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Emodepside: the anthelmintic’s
mode of action and toxicity
Charity N. Njeshi , Alan P. Robertson and Richard J. Martin*

Department of Biomedical Science, College of Veterinary Medicine, Iowa State University, Ames,
IA, United States
Nematode parasitic infections continue to be amajor health problem for humans

and animals. Drug resistance to currently available treatments only worsen the

problem. Drug discovery is expensive and time-consuming, making drug

repurposing an enticing option. Emodepside, a broad-spectrum anthelmintic,

has shown efficacy in the treatment of nematode parasitic infections in cats and

dogs. It is now being considered and trialed for the treatment of onchocerciasis,

trichuriasis (whipworm), and hookworm infections in humans. Its unique

mechanism of action distinguishes it from traditional anthelmintics, positioning

it as a promising candidate for combating resistance to other current drugs. Here,

we provide a brief review of the available information on emodepside’s

pharmacokinetics, safety, and tolerability. We highlight the potential benefits

and risks associated with its use, examining key toxicity effects. By exploring the

literature, we aim to provide insights into the risks associated with emodepside

that may impact its application in veterinary and human medicine. Although

emodepside demonstrates a favorable safety profile, continued monitoring of its

toxicity is crucial, particularly in vulnerable populations. This mini-review serves

as a concise resource for researchers and clinicians interested in

anthelmintic therapy.
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Introduction

Emodepside is a semisynthetic compound belonging to the cyclooctadepsipeptide

group, known to show anthelmintic activity against larval and adult stages of filarial

nematodes (Hübner et al . , 2021). It is a member of the N-methylated

cyclooctadepsipeptides, derived from a naturally occurring compound PF1022A, which

was isolated in the early 90s fromMycelia sterilia, a fungus that inhabits leaves of Camellia

japonica (Krücken et al., 2021; Sasaki et al., 1992). Emodepside is synthesized by adding two

morpholine rings in para-position of each of the 2 (R)-phenyl lactic acids of the parent

compound PF1022A (Figures 1A, B) (Krücken et al., 2021).

Emodepside was developed as a veterinary anthelmintic and has been found to have

broad-spectrum activity against nematode infections of humans (Hübner et al., 2021; Bah
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et al., 2021). Emodepside is being trialed for the treatment of

whipworm, hookworm, and onchocerciasis in humans (Mrimi

et al., 2023; Gillon et al., 2021). Adverse reactions though mild

and reversible, have been reported and seen to increase with dose

(Mrimi et al., 2023; Gillon et al., 2021). The veterinary experience of

the use of emodepside in dogs and cats has also drawn attention to

some of its toxic effects (Gaens et al., 2019; Walther et al., 2016).

This mini-review comments on emodepside’s actions, uses as an

anthelmintic and toxicity characteristics of emodepside.
Spectrum of activity

Effects on laboratory animal
nematode parasites

Emodepside has broad-spectrum activity against a wide range

of animal nematode soil-transmitted parasites, including those of

dogs and cats (Figure 2A). In vitro studies have also revealed robust

activity against larval and adult stages of several nematode species

that serve as models for human soil-transmitted helminths and

filarial nematodes (Karpstein et al., 2019; Zahner et al., 2001).

Sensitivity to emodepside varies between the worm’s life stage

and between the different species of parasite (Karpstein et al., 2019).
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Veterinary applications

Emodepside’s spectrum of action extends to nematode parasites

of horses, sheep, cattle, chickens, dogs, and cats (Epe and Kaminsky,

2013; Harder et al., 2003). Importantly, emodepside has shown

notable activity against nematode parasites resistant to other classes

of anthelmintics, such as anthelmintic-resistant populations of

Haemonchus contortus and Cooperia oncophora in sheep and cattle,

respectively (Harder et al., 2003; Samson-Himmelstjerna et al., 2005).

