sample size as well as
in order to generate statistically convincing results, the patients
were divided into three groups (control group: pSOFA = 0; mild
pediatric sepsis group: pSOFA = 2–4; severe pediatric sepsis
group: pSOFA score≥ 5). There were 21 cases in each group. This
study is in line with the medical ethics standards and approved

by the hospital ethics committee. All treatment and testing were
carried out after obtaining informed consent from patients or
their families.

The concentrations of hub genes were determined by ELISA
double antibody sandwich method from patients’ peripheral
blood. The specific operation was carried out in strict accordance
with the instructions of the kit (Abcam company, US). The
experimental results were repeated 3 times independently and
were tested by statistical methods.

RESULTS

Analysis Results of Differentially Expressed
Genes
We first standardized the microarray data of 3 sets of GEOs
to remove batch effects. Using GSE26440 normalized data for
differential gene analysis, we obtained a total of 708 differentially
expressed genes in the pediatric sepsis group relative to the
control group, including 507 up-regulated genes and 201 down-
regulated genes (Figure 1A and Supplementary Table 3), and
the expression of differentially expressed genes was significantly
different between the disease group and the control group
(Figure 1B).

GO and KEGG Enrichment Analysis Results
By performing GO and KEGG enrichment analysis on these
708 differentially expressed genes, we found that these 708
differentially expressed genes were enriched in GO terms related

FIGURE 1 | The analysis of differential gene. (A) The volcano map of differentially expressed genes. The horizontal axis represents the multiple of differential

expression (Log2FC), and the vertical axis represents –log10 (FDR). Meanwhile, the blue dot indicates 507 up-regulated genes, and the red dot indicates 201

down-regulated genes. (B) The heat map of differentially expressed genes. The horizontal axis indicates sample, and the vertical axis indicates different genes; red

color denotes high gene expression, and blue color indicates low gene expression.
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to immune cells such as neutrophil activation and neutrophil
degranulation (Figure 2A). At the same time, the hematopoietic
cell lineage and Staphylococcus aureus infection were significantly
enriched in KEGG pathway analysis (Figure 2B).

Immune Cell Calculation Results
Since GO and KEGG results showed the close correlation to
immune cells, we next analyzed the immune cell composition in
the samples to study the immunity in different groups of samples.
Using the CIBERSORT algorithm, we explored the differences
in immune infiltration among 22 immune cell subgroups for
the 130 samples in GSE26440. We found that the relative
proportions of 16 immune cells in 22 types of immune cells
were significantly different between the two groups (Figure 3A),
which included resting and activated memory CD4+ T-cells,
follicular helper T-cells, T regulatory cells (Tregs), gamma/delta
T-cells, activated NK cells, monocytes, macrophages, resting
dendritic cells, resting, and activated mast cells, as well as
neutrophils. Meanwhile, the proportion of neutrophils in the
pediatric sepsis group was significantly higher than the normal
group (Figure 3B).

PPI Network Construction and Screening
of Key Genes
We established a PPI network of 708 genes by STRING database,
as 577 genes with a confidence score ≥0.4. We used Cytoscape
software and the MNC algorithm to score the importance of each

node in the network. With these together, we developed the top
50 genes according to the score from large to small. The darker
the color, the more important the node was (Figure 4).

The Construction of the Logistic Model and
the Random Forest Classification Model
With the selected 50 genes, we generated logistic regression
model 1 from the training set GSE26440. In order to use
as few variables as possible to build a strong interpretation
model, we performed a stepwise regression method to further
identify 5 primary genes from these 50 genes, which were TLR2,
MMP9, TLR8, MPO, and CCL5. Logistic regression model 2 was
constructed by incorporating these 5 genes into the model as
variables. An OR value >1 indicated that the expression of this
factor was positively correlated with the onset of disease, while
<1 was negatively correlated. At the same time, we found that
the p-values of these 2 genes, MMP9 and MPO, were <0.05,
indicating that they contribute greatly to the model while others
(TLR2, TLR8, as well as CCL5 with p-value more than 0.05)
were not used for model 3 construction and subsequent analysis.
Furthermore, we reconstructed logistic regression model 3 with
these 2 genes as the final model and found that this logistic
regression model had no extreme point affecting the accuracy
of the model. The red dashed line in the figure indicated the
COOK distance. Generally, the point where the COOK distance
>0.5 was a very “influential” point, which affected the reliability

FIGURE 2 | GO and KEGG enrichment results. (A) The top 20 GO term enrichment results with the largest number of genes. In the figure, the horizontal axis

represents the number of enriched genes, and the vertical axis represents the name of each GO term. (B) The enrichment results of the 20 KEGG pathways with the

largest number of genes. The horizontal axis in the figure indicates the number of genes enriched, and the vertical axis indicates the name of each KEGG pathway,

respectively.
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FIGURE 3 | A schematic diagram of the difference between immune cells. (A) The composition of immune cells in the 130 samples. The horizontal axis represents

