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Schistosomiasis is a group of both acute and chronic parasitic trematode

infections of the genus Schistosoma. Research into schistosomiasis has been

minimal, leading to its classification as a neglected tropical disease, yet more than

140 million people are infected with schistosomes globally. There are no

treatments available for early-stage infections, schistosomal dermatitis, or

Katayama syndrome, other than symptomatic control with steroids and

antihistamines, as the maturing organisms seem to be mostly resistant to

typical antiparasitics. However, praziquantel (PZQ) has been the drug of choice

for schistosomiasis for decades in the latter stages of the disease. Though it is

effective against all three clinically relevant species, heavy reliance on PZQ has

led to concerns of schistosome resistance, especially in areas that have

implemented this drug in mass drug administration (MDA) programs. This

article summarizes the available literature concerning the available evidence

for and against a warranted concern for PZQ resistance, genomic studies in

schistosomes, proposed mechanisms of resistance, and future research in

alternative methods of schistosomiasis treatment.
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1 Introduction

Drug resistance is a well-known and key phenomenon that has impacted the

effectiveness of medications such as some antibiotics and antihelminthics for treating

poultry, livestock, and humans (Mohamed et al., 2022; Malik et al., 2022; Qamar and

Alkheraije, 2023; Li et al., 2023). Resistance is defined as a significant increase in the

frequency and unresponsiveness of individuals in a susceptible population to a compound

(Prichard et al., 1980; Coles and Kinoti, 1997; Greenberg, 2013). Unlike tolerance,

resistance is heritable and due to a population’s previous drug exposure (Prichard et al.,

1980; Greenberg, 2013).

Emerging drug resistance against the broad-spectrum antihelminthic drug praziquantel

(PZQ) (Figure 1) has been a growing public health concern (Berger et al., 2021; Cotton and

Doyle, 2022). There has been much discussion as to whether PZQ resistance is imminent or
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widespread (Danso-Appiah and De Vlas, 2002; Botros et al., 2005;

Melman et al., 2009; Crellen et al., 2016; Fukushige et al., 2021).

Following its discovery in the 1970s by the pharmaceutical

companies Merck and Bayer, PZQ has become the drug of choice

to treat schistosomiasis, the second most debilitating tropical

disease after malaria (Abdel Aziz et al., 2022). The causative

schistosomes, or blood flukes, are also responsible for

approximately 200,000 annual deaths and affect over 250 million

people globally, making them the most important helminthic

infectious agents (World Health Organization, 2021).

Schistosomiasis is caused by three main species: Schistosoma

mansoni is the most widespread and is the only species known to

exist in theWestern Hemisphere, S. haematobium is found in Africa

and the Middle East, and S. japonicum is found in regions of

Southeast Asia (World Health Organization, 2023a). Schistosomes

have a complex life cycle that involves two hosts—a mammalian

definitive host and a freshwater snail from the genus Biomphalaria

as an intermediate host. Schistosoma eggs are released from either

the feces or urine of an infected individual, depending on the species

of schistosome (Centers for Disease Control and Prevention, 2024).

The larvae, called miracidia, infect the suitable snail host for two

generations to produce free-swimming larval cercariae. These

cercariae then shed their tails, penetrate the skin of the

mammalian host, and become schistosomulae (Centers for

Disease Control and Prevention, 2024). Following infection, the

schistosomulae mature and undergo sexual reproduction. The adult

females lay 300 – 3,000 eggs daily until the end of the worm’s

lifespan—about three to five years (Cahill, 2011). Some of the eggs

build up in the host’s tissue, causing inflammation and a host

immune response that results in the disease’s morbidities (Burke

et al., 2009; Colley et al., 2014). Other eggs are passed through the

intestinal or bladder mucosa and are expelled in the feces or urine,

completing the cycle (Cahill, 2011).

In endemic areas, MDA of PZQ is essential for schistosomiasis

control as a form of preventative chemotherapy due to the drug’s

affordability, availability, minimal side effects, and effectiveness

against human infections of trematodes and cestodes (Cioli et al.,

2014; Crellen et al., 2016; Nogueira et al., 2022; Villamizar-

Monsalve et al., 2024). This extensive use has raised concerns
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about emerging drug resistance, which may develop following

prolonged and repeated application, such as in MDA (Coles and

Kinoti, 1997; Geerts et al., 1997).

Laboratory-induced resistance to PZQ have been successful,

and there have been multiple reports of reduced PZQ efficacy in the

field following continuous drug exposure (Ismail et al., 1994; Fallon,

1998; Ismail et al., 1999; Melman et al., 2009; Couto et al., 2011; Li

et al., 2011; Lotfy et al., 2015; Crellen et al., 2016). However, it has

also been observed that reduced PZQ sensitivity characteristics have

dissipated after several generations, even in the presence of drug

pressure (Botros et al., 2005; Melman et al., 2009). In addition,

multiple areas have endured several years of PZQ treatment, and

the efficacy rates remain high (Seto et al., 2011; Mduluza et al., 2020;

Tetteh-Quarcoo et al., 2020).

