AUTHOR=Elrod Julia , Mohr Christoph , Wolff Ruben , Boettcher Michael , Reinshagen Konrad , Bartels Pia , German Burn Registry , Koenigs Ingo
TITLE=Using Artificial Intelligence to Obtain More Evidence? Prediction of Length of Hospitalization in Pediatric Burn Patients
JOURNAL=Frontiers in Pediatrics
VOLUME=8
YEAR=2021
URL=https://www.frontiersin.org/journals/pediatrics/articles/10.3389/fped.2020.613736
DOI=10.3389/fped.2020.613736
ISSN=2296-2360
ABSTRACT=
Background: It is not only important for counseling purposes and for healthcare management. This study investigates the prediction accuracy of an artificial intelligence (AI)-based approach and a linear model. The heuristic expecting 1 day of stay per percentage of total body surface area (TBSA) serves as the performance benchmark.
Methods: The study is based on pediatric burn patient's data sets from an international burn registry (N = 8,542). Mean absolute error and standard error are calculated for each prediction model (rule of thumb, linear regression, and random forest). Factors contributing to a prolonged stay and the relationship between TBSA and the residual error are analyzed.
Results: The random forest-based approach and the linear model are statistically superior to the rule of thumb (p < 0.001, resp. p = 0.009). The residual error rises as TBSA increases for all methods. Factors associated with a prolonged LOS are particularly TBSA, depth of burn, and inhalation trauma.
Conclusion: Applying AI-based algorithms to data from large international registries constitutes a promising tool for the purpose of prediction in medicine in the future; however, certain prerequisites concerning the underlying data sets and certain shortcomings must be considered.