130 samples, and the vertical axis represents the percentage of each type of immune cells. (B) The composition of immune cells in two groups of samples. The

horizontal axis indicates two groups of samples, and the vertical axis indicates the percentage of each type of immune cells.

of the model. It could be seen in the figure that our model
did not show such a point (Figure 5A). The AUC value in the
training set GSE26440 was 0.9907, while the AUC values in
GSE26378 and GSE66099 were 0.9477 and 0.9562, respectively
(Figure 5B). The AUC as a numerical value can directly evaluate
the quality of the model. The larger the value, the better
the model.

To further evaluate the importance of the 2 hub genes, we also

constructed a random forest classification model. The GSE26440

was used as training set. The sample type was used as a dependent

variable. The expression of 50 genes selected in the previous step

was used as an independent variable. See Figure 5C for details.

The figure demonstrated the top 30 genes in the importance

ranking of these 50 genes in the random variable model.
The MeanDecreaseAccuracy indicated the decrease of model

accuracy after variable replacement, while theMeanDecreaseGini
indicated the decrease of model GINI coefficient after variable
replacement. The larger the 2 values were, the more important
the variable was. From the figure, it was clear that MMP9
and MPO were the top 2 genes in the MeanDecreaseAccuracy
as well as MeanDecreaseGini’s scores, indicating that these
2 genes were more crucial variables in the random forest
model (Figure 5D).

The above results demonstrated that the model based on
these 2 genes could be used as the primary criteria for pediatric
sepsis staging.

The Functional Validation of the Selected
Biomarkers
To functionally verify the possibility of biomarkers for pediatric
sepsis in clinic, we tested the concentrations of 2 target hub genes
in pediatric sepsis patients’ peripheral blood by ELISA method.
As pediatric sepsis severity increases, the levels of MMP9 and
MPO decreased significantly (P < 0.05, shown in Table 1).

DISCUSSION

Sepsis can lead to death of children with a dramatic increase
in the incidence of disease. The prominent problem for
pediatric sepsis is the inflated misdiagnosis as well as the
lack of a gold standard. Epidemiologic research has provided
evidence that sepsis is more or less similar to over 50 systemic
diseases in children (19–21). For instance, in the case of fever:
immunosuppressed children do not always develop fever, so the
infection is hard to detect. In contrast, critically ill children have
a certain degree of hyperthermia but may not present infection
(22). All of these may lead to the disease being ignored or
misdiagnosed in the first place. Whenever symptoms are present,
sepsis in children becomes more severe. All of these are all in dire
need of effective forecasting targets or biomarkers for pediatric
sepsis. To this end, it is beneficial to develop a comprehensive
specific expression profile of genes in pediatric sepsis patients
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FIGURE 4 | The PPI network diagram of key genes related to sepsis in children. Each dot represents a node. The darker the dot is, the more line segments are

connected to the dot.

for potential candidates. Here, compared with control specimens,
a total of 708 differentially expressed genes in pediatric sepsis
were screened out, including 507 up-regulated genes and 201
down-regulated genes (see Figure 1A for details).

We further studied the biological process related to these
genes using GO and KEGG enrichment analysis. We found
that these target genes were significantly enriched in biological
processes (BP) related to immune cells such as neutrophil
activation, neutrophil degranulation, hematopoietic cell lineage,
and S. aureus infection (see Figure 2 for details). Previously, a
multicohort analysis by Sweeney et al. suggested that neutrophil

activation, neutrophil degranulation, monocytes, as well as T
cell-associated process had been involved in sepsis development
and formation (23). They utilized data sets containing cohorts
of children and adults, men and women, with a mix of
community- and hospital-acquired sepsis, while we focused
on pediatric sepsis; this may support the fact that these
processes are common for all-age sepsis. This host response
in septic progression involves many defense mechanisms with
strong cellular activation, including neutrophil activation. In
this process, neutrophil cells are key to innate immunity
through their complex interactions with vascular cells, and
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FIGURE 5 | The construction of logistic regression prediction model and random forest classification model. (A) The Logistic model diagnostic chart. The red dashed

line in the figure indicates the COOK distance. (B) The ROC curve. The horizontal axis represents the specificity of the FPR (false positive rate), and the vertical axis

represents the sensitivity of the TPR (true positive rate). (C) The construction of the random forest classification model. (D) The ROC curve for the random forest

classification model.

