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The Polymerase Chain Reaction (PCR) test is a highly sensitive, specific, and rapid

diagnostic tool for Chagas disease. Chagas disease is caused by the protozoan

flagellate Trypanosoma cruzi and is endemic to the Americas. While conventional

serological methods are still used in the diagnosis of Chagas disease, they are

being gradually replaced by molecular methods like PCR. PCR can detect the

parasite’s DNA in blood or tissue samples from humans and animals, including

asymptomatic infections and animal reservoirs. In a study conducted on a colony

of New World monkeys, PCR analysis was found to be superior to conventional

screening tools for trypanosome infection, although false negatives can still

occur. In clinical studies, PCR has been used to assess the effectiveness of

Nifurtimox and Benznidazole in treating acute and chronic Chagas patients.

However, the presence of low-grade and intermittent parasitemia in peripheral

blood, even in the absence of treatment, renders PCR an unreliable test for

evaluating successful treatment. Based on this limiting factor, among others, we

do not believe that PCR is an appropriate gold standard test for Chagas in clinical

and preclinical studies. Other diagnostic methods, such as serological and

biomarker tests, should be used in conjunction with PCR techniques for more

accurate diagnosis of Chagas.
KEYWORDS

Trypanosoma cruzi (T cruzi), diagnostics test, Chagas disease, PCR techniques, T.
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Introduction

Chagas disease, caused by the hemoflagellate protozoan Trypanosoma cruzi, remains a

challenging medical, economic, and social burden in the Americas. According to the World

Health Organization (WHO), over six million individuals are infected, and 75 million are

living under the daily threat of infection (WHO, 2020).

Chagas disease is characterized by two clinical phases: the acute and the chronic phases.

During the acute phase, infected individuals usually exhibit high parasitemia and

experience symptoms such as fever, anorexia, and tachycardia (Rangel-Gamboa et al., 2019).
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In the chronic phase, infected individuals may develop various

conditions affecting the cardiovascular, digestive, or neurological

systems (Echavarrıá et al., 2021).

Depending on the clinical stage, specific laboratory diagnostic

tools can be employed to confirm T. cruzi infection. In the acute

phase, direct T. cruzi detection can be achieved through

parasitology techniques such as xenodiagnosis, or by employing

molecular biology techniques. Several polymerase chain reaction

(PCR) amplification-based assays have been tested to detect T.

cruzi, with some becoming routine tests. These assays include real-

time PCR (qPCR), digital droplet PCR (ddPCR) and loop-mediated

isothermal amplification PCR (LAMP-PCR). During the chronic

phase, parasitemia decreases and becomes intermittent, making the

indirect detection of T. cruzi through the presence of antibodies

against T. cruzi crucial. The most common serological techniques

employed to detect specific T. cruzi Ig G are enzyme-linked

immunosorbent assay (ELISA), complement fixation test,

fluorescent antibody technique, hemagglutination test,

radioimmunoprecipitation assay, and Western blot (Alonso-

Padilla et al., 2019). This perspective aims to discuss the current

use of PCR techniques for detecting T. cruziDNA in Chagas disease

studies and explore potential new directions for utilizing these

techniques in endemic areas.
PCR techniques for
T. cruzi identification

Traditional parasitological tests have been replaced by PCR,

which has been proven to be more sensitive. However, some

difficulties must be addressed to overcome unequal results due to

sample volume, DNA extraction protocol or T. cruzi region of

amplification (Junqueira et al., 1996; Virreira et al., 2003). For this

reason, more conserved T. cruzi regions have been targeted, such as

the satellite DNA and the variable region of kinetoplast DNA

(kDNA) mini-circles (Schijman et al., 2011; Ramirez et al., 2015).

The introduction of qPCR has significantly improved molecular

biology techniques. Automatization and standardization have

allowed for the quantification of T. cruzi parasitic loads

(Qvarnstrom et al., 2012).

Several efforts have been made to improve the sensitivity and

specificity of qPCR. Table 1 provides a few examples of such

research work.