Emodepside is marketed for the treatment of parasitic

nematode infections in dogs and cats. Emodepside is registered

for use in combination with praziquantel (as Profender®) for the

treatment of hookworm infections, ascarids, and other nematode

infections in cats but not dogs in the US, while in Europe, it is

approved for use in both cats and dogs (EMA, 2008b; Krücken et al.,

2021; Miltsch et al., 2012). This might be due to emodepside’s

adulticide activity, which could severely harm heartworm infected

dogs in the US, where this disease, in contrast to Europe, is a major

threat to dogs. Furthermore, emodepside is recommended by

parasitology researchers and the American Animal Hospital

Association for off-label use as a last resort for treating multi-

anthelmintic drug resistant (MADR) hookworms in dogs. However,

its rapid killing for adult heartworms in positive dogs increases the

risk of pulmonary embolism and anaphylaxis (Jimenez Castro and
FIGURE 1

Diagram of structure and protein targets of PF1022A & emodepside. (A) Structure of PF1022A, cyclo[(aR)-a-hydroxybenzenepropanoyl-N-methyl-L-
leucyl-(2R)-2-hydroxypropanoyl-N-methyl-L-leucyl-(aR)-a-hydroxybenzenepropanoyl-N-methyl-L-leucyl-(2R)-2-hydroxypropanoyl-N-methyl-L-
leucyl]. (B) Structure of emodepside, cyclo[(aR)-a-hydroxy-4-(4-morpholinyl)benzenepropanoyl-N-methyl-L-leucyl-(2R)-2-hydroxypropanoyl-N-
methyl-L-leucyl-(aR)-a-hydroxy-4-(4-morpholinyl)benzenepropanoyl-N-methyl-L-leucyl-(2R)-2-hydroxypropanoyl-N-methyl-L-leucyl]; the
morpholino group is circled, adapted from Krücken et al., 2021. Emodepside was discovered by the Japanese pharmaceutical company Astellas and
then developed and commercialized by Bayer Animal Health. It is prepared by attaching a morpholine ring on each of two D-phenyllactic acids to
PF1022A, a fungus, Mycelia sterile of Camellia japonica. (C) Diagram of the 7-transmembrane structure of the latrophilin receptor. (D) Diagram of
one of the subunits of the tetrameric SLO-1K receptor; pink open circle, putative emodepside binding site, Raisch et al., 2021; calcium binding sites
(red circle) and magnesium binding site (purple circle) (E) The tetrameric structure of the a subunit of the SLO-1K channel; Images created in
PowerPoint Microsoft.
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Kaplan, 2020; Singler, 2024). Profender is administered orally (as

tablets) in dogs and topically (as spot-on) in cats. Emodepside is

also part of the spot-on combination with praziquantel and

tigolaner (Felpreva®) in cats (Blazejak et al., 2023) for treating:

roundworms, lungworms, & hookworm (active emodepside);

tapeworms (active praziquantel); and fleas, ticks & mites (active

tigolaner). Additionally, emodepside is combined with toltrazuril

(Procox®) for the treatment of nematode parasites (active

emodepside) and coccidia (active toltrazuril) in dogs and puppies

(EMA, 2011). Furthermore, emodepside is used off-label as a last

resort for treating multi-anthelmintic drug-resistant (MADR)

hookworms in dogs; however, its rapid killing of heartworms in

positive dogs increases the risk of pulmonary embolism and

anaphylaxis (Singler, 2024).
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Emodepside’s broad spectrum of activity and lack of significant

toxicity in animals have prompted the proposal to repurpose and

trial it for the treatment of onchocerciasis trichuriasis (whipworm),

and hookworm in humans.
Potential human use: onchocerciasis,
hookworm and trichuriasis