This review draws together previous and recent literature about

PZQ efficacy across the three main schistosome species in the

context of emerging PZQ resistance. Brief updates on the PZQ

mechanism of action, proposed mechanism of resistance, impacts of

MDA on schistosome genetic diversity, PZQ alternatives, and

schistosomiasis vaccine development are also covered.
2 Praziquantel efficacy

PZQ treatment efficacy is commonly measured by the egg

reduction rate (ERR), which compares the pre-treatment and

post-treatment number of eggs shed in the urine or feces.

Another prevalent method is the cure rate (CR), which compares

the number of infected individuals who become negative for

schistosomiasis post-treatment (Fukushige et al., 2021).

Due to its effectiveness as an antiparasitic, PZQ is on the

WHO’s list of essential medicines, and in 2017, approximately

100 million individuals received PZQ treatment for schistosomiasis

(Park and Marchant, 2020). However, PZQ is less effective against

juvenile worms or schistosomulae (Pica-Mattoccia and Cioli, 2004;

Villamizar-Monsalve et al., 2024). It is thought that ATP-binding

cassette (ABC) transporters, which can export toxins, play a role in

this protection, as juvenile worms have about two and a half times

the number of ABC transporters as the adult form (Kasinathan

et al., 2010). In addition, PZQ must be administered in higher than

recommended doses to efficiently kill schistosome eggs (Richards

et al., 1989). Therefore, a follow-up dose 4 to 6 weeks after the initial

dose may be necessary to prevent reinfection after any juvenile

worms have matured (Gryseels et al., 2006).
2.1 Praziquantel mechanism of action and
mechanism of resistance

Despite being the drug of choice against helminth infections for

decades, the exact mechanism of action for PZQ is unclear. In

trematodes and cestodes, PZQ may activate the transient receptor

potential ion channel in the worm (Sm.TRPMPZQ) by engaging with

a hydrophobic ligand-binding pocket, which opens the voltage-

gated Ca2+ channels and pumps (Park and Marchant, 2020). This

causes membrane depolarization, which is followed by rapid,
FIGURE 1

Chemical structure of praziquantel (Royal Society of
Chemistry, 2024).
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involuntary tetanic muscle contractions and paralysis of the worm

(Nogueira et al., 2022). PZQ may also change or destroy the worm’s

integument, exposing its previously hidden parasitic antigens and

leaving it vulnerable to host immune defenses (Eyoh et al., 2019).

Although a mechanism of PZQ resistance has also not been well

characterized, it has been suggested that resistant worms are simply

better able to metabolize the drug compared to non-resistant worms

(Zdesenko and Mutapi, 2020). According to a recent study using

whole-genome sequencing, it is also possible that genetic variation

at or near the Sm.TRPMPZQ channel could be involved (Le Clec’h

et al., 2021). However, further research on wild-type schistosomes

and their Sm.TRPMPZQ ion channels across a variety of regions is

needed for more conclusive answers.
3 Praziquantel resistance

Several laboratory studies have successfully induced PZQ

resistance in schistosomes, particularly S. mansoni. In 1994, an in

vitro study subjected a population of S. mansoni-infected mice to

increasing PZQ drug pressure. By the seventh generation, 93% of the

resistant schistosomes survived three PZQ doses of 300 mg/kg, which

killed 89% of the control group (Fallon, 1998; Vale et al., 2017).

Another study showed that resistance to the therapeutic dose of PZQ

can be induced in following generations of S. mansoni in mice

through successive subcurative doses (Ismail et al., 1994). A simpler

and less expensive technique was later developed to induce PZQ

resistance in S. mansoni through successively treating infected

Biomphalaria glabrata snails with 100 mg/kg of PZQ (Couto et al.,

2011). More recently, a study in 2015 induced resistance in an

Egyptian strain of S. mansoni through treating multiple subcurative

doses of Biomphalaria alexandrina snails (Lotfy et al., 2015).

Regarding S. japonicum, an unsuccessful attempt was made in 1990

to experimentally induce resistance using drug pressure through

infected mice (Yue et al., 1990). Induction of resistance in S.

japonicum in the three life stages—adult, cercaria, and miracidia—

was later achieved (Li et al., 2011). These studies demonstrate that

schistosomes are capable of developing resistance under PZQ drug

pressure of subcurative doses. There is currently no knowledge of

laboratory-induced resistance to PZQ in S. haematobium.

