AUTHOR=Hartlaub Annalisa M. , McElroy Craig A. , Maitre Nathalie L. , Hester Mark E. TITLE=Modeling Human Brain Circuitry Using Pluripotent Stem Cell Platforms JOURNAL=Frontiers in Pediatrics VOLUME=7 YEAR=2019 URL=https://www.frontiersin.org/journals/pediatrics/articles/10.3389/fped.2019.00057 DOI=10.3389/fped.2019.00057 ISSN=2296-2360 ABSTRACT=
Neural circuits are the underlying functional units of the human brain that govern complex behavior and higher-order cognitive processes. Disruptions in neural circuit development have been implicated in the pathogenesis of multiple neurodevelopmental disorders such as autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and schizophrenia. Until recently, major efforts utilizing neurological disease modeling platforms based on human induced pluripotent stem cells (hiPSCs), investigated disease phenotypes primarily at the single cell level. However, recent advances in brain organoid systems, microfluidic devices, and advanced optical and electrical interfaces, now allow more complex hiPSC-based systems to model neuronal connectivity and investigate the specific brain circuitry implicated in neurodevelopmental disorders. Here we review emerging research advances in studying brain circuitry using