Digital droplet PCR is a technique in which the amplification

reaction is conducted for individual nucleic acid molecules in

thousands of independent PCR reactions, previously divided into

droplets from a sample. The advantage of ddPCR is its ability to

provide absolute quantification without the need for a standard

curve (Liu et al., 2023). However, it has some limitations, including

the high cost of instruments, the requirement for well-trained

personnel, and a tendency to yield false-positive results. When it

comes to detecting T. cruzi DNA in patients’ blood samples, ddPCR

does not outperform qPCR, with a sensitivity of 1 parasite/mL

compared to 0.46 parasite/mL in qPCR (Ramıŕez et al., 2018). The

LAMP-PCR protocol for T. cruzi DNA amplification requires only

one temperature for the reaction to occur, thanks to Bacillus
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stearothermophilus. It employs colorimetric or fluorescent dyes

for in situ detection (Alves, 2020). LAMP has demonstrated high

sensitivity, cost-effectiveness, and speed. However, it has raised

some concerns due to its propensity for high levels of non-specific

amplification (Shrestha et al., 2023). To address these limitations,

Argentinian researchers have introduced additional steps in the

protocol, including more stringent sample preparation and specific

kits. Schijman’s group found that their T. cruzi Lamp kit was as

sensitive as qPCR (Besuschio et al., 2020; Muñoz-Calderón

et al., 2022).
PCR in congenital Chagas disease

Early diagnosis and care are essential in congenital Chagas

disease. Diagnosis in the early stages leads to the best outcomes for

therapeutic success. However, this is challenging in the first months

of life due to the transfer of maternal antibodies (Carlier and

Truyens, 2015; Pecoul et al., 2016).

Early T. cruzi detection by qPCR can provide more accurate

estimations of congenital cases. This could improve the early

detection of cases, providing more accurate records on the

number of infants born to Chagas disease mothers in endemic

and non-endemic countries and allowing better estimation of case

numbers. Early qPCR diagnosis tests have been done by Benatar

et al. (2021) (Table 1) however they recognized that improvements

need to be made. A year earlier, the same Schijman group used the

LAMP-PCR test to analyze 13 congenital Chagas disease individuals

and found that LAMP-PCR was sensitive and specific, comparable
TABLE 1 Characteristics of some improved qPCR protocols for T.
cruzi detection.

Study Methodology Molecular
target

Achievement

Piron
et al.,
2007

Standardized in-
house
TaqMan qPCR

T. cruzi
satellite DNA

Reduced the risk of
carry-over contamination

Ramıŕez
et
al., 2015

Commercial qPCR T. cruzi
satellite DNA

No differences were
found between parasite
loads of asymptomatic
and symptomatic
chronic patients

Benatar
et
al., 2021

Commercial real-
time PCR

T. cruzi
satellite DNA

In congenital diagnosis, it
was shown that its
sensitivity was twice that
of micro hematocritic

Sulleiro
et al.,
2020

Standardized in
house
TaqMan qPCR

T. cruzi
satellite DNA

Positivity in 42% of
untreated chronic
Chagas patients

Kann
et al.,
2020

Newly developed
one (NOD-PCR)
Standardized in
house
TaqMan qPCR

T. cruzi mini-
circle DNA
T. cruzi mini-
satellite DNA
T. cruzi small
subunit
ribosomal
RNA

kDNA-PCR showed
77.3% false positive rate,
cross reacting with T.
rangeli.
Mini-satellite showed a
false negative rate of
79.5% and
18S small subunit
ribosomal of 98.5%.
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to qPCR (Besuschio et al., 2020). In a meta-analysis by Candia-

Puma et al. (2022), it was found that qPCR is the most effective

among molecular diagnostic tools, particularly in acute cases.
PCR in chronic Chagas disease

Efforts have been made over the years to establish a

standardized PCR protocol for monitoring the treatment of

chronic patients, as serology alone is not accurate enough to

validate treatment efficacy. In adults, antibodies against T. cruzi

can remain detectable for six months to several years after

treatment. Sulleiro et al. (2020) detected the presence of T. cruzi

by qPCR in 42% of untreated chronic patients, with almost 55% of a

subgroup of them showing intermittent parasitemia.

However, PCR negativity does not guarantee that the infection

has been cured. Although treatment can demonstrate excellent

effectiveness in eliminating blood-stage parasites, its capacity to

target tissue forms remains uncertain (Simón et al., 2020).

There is still no consensus about the usefulness of PCR as a

predictive marker of disease progression. Sulleiro et al. (2020)

demonstrated that a positive qPCR is not necessarily associated

with visceral abnormalities. However, Sabino et al. (2015) observed

that a positive qPCR is linked to Chagas cardiomyopathy and

disease severity, contradicting the findings of a smaller study by

Norman et al. (2011).