The first significant instance of reported PZQ resistance on the

field occurred in 1994 during an S. mansoni infection outbreak in

Senegal (Stelma et al., 1995). The standard single-dose treatment of

40 mg/kg resulted in alarmingly low cure rates of 18-36% rather than

the usual 60-90% (Doenhoff et al., 2008; Stelma et al., 1995).

However, a 20 mg/kg dose of oxamniquine, an alternative

anthelminthic drug, showed a typical cure rate (Stelma et al., 1997).

It has been suggested that the low cure rate of PZQ was due to an

intense initial infection, as the average egg counts were notably high

in patients (Stelma et al., 1995; Utzinger et al., 2000; Danso-Appiah

and De Vlas, 2002). PZQ is less effective against juvenile schistosomes

and eggs, which may have survived the initial treatment and matured

into adults after treatment (Richards et al., 1989; Danso-Appiah and

De Vlas, 2002; Pica-Mattoccia and Cioli, 2004).

Another early report of apparent S. mansoni field resistance to

PZQ was in villages in the Nile Delta region of Egypt (Ismail et al.,
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1996). All patients were treated with the standard dose of 40 mg/kg

followed by a second 40 mg/kg dose or a third 60 mg/kg dose if

necessary (Ismail et al., 1996). Although the PZQ cure rate was

98.4%, eggs isolated from the uncured patients generated PZQ

infections in mice that were 3-5 times less sensitive to PZQ, raising

concerns about resistance to PZQ in the parent worms (Ismail et al.,

1996, 1999). When treated with PZQ in vitro, the isolates from the

uncured patients showed decreased muscle contraction, decreased

tegumental disruption, and decreased calcium influx, all of which

are well-characterized PZQ actions on schistosomes (Ismail et al.,

1999; William et al., 2001; William and Botros, 2004; Eyoh et al.,

2019; Nogueira et al., 2022). Although these results were

concerning, a study conducted in the same villages using the

same dosing regimen ten years after the initial studies revealed no

resistance to PZQ despite a decade of continued and broad use of

the drug. It is worth noting that the infections initially present for

the follow-up study were generally light. In addition, detecting a

change from the previous 98.4% cure rate was not possible due to

the sample size (Botros et al., 2005).

Reduced sensitivity to PZQ was later reported in Kenya among

isolates of S. mansoni gathered from patients who had been

previously treated with PZQ but whose occupations continuously

exposed them to infection. The study also analyzed an isolate from a

patient who had been treated with PZQ 18 times and never fully

cured (KCW). This isolate was significantly less susceptible to PZQ

both in vivo and in vitro. However, one KCW sub-isolate retained

its resistant characteristics through 6 generations without any PZQ

treatment. Meanwhile, another KCW sub-isolate returned to PZQ

sensitivity after retesting for 8 generations. Such an occurrence may

inform the results of the Nile Delta villages studies, suggesting that

reduced PZQ susceptibility is not a stable trait in schistosomes and

may require a biological cost (Botros et al., 2005; Melman et al.,

2009; Greenberg, 2013).

A repeated cross-sectional study in Uganda found statistically

reduced PZQ efficacy against S. mansoni among children from

schools that had received 8 or 9 rounds of mass drug administration

(MDA) than children from schools that had received 5 rounds or 1

round. Interestingly, a whole-genome sequencing study of the

miracidia collected revealed that genomic diversity remained

varied and unstructured despite long-term PZQ use. Therefore,

the previously reported low PZQ efficacy may have been due to

factors other than resistance (Crellen et al., 2016; Berger

et al., 2021).

Concern for PZQ resistance in wild-type S. japonicum had

received discussion due to its heavy use in endemic areas of China

(Yu et al., 2001; Wu et al., 2011; Wang et al., 2012). Field studies

have tested the efficacy of PZQ to S. japonicum in areas of varying

endemicities throughout China using a single oral dose of 40 mg/kg

(Liang et al., 2001; Wang et al., 2012). The results suggest that

despite thirty years of heavy and expanded chemotherapy,

sensitivity to PZQ in S. japonicum has not significantly decreased

in China (Liang et al., 2001; Wang et al., 2012). In another study, the

efficacy of PZQ against S. japonicum was compared between an area

with repeated PZQ chemotherapy and a newly identified endemic

area. The results indicated that the efficacy between the two areas

were not significantly different (Yu et al., 2001). A cross-sectional
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study across 33 villages in Sichuan Province was organized to

evaluate PZQ efficacy against S. japonicum (Seto et al., 2011). Out

of 185 cases, only one remained uncured after receiving two doses of

40 mg/kg of PZQ, indicating that PZQ remains an effective

treatment for S. japnonicum in China (Seto et al., 2011).

Regarding S. haebatobium, a recent study in Ghana detected no

sign of its resistance to PZQ and attributed the more persistent

schistosomiasis cases to reinfection (Tetteh-Quarcoo et al., 2020).