Onchocerciasis (river blindness)
Emodepside has shown potent activity against both

microfilariae and adult Onchocerca worms in preclinical and early

clinical studies (Bah et al., 2021; Assmus et al., 2022). In the bovine

model of onchocerciasis (O. ochengi), treatment with emodepside
FIGURE 2

Use of emodepside as an anthelmintic in dogs, cats and applications in humans, pharmacokinetics BK channel target locations. (A) Emodepside is
effective against a broad spectrum of nematode parasites of cats, dogs, and humans. (B) Proposed pharmacokinetics pathways for emodepside.
(C) Emodepside as a substrate for P-glycoprotein (EMA, 2011). A blood-brain barrier with functional p-glycoprotein (left) prevents emodepside from
accumulating in the brain. In contrast, a blood-brain barrier defective for the carrier protein (right) lets emodepside into the brain (purple spheres are
emodepside, green rectangles are functional p-glycoprotein, and pattern-filled green rectangles are mutants for p-glycoprotein). (D) Wide
distribution and functions of BK channels in the human host (Latorre et al., 2017; Peppin et al., 2021; Perry and Sandle, 2009; Delgado-Bermúdez
et al., 2024; Henquin et al., 2017; Raisch, 2024; Kunz et al., 2002) NB: BK channels are found in more organs, these are examples; Images created by
BioRender.com and in PowerPoint Microsoft.
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yielded rapid and sustained suppression of microfilariae, with

paralysis and eventual death of adult female worms (Bah et al.,

2021). This finding is significant because current treatments (like

ivermectin) primarily target microfilarial stages, allowing the adult

worms to survive, albeit somewhat compromised. Phase I clinical

trials in healthy volunteers have reported favorable safety and

tolerability profiles with no significant adverse effects observed

(Gillon et al., 2021). Building on these promising results, Phase II

clinical trials have been planned (Assmus et al., 2022) to assess its

efficacy in treating onchocerciasis in endemic regions, and results

are awaited.

Hookworm
The efficacy of emodepside against Ancylostoma caninum

(Cima, 2021), encouraged its trial for the treatment of hookworm

infections in humans. The drug underwent Phase II trials and

demonstrated dose-dependent efficacy (Mrimi et al., 2023). The

most common adverse events reported were headache, blurred

vision, and dizziness, which increased with higher doses, although

they were mild and self-resolving (Mrimi et al., 2023).

Trichuriasis
The efficacy of emodepside for treatment against Trichuris

vulpis infection in dogs (EMA, 2008b) encouraged its trialing in

humans. Emodepside has now been evaluated in Phase II clinical

trials for the treatment of Trichuris trichiura (whipworm) infections

in humans (Mrimi et al., 2023). The study reported that 5mg of

emodepside per participant produced an 85% cure rate compared to

the 17% cure rate in the albendazole control. This observed efficacy

suggests that emodepside could become a valuable addition to the

limited treatment options for human whipworm infections.

Overall, the available evidence underscores emodepside’s

potential as a promising treatment option for onchocerciasis,

hookworm, and Trichuris infections in humans. However,

additional Phase III trials are still required to assess its efficacy

and safety under field clinical conditions for the treatment of these

neglected tropical diseases.
Mechanism of action of emodepside

Latrophilin-like receptors

Early attempts to decipher the mode of action of emodepside

(Bay44-4400) using the natural compound (PF1022a) led to the

reports that it serves as a ligand for the Haemonchus contortus

HC110-R protein, which is structurally similar to the mammalian

latrophilin G-coupled protein receptor (Figure 1C) (Saeger et al.,

2001; Willson et al., 2004). Latrophilin receptors are expressed in

mammals and other organisms, in various tissues, and abundantly in

the nervous system, where they play an important role in

neurosecretion for neuronal development and function (Moreno-

Salinas et al., 2019; Guest, 2008; Harder et al., 2005; Silva and

Ushkaryov, 2010). Emodepside was reported to inhibit pharyngeal

pumping and locomotion in Caenorhabditis elegans (Amliwala, 2005;
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Willson et al., 2004). The effects of emodepside on pharyngeal

pumping were inhibited by double mutants of lat-1 and lat-2, but

the inhibitory effects of emodepside on locomotion were not

abolished (Guest et al., 2007). This suggested that emodepside also

acted on another receptor, subsequently identified as the SLO-1 K

channel (Guest et al., 2007).
SLO-1K channels

Calcium-activated potassium channels referred to as SLO-1K,

also known as BK (“big potassium”), channels are large-

conductance potassium ion channels composed of four a subunits

that are each seven-transmembrane proteins (Figure 1D). These a
subunits assemble around the pore to form a tetramer (Figure 1E)