their activation may be involved in systemic tissue damage.
Their activation also leads to the release of neutrophil traps,
which are involved in pathogen containment and phagocytosis,
as well as coagulation activation (24). Several reports have
demonstrated that neutrophils generally have a relatively high
expression in sepsis patients (25, 26). Previously, a study
using high-throughput technologies has been able to identify
differentially expressed pediatric septic shock biomarkers using

gene expression data to predict long-term outcomes (27). In this
study, highly expressed genes in pediatric sepsis are enriched
in multiple KEGG pathways and GO terms, which are related
to neutrophils. Therefore, high expression of related genes may
be one of the potential causes of increased neutrophil content
in pediatric sepsis. On other hand, sepsis can be induced by
viruses, bacteria, fungi, etc. The enrichment of neutrophils in
the study might be due to the high infection rate of bacteria
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TABLE 1 | Selected gene concentrations comparison between different stages of

pediatric sepsis patients.

Control group Mild pediatric

sepsis group

Severe

pediatric

sepsis group

MMP9 (ng/mL, x ± s) 51.21 ± 13.14 23.28 ± 6.41 7.59 ± 2.33

MPO

(ng/mL, x ± s)

76.32 ± 17.43 43.94 ± 10.38 18.62 ± 8.16

in children’s specimen. Previously, it was suggested that sepsis
was closely associated with hematopoietic stem cell exhaustion
and hematopoietic cell lineage, which was processed through
a Toll-like receptor 4 (TLR4)-related mechanism (28, 29). S.
aureus is now the most common cause of bacteremia and
infective endocarditis in industrialized nations worldwide and
is associated with excess mortality when compared to other
pathogens. It has been suggested that S. aureus is the primary
cause of pediatric sepsis (30). Overall, these pathways are related
to pediatric sepsis on some levels, and they provide a significant
research starting point.

Due to complexity of pathogenesis in pediatric sepsis, it
is impossible to study each potential single gene individually.
To this end, an alternative method combining bioinformatics
and machine learning is required for our study. Here, we
used Cytoscape software and the MNC algorithm to identify
the top 50 genes according to their scores in the model (see
Figure 4B for details). Using the 50 genes, we generated a logistic
regression prediction model. With further reconstruction, two
primary genes including MMP9 and MPO had been screened
out. Matrix metalloproteinases 9 (MMP-9) is a zinc-dependent
gelatinase, which could decrease the expression of extracellular
matrix proteins and influence the metastatic behavior of immune
cells (31). MMPs are secreted as pro-MMPs, which are regulated
by tissue inhibitors of metalloproteinase (TIMPs) as well as
by α-macroglobulins (31). Previously, MMP-9, TIMP-1 levels,
and MMP-9/TIMP-1 ratio have been suggested as biomarkers
in adult severe sepsis and septic shock (32, 33). A study
by Alqahtani et al. demonstrated that the MMP-9/TIMP-1
ratios can also serve as a biomarker for the identification
of sepsis in pediatric patients (34). This is consistent with
our integrated study. However, we did not find a significant
difference for TIMP-1. This may be due to the fact that they
used febrile controls in addition to a healthy control group
as was often used in studies of biomarkers in sepsis, or the
constant comparison in our report did not fluctuate time-
dependent analysis as they performed. All of these deserve
further investigation.

On the other hand, it is interesting to further explore
the function of MPO in the pediatric sepsis study. The
neutrophil myeloperoxidase (MPO) is mainly shown to promote
oxidative stress by the production of active chlorinated molecules
(35). It was rarely reported to be associated with pediatric
sepsis, yet a small sample size study suggested a lower
MPO level in pediatric sepsis compared with the control

group (91.24 vs. 116.55 U/L; p value = 0.023) (36). These
evidences highlighted the importance of understanding the
relation between the MPO gene family pathway and pediatric
sepsis, which initiated a tremendous starting point for the
following study. Importantly, a recent study using two feature
selection methods including Random Forest Feature Importance
(RFFI) and Minimum Redundancy and Maximum Relevance
(MRMR) also provided multiple differentially expressed genes
and enriched pathways for pediatric sepsis. Within these, MPO
was also a primary candidate (37). Using two potential target
genes (MMP9 and MPO), we established a logistic regression
model aiming for pediatric sepsis prediction. The accuracy of
the model prediction was evaluated and approved by clinical
data outcomes (Table 1), which demonstrated the tendency
of two biomarkers’ change for different levels of pediatric
sepsis patients.

To conclude, in light of the fact that there remains no gold
standard diagnosis and no reliable disease-specific prediction
for pediatric sepsis, we summarized the differential expression
profile of genes in the disease. Several target genes established
a specific expression manner, which initiated new insights into
the management of pediatric sepsis therapeutic biomarkers
discovery and provided a very valuable data reference for future
clinical research.
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