As shown in Table 1 more specific qPCR protocols have been

developed; however, these tests are still recommended to be used in

combination with serological tests, which could significantly

improve Chagas disease treatment. This combination of tests can

not only be useful for therapy indication, but also for monitoring,

and control, as well as for surveillance of T. cruzi transmitters

and control.

In 2022, Candia-Puma et al. (2022) performed a meta-analysis

over the last 30 years. They observed that PCR and qPCR are not as

good as the ELISA test, which proved to be the best diagnostic tool

in acute and chronic Chagas disease. When they analyzed the

molecular techniques, they found that these techniques have not

been standardized. Despite its analytical validation, qPCR remains

to be clinically validated to determine its practical usefulness (Duffy

et al., 2013). Recent findings by Muñoz-Calderon et al. (2022) have

shown promising results for LAMP-PCR. Even with a small sample

size, they suggested that LAMP could be used as indicator of

treatment failure.
PCR in non-humans

In endemic areas, dogs and cats are considered as good

indicators of potential active T. cruzi transmission. In the acute

phase, Curtis-Robles et al. (2017) proposed the use of molecular

methods to confirm infection. Additionally, molecular techniques

could be useful for monitoring parasitemia during drug treatment

of Chagas disease in dogs (Lana et al., 1991). However, in the

chronic phase, dogs and cats generally show low and intermittent

parasitemia (Eloy and Lucheis, 2009), which diminishes all
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diagnostic methodologies. This issue has also been found in

animals in captivity, in 2000, Ndao and colleagues conducted a

study involving a colony of captive New World monkeys (Ndao et

al., 2000). Their research revealed an interesting phenomenon:

among the monkeys initially tested negative for T. cruzi using

PCR, a subsequent round of testing showed that a small subset of

these monkeys (n=5) became positive on both smear and PCR test.

This observation raised concerns regarding the possibility of

false negatives.
Discussion

Due to the intermittent nature of parasitemia in the chronic

stage, it is difficult to determine the best time to obtain accurate

results. Other factors to be considered are the strain of the parasite

and the clinical variability, which have been attributed to the high

genetic diversity and multiclonality of natural populations of T.

cruzi (Macedo and Pena, 1998). Depending on the geographical

origin of the strain and the source of infection, PCR values can vary,

as several authors have published. The behavior of the strain is an

important factor since the pattern of the release of the infective

forms into the bloodstream is not well established. The lineage of

the parasite must also be considered. T. cruzi populations show high

genetic diversity and are classified into six Discrete Typing Units

(DTUs) named TcI to TcVI (Zingales et al., 2012). The vast regional

diversity and the course of chronic infection might reflect complex

interactions between the genetic variability of T. cruzi strains, host

immunogenetics, and eco-epidemiological characteristics (Moreira

et al., 2013).

Given the fluctuating levels of parasitemia observed in

individuals with chronic Chagas disease, it might be useful to

perform repeated examinations with blood taken at different

times using reliable qPCR kits. However, this can be challenging

with a limited budget (Seiringer et al., 2017).

Currently, it is still recommended that PCR and qPCR be

validated with a serological test. The robustness of immunological

techniques has been well established (Ferrer et al., 2013), with

ELISA being widely recognized for its performance (Candia-Puma

et al., 2022).

However, qPCR is not exempt from limitations such as a higher

cost of consumables compared to conventional methods. It requires

a thermal cycler coupled with an optical reading system to allow for

interpretation and a high level of technical skill. In general,

molecular techniques require expensive resources and equipment.

While LAMP is a promising technique, it requires further testing by

other research groups in endemic settings to assess accessibility,

affordability, accuracy, and sensitivity. There is a need for more

rapid tests that do not sacrifice sensitivity and can be used in both

clinical settings and resource-poor field settings. Research efforts

should focus on the development of new diagnostic methods

including serological, molecular, and proteomics approaches.

It is important to continue improving molecular tools with

high-throughput instrumentation to provide more reliable and

accurate results. However, affordability is essential in the

neglected disease field. Simple technology and temperature-
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resistant reagents are mandatory. Techniques that can be

implemented in the field without requiring sophisticated

equipment and expensive reagents are needed. Identifying

biomarkers for simple, easy-to-use tests is crucial. While some

candidates have emerged, substantial efforts are still required to

develop these kits and make them accessible in the field.
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