They are calcium-activated, voltage-sensitive channels that are

selective for potassium ions and exist in various isoforms. SLO-

1K channels are widely distributed across various tissues of

nematodes, playing critical physiological roles in neurotransmitter

release, muscle function, and cell excitability (Gessner et al., 2012;

Salkoff et al., 2006; Nowicka-Bauer and Szymczak-Cendlak, 2021).

Studies have shown that emodepside acts directly on SLO-1K

channels, activating them and causing hyperpolarization resulting

in paralysis of the worm (Bull, 2008; Buxton et al., 2011; Holden-

Dye et al., 2012). Two binding sites have been suggested: one

beneath the channel’s selectivity filter, as shown by Cryo-EM

experiments (Raisch et al., 2021), and a putative site on the

channel’s RCK1 domain based on molecular docking (Kashyap

et al., 2019). The effect of emodepside on SLO-1 channels in Ascaris

suum muscle is enhanced by activating the protein kinase C, and

NO pathways (Buxton et al., 2011) and diethylcarbamazine-

mediated action on TRP channel (Verma et al., 2020; Kashyap

et al., 2022) showing that other signaling pathways can modulate

the effect of emodepside on these channels.

We point out here that latrophilin receptors and SLO-1K (BK)

channels are present in mammalian hosts. This implies that there is

a possibility of observing undesirable effects of emodepside on these

receptors in the human and animal hosts of the nematode parasites.

Nevertheless, it is possible that its anthelmintic specificity is

conferred by other mechanisms unique to the target parasite

(Raisch and Raunser, 2023).
Pharmacokinetics of emodepside

The pharmacokinetics of emodepside have been investigated in

rats where rapid absorption and distribution throughout all organs

were observed; the highest concentrations were found in the fat

following oral administration (EMA, 2008b). A secondary peak has

been seen after four days in cats following oral administration,

which was suggested to be due to emodepside having a slow

redistribution from the fat back into plasma (Page, 2008).

Enterohepatic recycling may contribute to a secondary peak that

is seen following administration. Compared to cats, dogs show a

shorter elimination time due to both faster metabolism and

differences in the route of administration (EMA, 2008b).
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In the human Phase I clinical trials with oral administration for

onchocerciasis, the reported pharmacokinetic profile of

emodepside, was rapid absorption, fast distribution to tissues, and

an extended half-life of more than 500 hours in the fasting state: in

the fed state emodepside was absorbed more slowly (Gillon et al.,

2021, 2020). This contrasts with dogs, where there is more rapid

absorption in the fed state (EMA, 2008a). A rapid absorption in

humans produces a high peak plasma concentration, Cmax, which

is connected to emodepside’s activity against microfilariae, while

the long terminal half-life is also important for the elimination of

the tissue-dwelling macrofilariae (Gillon et al., 2021).

Emodepside is primarily excreted through bile and then

eliminated in the feces, with small amounts in urine, indicating

minimal metabolism (CTP, 2014; Vercruysse and Claerebout, 2022;

Mencke et al., 2023) and safety for patients with renal impairment.

The major excretion products of the drug include unchanged

emodepside and hydroxylated derivatives (Mencke et al., 2023;

EMA, 2008a), suggesting a level of hepatic metabolism. The

liver’s role in metabolism and enterohepatic recycling remains to

be characterized. The excretion of a significant proportion of

unchanged drug suggests its stability and a reduced risk of

forming harmful metabolites and toxicity.