Occasionally, there have been isolated reports of failed standard

treatment of S. haematobium in travelers returning from endemic

areas (Herwaldt et al., 1995; da Silva et al., 2005; Alonso et al., 2006).

Various possible explanations exist for these instances, including

the presence of a concurrent infection and the therapeutic failure of

a single 40 mg/kg dose of PZQ (Herwaldt et al., 1995; da Silva et al.,

2005). Since PZQ acts in synergy with the host immune system, it

has been hypothesized that some individuals originating from non-

endemic areas may lack the necessary immunological factor to

overcome the infection (Wu et al., 2011; Vale et al., 2017).

A meta-analysis and systematic review article in 2023 have

reported that PZQ efficacy has remained high, and there is no

consistent evidence for the emergence of PZQ resistance in

schistosomes (Fukushige et al., 2021; Aboagye and Addison, 2023).

However, care should be taken to attempt to prevent schistosome

resistance on the field, such as avoiding treatment with subcurative

doses of PZQ, as this has been shown to experimentally induce

resistance in S. mansoni and S. japonicum (Fallon, 1998; Li et al.,

2011; Wang et al., 2012). Focus should also be placed on alternative

methods of schistosomiasis control, such as snail control, clean tap

water, health education, and building latrines (Wang et al., 2012;

Villamizar-Monsalve et al., 2024). In addition, drug quality should

continue to be monitored to ensure the effectiveness of praziquantel

and detect further cases of suspected resistance (Wang et al., 2012;

World Health Organization, 2022).
3.1 Continued use of praziquantel

Despite its ineffectiveness against juvenile schistosomes,

inability to prevent reinfection, and heavy discussion of

schistosome resistance, PZQ will remain the drug of choice for

schistosomiasis for the foreseeable future. After decades of constant

use, efficacy rates remain high and incidences of resistance are rare

(Fukushige et al., 2021; World Health Organization, 2022). In 2022,

the WHO published guidelines on the control and elimination of

schistosomiasis in humans which recommended continued and

expanded access to PZQ (World Health Organization, 2022).
3.2 Genetic diversity of schistosomes

The genetic consequences of MDA and drug pressure have been

subject to recent investigation, especially in light of the decreased

cost of genotyping technologies and increased research about

schistosome molecular markers associated with PZQ resistance
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(Norton et al., 2010; Mendes et al., 2018; Gower et al., 2017;

Doyle and Cotton, 2019; Berger et al., 2021; Summers et al.,

2022). There have also been concerns that MDA would create a

genetic bottleneck that selects for PZQ-resistant schistosomes

(Norton et al., 2010; Rey et al., 2021). Genomic studies have

reported genetic ramifications in S. mansoni worms following

MDA and laboratory-induced resistance (Norton et al., 2010;

Mendes et al., 2018; Gower et al., 2017). However, these studies

are mainly aimed at investigating a limited number of molecular

markers, and the vast number of unknown variables of genetic

diversity makes the data difficult to attribute to the development of

drug resistance (Coghlan et al., 2019; Doyle and Cotton, 2019;

Berger et al., 2021). As a whole, genomic studies investigating PZQ

resistance have found no long-term decrease in the genetic diversity

of S. mansoni worms, even in ones that survived MDA (Gower et al.,

2017; Faust et al., 2019).
3.3 Future research and vaccine

The WHO states the need for developing new drugs to co-

administer with PZQ in case of resistance (World Health

Organization, 2020). Several potential new compounds are PZQ

derivatives, including sulphonamides, organometallics, and

another agent with a minor structural variation to PZQ

(Hess et al., 2015; Angeli et al., 2022; Xu et al., 2023). However,

further testing and optimization is needed before such drugs

become commercially available.

BecauseMDAalone is insufficient to eliminate schistosomiasis, the

WHO also calls for the development of a schistosomiasis vaccine

(World Health Organization, 2020). Recent advances in vaccine

development increase the possibility of this goal being obtained.

There are currently several schistosomiasis vaccines undergoing

clinical testing (Molehin, 2020; Hotez and Bottazzi, 2023). Most are

based on recombinant proteins and target S. mansoni (Zhang et al.,

2020; Santini-Oliveira et al., 2022; Diemert et al., 2023). However, the

task remains difficult due to the complex life cycle, host-evasion

mechanisms, and hybridization between schistosome species

(Fonseca et al., 2015). In addition, sustainable financing, uncertain

manufacturer investment, and distribution issues remain considerable

challenges. However, a schistosomiasis vaccine introduction in

conjunction with MDA is a necessary factor in eliminating the

disease, especially before any major sign of emerging schistosome

resistance is detected (World Health Organization, 2023b).
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