The lipid-soluble nature of emodepside decreases its

bioavailability following oral administration (Gillon et al., 2021)

and leads to food-drug interactions. The bioavailability of

emodepside is reduced following oral administration in the fed

versus fasting state (Gillon et al., 2020). The prolonged elimination

half-life, which appears connected to enterohepatic recycling,

increases the systemic exposure of microfilariae and can increase

the macrofilaricidal effect. Optimization of the emodepside dose is

important to achieve therapeutic concentrations and minimize

toxicity. Figure 2B summarizes the pharmacokinetic pathway

for emodepside.
Efficacy and safety

The efficacy and safety of emodepside has been demonstrated

against nematode parasites of cats and dogs (Reinemeyer et al.,

2005; Schimmel et al., 2011; Altreuther et al., 2011; Böhm et al.,

2015; Lee et al., 2019). Emodepside’s potent activity against

microfilaria and adult filarial nematodes makes it a potential

treatment for neglected tropical infections, including human

onchocerciasis (Hübner et al., 2021; Kashyap et al., 2019; Bah

et al., 2021). Human Phase IIa trials using dose-ranging,

randomized, controlled studies have described the efficacy of

emodepside against Trichuris trichiura and hookworm infections

(Mrimi et al., 2023).

Repeated dose studies in humans demonstrated emodepside’s

safety up to 40 mg per participant with good tolerance up to 20 mg

(Gillon et al., 2018). The main adverse effect, visual disturbances,

observed in Phase I clinical trials in healthy male subjects were mild

and transient (Gillon et al., 2021). Neurotoxicity has occasionally

been reported in dogs with a homozygous mutation in the MDR1

gene that codes for a P-glycoprotein (Noack et al., 2021). Symptoms
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include vomiting, incoordination, seizures, muscle tremors, and

dilated pupils, which are more likely to be seen in fed dogs because

of the faster absorption from the GI tract (Gaens et al., 2019; EMA,

2008a). The MDR1 mutation is more common in herding breed

dogs, including Shetland Sheepdog, Australian Shepherds, Collies,

and White Swiss Shepherd (Gramer et al., 2011; Noack et al., 2021).

Animals with the P-glycoprotein defect exhibit neurological

symptoms when treated with emodepside (Dias, 2014;

Elmshäuser et al., 2015; Gaens et al., 2019; Noack et al., 2021)

Thus, the presence of MDR1 mutant effects highlights the

importance of pharmacogenomic factors that affect emodepside’s

safety. Nevertheless, preclinical studies across various animal

models have yet to identify significant safety concerns (EMA,

2008b), and current findings support a favorable safety profile

for emodepside.
Toxicity

This extensive distributions of SLO-1K channels in host

organisms raise questions about potential toxicity of emodepside.

Despite the importance of these channels, few studies detail

emodepside’s toxicity. The research available generally points to

low toxicity in different laboratory animals and pets, varying with

the administration routes (EMA, 2008a; Vercruysse and Claerebout,

2014). The major toxicity observed has been in cases of overdose,

noncompliance with dosing, and mutations in the multidrug

resistance efflux carrier (EMA, 2008a; Gaens et al., 2019).

Supplementary Table S1 summarizes the observed toxic effects

of emodepside.
Overdose effects

Symptoms of depressed neurological and respiratory function

have been observed in overdosed cats. Repeated dose toxicity

studies revealed various adverse effects, including ataxia and

increased motility, in rats (EMA, 2008a). The depressed

neurological effects may be associated with an increased opening

of ‘BK’ potassium channels (Crisford et al., 2015). The liver, adrenal

glands, pancreas, and reproductive system are also target organs of

repeated doses of emodepside (EMA, 2008a). The No-Observed

Effect Levels (NOEL) vary with the mode of application (EMA,

2008a) and fasting status of the patient. Administration to a fasting

human patient increases the possibility of observing toxic effects

because of the increased absorption rate from the intestine.
Neurological toxicity

Emodepside is a substrate for a P-glycoprotein, the multidrug

resistance protein 1 (MDR1) which plays a crucial role in the

uptake, body distribution, and elimination of numerous drugs and

is expressed in different organs, including the brain (Figure 2C)

(Elmshäuser et al., 2015; EMA, 2008b). Animals with the P-
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glycoprotein defect exhibit neurological symptoms when treated

with emodepside (Gaens et al., 2019; Elmshäuser et al., 2015; Dias,

2014). Ataxia also arises in cats when they lick the spot-on

application site immediately after treatment (EMA, 2008a). These

observations highlight the importance of considering

pharmacogenomic and pharmacokinetic variat ions in

assessing safety.
Reproductive toxicity

There are indications that emodepside might have the potential

to interfere with embryo-fetal development (Wright and Elsheikha,

2018). Studies in rats and rabbits showed an impact on reproductive

performance, only at doses causing parental toxicity, with no

primary effect on fertility (CTP, 2014). Embryotoxicity/

teratogenicity revealed some adverse effects, encompassing

maternal toxicity, fetotoxicity, fetal malformations, and various

skeletal/visceral anomalies or deviations; however, no issues were

reported with emodepside in pregnant cats (CTP, 2014; Olliaro

et al., 2011). Continued surveillance is needed to address any

potential reproductive toxicity.
Additional facets of toxicity

There is limited data on carcinogenicity, mutagenicity, and

endocrine toxicity for emodepside. In vitro and in vivo studies

show no evidence of genotoxicity, skin or eye irritations (CTP,

2014). However, rare local toxicities like alopecia, pruritis, and

inflammation have been reported in cats (EMA, 2008a). Rat studies

have revealed hormone deregulation as a cause of observed

developmental toxicity (CTP, 2014). More studies are required to

confirm these aspects of toxicity.

Studies in humans with emodepside have revealed mild and

self-resolving side effects such as headache, visual disorders and

dizziness (Gillon et al., 2021; Mrimi et al., 2023). Despite the

ubiquitous distribution of BK channels in the body (exemplified

in Figure 2D), the recognized target site of emodepside, the adverse

effects are predominantly seen in ocular tissues possibly due to the

specific need for the eye’s high spatiotemporal precision. The rapid

absorption of emodepside revealed by its pharmacokinetic profile

suggests that emodepside activates BK channels in retinal cells and

the trabecular meshwork (Tanimoto et al., 2012; Cuppoletti et al.,

2012), disrupting sharp vision and causing blurring. The response

to BK channel activation by emodepside in other tissues may show

less sensitivity and hence little side effects due to their unique

physiological requirements and activation threshold or even

differences in isoforms. While major toxicity reports have not

been observed, a 40mg dose of emodepside per participant led to

increased reports of eye and central nervous system disorders in

some studies (Assmus et al., 2022; Gillon et al., 2020). Also,

mutations in the MDR1 gene, which codes for P-glycoprotein,

could affect its function and may be linked to symptoms like
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headaches. Care is required when administering emodepside to

individuals with P-glycoprotein impairment or deficiency.
Risk factors

The main risk factors associated with adverse effects of

emodepside are noncompliance and MDR1 mutat ion

predisposition. Caution is advised during administration. Again,

emodepside’s filaricidal effect on adult parasites could pose a

notable adverse reaction in dogs with Dirofilaria immitis because

of its location in the pulmonary arteries: rapid paralysis of these

parasites in the dog host results in pulmonary embolism and release

of Wolbachia antigens. Additionally, there is limited data on

emodepside’s use in severely debilitated animals (EMA, 2011;

2008a); thus, its use should be considered carefully. Potential risk

factors with emodepside akin to those of diethylcarbamazine

warrant further study.
Conclusion

This review examines the safety profile of emodepside, focusing

on its toxicological aspects within anthelmintic therapy.

Emodepside’s distinct mechanism of action differentiates it from

other anthelmintics, making it a promising option for tackling

multidrug-resistant infections. The drug’s demonstrated safety,

pharmacokinetics, and tolerability enhance its credibility.

Additionally, the review provides insights into potential risks

associated with emodepside and toxicity concerns.
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